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Abstract

Experimental work on decision-making shows that, when people evaluate risk, they
often engage in “narrow framing”: that is, in contrast to the prediction of traditional
utility functions defined over wealth or consumption, they often evaluate risks in iso-
lation, separately from other risks they are already facing. While narrow framing has
many potential applications to understanding attitudes to real-world risks, there does
not currently exist a tractable preference specification that incorporates it into the
standard framework used by economists. In this paper, we propose such a specification
and demonstrate its tractability in both consumption/portfolio choice and equilibrium
settings.
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1 Introduction

When economists model the behavior of an individual agent, they typically use utility func-

tions defined over total wealth or consumption. Such utility functions make a precise pre-

diction as to how the agent evaluates a new gamble he is offered: he merges the new gamble

with other risks he is already facing to determine its effect on the distribution of his future

wealth or consumption, and then checks if the new distribution is an improvement or not.

The experimental literature on decision-making under risk has uncovered many instances

in which people do not appear to evaluate gambles this way: instead of merging a new gamble

with other risks they are already facing and checking if the combination is attractive, they

often evaluate the new gamble in isolation, separately from their other risks. Such behavior

is known as “narrow framing” (Kahneman and Lovallo, 1993; Kahneman, 2003). “Framing”

is a general term used to describe the way people think about and evaluate gambles, while

“narrow” emphasizes that people sometimes evaluate a new gamble by thinking about the

distribution of the gamble, taken alone, and not just about the distribution of their overall

wealth once the gamble is added to their other risks. More formally, narrow framing means

that the agent derives utility directly from the outcome of a specific gamble he is offered, and

not just indirectly via its contribution to his total wealth. Equivalently, he derives utility

from the gamble’s outcome over and above what would be justified by a concern for his

overall wealth risk.

While narrow framing has been documented most clearly in experimental settings, it

also has the potential to address attitudes to risk in the field. In particular, there are

numerous real-world situations in which people appear to neglect simple opportunities for

diversification. Stock market non-participation – the refusal, over many decades, of many

households to allocate even a small amount of their wealth to the stock market, even though

equity is relatively uncorrelated with other major household risks – is one example (Mankiw

and Zeldes, 1991; Haliassos and Bertaut, 1995). Another is home bias – the refusal of many

households to diversify what holdings of domestic stock they do have with even a small

position in foreign stock (French and Poterba, 1991). Yet another example is the relatively

large fraction of wealth that some households allocate to just a few individual stocks (Curcuru

et al., 2004).

At least in the absence of frictions, it is hard to explain such behavior with traditional

utility functions defined only over wealth or consumption. Investors who pay attention to

the riskiness of their overall wealth are invariably keen to take advantage of opportunities

for diversification. An investor who evaluates risks in isolation, however, misses these op-

portunities, thereby making it easier to understand why he might fail to exploit them. For

example, an investor who evaluates an individual stock in isolation will fail to notice its

diversification benefits; he will therefore be reluctant to buy it, leaving him with a portfolio
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made up of too few stocks. Similarly, an investor who thinks about foreign stock market

risk in isolation will fail to notice the diversification benefits, and is therefore more likely to

exhibit home bias.

In spite of these potential applications, it has not been easy for economists to explore the

implications of narrow framing for real-world phenomena, for the simple reason that there

are no tractable preference specifications that allow for narrow framing. The development

of such preferences faces many hurdles. The specification should allow the agent to derive

utility directly from specific gambles he is taking, but also, as in traditional models, to derive

utility from total wealth or consumption. In other words, it must allow for both narrow and

traditional “broad” framing at the same time. Moreover, it must be implementable even in

the dynamic settings favored by economists.

In this paper, we present an intertemporal preference specification that meets these re-

quirements. In our framework, the agent gets utility from a gamble’s outcome both indirectly,

via its contribution to his total wealth, but also directly. The specification is very tractable,

both in partial equilibrium, allowing for an investigation of portfolio and consumption choice,

but also in equilibrium, allowing for an exploration of the effect of narrow framing on prices.

We present examples of both kinds of analysis. We also show that, in our framework, the

agent’s indirect value function takes a simple form, making it easy for the researcher to

calibrate our preferences by checking the agent’s attitude to timeless monetary gambles.

In constructing our preference specification, we do not take an axiomatic approach. The

reason is that, in extreme cases, narrow framing can lead the agent to choose a dominated

alternative, a prediction that is hard to reconcile with a set of normative axioms. We therefore

take another approach, which is simply to posit a specification that allows for narrow framing,

and to show that it has attractive properties as well as a number of potential applications,

both in partial equilibrium and in full equilibrium settings.

In order to explore applications of narrow framing, a researcher needs two things: a

tractable preference specification that allows for narrow framing; and a theory of which risks

agents will frame narrowly. In this paper, we focus on the first component, in other words, on

developing a tractable preference specification. The second component is equally important,

but is not the focus of our study. When necessary, we will rely on the most prominent

currently-available theory of framing, namely Kahneman’s (2003) “accessibility” theory. We

describe this theory in Section 2.

The one previous attempt to incorporate narrow framing into standard preferences is that

of Barberis, Huang, and Santos (2001). They investigate the implications, for the pricing of

the aggregate stock market, when investors are loss averse, in other words, more sensitive to

losses – even small losses – than to gains of the same magnitude. For part of their analysis,

Barberis, Huang, and Santos (2001) take the gains and losses to be gains and losses in stock
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market wealth, rather than in total wealth; in this case, then, they are implicitly assuming

that investors frame narrowly, and their preference specification reflects this.

While Barberis, Huang, and Santos’ (2001) specification is tractable in equilibrium set-

tings, it also has some serious limitations. First, it is intractable in partial equilibrium and

so cannot be used to understand observed portfolio choice. Second, the agent’s indirect value

function cannot be explicitly computed, making it hard to calibrate the utility function by

checking attitudes to monetary gambles. Finally, to ensure stationarity in equilibrium, the

narrow framing term in their specification requires an ad-hoc scaling by aggregate consump-

tion.

In this paper, we show that our new preference specification improves on that of Barberis,

Huang, and Santos (2001) in several significant ways. Our preferences are tractable in

partial equilibrium; they do admit an explicit value function; and they do not require any

ad-hoc scaling. Even in equilibrium settings, where Barberis, Huang, and Santos’ (2001)

specification is tractable, our formulation offers an important advantage: since it leads to

an explicit value function, it allows the researcher to check whether the parameter values

used in any particular application are reasonable, in terms of predicting sensible attitudes to

timeless monetary gambles.

Barberis, Huang, and Thaler (2006) apply the narrow framing preferences that we develop

here in an analysis of the stock market participation puzzle, while Barberis and Huang (2007)

apply them in an study of the equity premium. The distinct contribution of this paper is

the formal derivation, in full generality, of the equations that govern portfolio choice, asset

pricing, and attitudes to timeless monetary gambles. For example, it is in this paper that

we derive the first-order conditions for optimal consumption and portfolio choice; and it is

in this paper that we show how narrow framing can be incorporated into a full equilibrium

setting.

In Section 2, we review some experimental evidence on narrow framing. In Section 3,

we present a preference specification that allows for narrow framing. Section 4 specifies

a general portfolio problem, derives the first-order conditions of optimality and presents a

simple example. Section 5 explains how an agent with our preferences evaluates timeless

monetary gambles, while Section 6 explores the equilibrium implications of narrow framing.

Section 7 concludes.

2 Narrow Framing

Before presenting any formal analysis, we first review some of the experimental evidence on

narrow framing. The classic demonstration is due to Tversky and Kahneman (1981), who
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ask 150 subjects the following question:1

Imagine that you face the following pair of concurrent decisions. First examine both deci-

sions, then indicate the options you prefer:

Choice (I) Choose between:

A. a sure gain of $240

B. 25% chance to gain $1,000 and 75% chance to gain nothing

Choice (II) Choose between:

C. a sure loss of $750

D. 75% chance to lose $1,000 and 25% chance to lose nothing.

Tversky and Kahneman (1981) report that 84% of subjects chose A, with only 16%

choosing B, and that 87% chose D, with only 13% choosing C. In particular, 73% of subjects

chose the combination A&D, namely

25% chance to win $240, 75% chance to lose $760, (1)

which is surprising, given that this choice is dominated by the combination B&C, namely

25% chance to win $250, 75% chance to lose $750. (2)

It appears that, instead of focusing on the combined outcome of decisions I and II – in other

words, on the outcome that determines their final wealth – subjects are focusing on the

outcome of each decision separately. Indeed, subjects who are asked only about decision I

do overwhelmingly choose A; and subjects asked only about decision II do overwhelmingly

choose D.

In more formal terms, we cannot model the typical subject as maximizing a utility func-

tion defined only over total wealth. Rather, his utility function appears to depend directly

on the outcome of each of decisions I and II, rather than just indirectly, via the contribution

of each decision to overall wealth. As such, this is an example of narrow framing.

More recently, Barberis, Huang, and Thaler (2006) argue that the rejection of the gamble

(110,
1

2
;−100,

1

2
),

1For more evidence and discussion of narrow framing, see Kahneman and Tversky (1983), Tversky and
Kahneman (1986), Redelmeier and Tversky (1992), Read, Loewenstein, and Rabin (1999), and Rabin and
Thaler (2001).
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to be read as “win $110 with probability 1
2
, lose $100 with probability 1

2
, independent of other

risks,” observed by Kahneman and Tversky (1979) and Tversky and Kahneman (1992) in

a majority of subjects, may also be evidence of narrow framing. They reason that the

subjects who are offered this gamble are typically already facing other kinds of risk – labor

income risk, housing risk, or financial market risk, say. In the absence of narrow framing,

they must therefore evaluate the 110/100 gamble by mixing it with these other risks and

then checking if the combination is attractive. It turns out that the combination is, quite

generally, attractive: since the 110/100 gamble is independent of other risks, it offers useful

diversification benefits, which, even if “first-order” risk averse in the sense of Segal and Spivak

(1990), people can enjoy. The rejection of the 110/100 gamble therefore suggests that people

are not fully merging the gamble with their other risks, but that, to some extent, they are

evaluating it in isolation; in other words, that they are framing it narrowly.

As noted in the Introduction, our goal is not to provide a new theory of when narrow

framing occurs and when it does not, but rather to provide tools for exploring the implications

of any specific framing hypothesis. Nevertheless, it may be helpful, as we enter the formal

analysis, to keep at least one possible theory of framing in mind.

One candidate theory is proposed by Kahneman (2003). He argues that narrow framing

occurs when decisions are made intuitively, rather than through effortful reasoning. Since

intuitive thoughts are by nature spontaneous, they are heavily shaped by the features of the

situation at hand that come to mind most easily; to use the technical term, by the features

that are most “accessible.” When an agent is offered a new gamble, the distribution of the

gamble, considered separately, is often more accessible than the distribution of his overall

wealth once the new gamble has been merged with his other risks. As a result, if the agent

thinks about the gamble intuitively, the distribution of the gamble, taken alone, may play

a more important role in decision-making than would be predicted by traditional utility

functions defined only over wealth or consumption.

In Tversky and Kahneman’s (1981) example, the outcome of each one of choices A, B,

C, or D is highly accessible. Much less accessible, though, is the overall outcome once

two choices – A&D, say, or B&C – are combined: the distributions in (1) and (2) are less

“obvious” than the distributions of A, B, C, and D given in the original question. As a

result, if subjects use their intuition when responding, the outcome of each of decisions I and

II may play a bigger role than predicted by traditional utility functions. Similar reasoning

applies in the case of the 110/100 gamble.2

2Another possible source of narrow framing is non-consumption utility, such as regret. Regret is the pain
we feel when we realize that we would be better off today if we had taken a different action in the past. Even
if a gamble that an agent accepts is just one of many risks that he faces, it is still linked to a specific decision,
namely the decision to accept the gamble. As a result, it exposes the agent to possible future regret: if the
gamble turns out badly, he may regret the decision to accept it. Consideration of non-consumption utility
therefore leads quite naturally to preferences that depend directly on the outcomes of specific gambles that
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While Tversky and Kahneman’s (1981) experiment provides strong evidence of narrow

framing, it is also somewhat extreme, in that, in this example, narrow framing leads subjects

to choose a dominated alternative. In general, narrow framing does not necessarily lead to

violations of dominance. All the same, Tversky and Kahneman’s (1981) example does raise

the concern that, when applied to asset pricing, narrow framing might sometimes give rise

to arbitrage opportunities. To ensure that this does not happen, it is important to focus on

applications to absolute pricing – in other words, to the pricing of assets, like the aggregate

stock market, which lack perfect substitutes: when substitutes are imperfect, there are no

riskless arbitrage opportunities. We would not expect narrow framing to have much useful

application to relative pricing: in this case, any impact that narrow framing had on prices

would create an arbitrage opportunity that could be quickly exploited.

While narrow framing has primarily been documented in experimental settings, it is

intuitively clear, as noted in the Introduction, that it may also be able to address well-

known observations about attitudes to real-world risks. This points to the usefulness of

developing a formal preference specification that allows for narrow framing. We now present

such a specification.

3 Preferences that Allow for Framing

We work in discrete time throughout. At time t, the agent, whose wealth is denoted Wt,

chooses a consumption level Ct and allocates his post-consumption wealth, Wt − Ct, across

n assets. His wealth therefore evolves according to

W̃t+1 = (Wt − Ct)(
n∑

i=1

θi,tR̃i,t+1) ≡ (Wt − Ct)R̃W,t+1, (3)

where θi,t is the fraction of post-consumption wealth allocated to asset i, R̃i,t+1 is the gross

return on asset i between time t and t+ 1, and R̃W,t+1 is the gross return on wealth over the

same interval.

We can think of each of the n assets available to the agent as a “gamble.” His gamble in

asset i, for example, consists of putting down capital of θi,t(Wt −Ct) at time t, and receiving

an uncertain payoff of θi,t(Wt −Ct)R̃i,t+1 at time t+ 1. We want to allow for the possibility

that the agent frames one or more of these n gambles narrowly; in other words, that he gets

utility from their outcomes directly, and not just indirectly via their contribution to total

wealth risk. How can this be modeled?

A useful starting point for developing preferences that allow for narrow framing is recur-

the agent faces.
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sive utility, in which the agent’s time t utility, Vt, is given by

Vt = W (Ct, µ(Ṽt+1|It)), (4)

where µ(Ṽt+1|It) is the certainty equivalent of the distribution of future utility, Ṽt+1, con-

ditional on time t information, It, and W (·, ·) is an aggregator function that aggregates

current consumption Ct with the certainty equivalent of future utility to give current utility

(see Epstein and Zin, 1989, for a detailed discussion). Most implementations of recursive

utility assign W (·, ·) the CES form

W (C, x) = ((1 − β)Cρ + βxρ)
1
ρ , 0 < β < 1, 0 �= ρ < 1, (5)

and assume homogeneity of µ(·). If a certainty equivalent functional is homogeneous, it is

necessarily homogeneous of degree one, so that

µ(kx̃) = kµ(x̃), k > 0. (6)

In its current form, the specification in (4) does not allow for narrow framing: an investor

with these preferences cares about the outcome of a gamble he is offered only to the extent

that the outcome affects his overall wealth risk. These preferences can, however, be naturally

extended to allow for narrow framing. Suppose that the agent frames n − m of the n

assets narrowly – specifically, assets m + 1 through n. In terms of Kahneman’s (2003)

accessibility theory of framing, asset n, say, might be framed narrowly because information

about the distribution of its future returns is very accessible; in particular, more accessible

than information about the distribution of the agent’s overall wealth once a position in

asset n has been added to his holdings of other assets. Under this view, the fact that the

distribution of asset n’s returns is so accessible means that it plays a larger role in the agent’s

decision-making than traditional utility functions would suggest.

We propose that narrow framing of this kind can be captured by the following preference

specification:

Vt = W

⎛⎝Ct, µ(Ṽt+1|It) + b0
n∑

i=m+1

Et(v(G̃i,t+1))

⎞⎠ , (7)

where

W (C, x) = ((1 − β)Cρ + βxρ)
1
ρ , 0 < β < 1, 0 �= ρ < 1 (8)

µ(kx̃) = kµ(x̃), k > 0 (9)

G̃i,t+1 = θi,t(Wt − Ct)(R̃i,t+1 − Ri,z), i = m+ 1, . . . , n (10)

v(x) =

{
x

λx
for

x ≥ 0

x < 0
, λ > 1. (11)

Relative to the usual recursive specification in (4)-(6), we maintain the standard assump-

tions for W (·, ·) and µ(·). The difference is that we now add n−m new terms to the second
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argument of W (·, ·), one for each of the n−m assets that the investor is framing narrowly.

For example, G̃n,t+1 is the specific gamble the investor is taking by investing in asset n. By

adding in the new term b0Et(v(G̃n,t+1)), we allow the investor to get utility directly from

the outcome of this gamble, rather than just indirectly via its contribution to next period’s

wealth. Equivalently, the investor now gets utility from the outcome of this specific gamble

over and above what would be justified by its implications for his total wealth risk. In less

formal terms, he now evaluates his investment in asset n in isolation, to some extent.

The simplest way to express the gamble the investor is taking by investing in asset n,

say, is

G̃n,t+1 = θn,t(Wt − Ct)(R̃n,t+1 − 1), (12)

the amount invested in the asset, θn,t(Wt−Ct), multiplied by its net return, R̃n,t+1 −1. This

corresponds to equation (10) with Ri,z = 1. In this case, so long as θn,t > 0, a positive net

return is considered a gain and, from (11), is assigned positive utility; a negative net return

is considered a loss and is assigned negative utility.

By using the more general specification in equation (10), we allow for some flexibility as

to what counts as a gain – in other words, as to what kind of gamble outcome is assigned

positive utility. Treating any positive net return as a gain – in other words, setting Ri,z = 1

– is one possibility, but another that we consider later in the paper sets Ri,z = Rf,t. In this

case, an asset’s return is only considered a gain, and hence is only assigned positive utility,

if it exceeds the risk-free rate.3

The next issue is to specify the utility v(·) the agent receives from narrowly framed gains

and losses. We propose the piecewise linear specification in (11). There are at least two ways

of motivating this. The first is tractability. One way to increase tractability is to impose

homotheticity. Since µ(·) is homogeneous of degree one, homotheticity obtains so long as

v(·) is also homogeneous of degree one. At the same time, to ensure that the first-order

conditions associated with the maximization problem are both necessary and sufficient for

optimality, we need v(·) to be concave. The only function that is both homogeneous of

degree one and concave is precisely the piecewise linear function in (11).

Another possible line of argument is that v(·) should be modeled as closely as possible

after Kahneman and Tversky’s (1979) prospect theory – a descriptive theory, based on

extensive experimental evidence, of decision-making under risk. The reason is that, in those

experimental settings where people have been shown to be evaluating a gamble in isolation,

they often also appear to be following the rules of prospect theory in deciding whether to

accept the gamble. For example, the experiment of Tversky and Kahneman (1981) discussed

in Section 2 points not only to narrow framing, but also, through the preference for A

3Since Ri,z determines whether a particular outcome is a gain or a loss, it is an example of what the
literature on decision-making calls a “reference point.” An ongoing research effort tries to understand what
determines the reference points that people use in practice (Koszegi and Rabin, 2007).
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over B and for D over C, to risk aversion over gains and risk-seeking over losses, mirroring

the prospect theory value function’s concavity (convexity) in the region of gains (losses).

Similarly, the rejection of the 110/100 gamble suggests not only narrow framing, but also a

greater sensitivity to losses than to gains, in line with the kink in the prospect theory value

function.4

Equations (10) and (11) show that we have adopted two of the main features of prospect

theory in our specification of v(·): outcomes are described in terms of gains and losses

relative to a reference return Ri,z, and the agent is more sensitive to losses than to gains.

The two other elements of prospect theory – the concavity (convexity) of the value function

in the region of gains (losses), and the probability weighting function – are more difficult to

incorporate, because they induce risk-seeking on the part of the agent, which means that the

first-order conditions for the maximization problem are no longer sufficient for optimality.

The parameter b0 controls the degree of narrow framing. A b0 of 0 means no narrow

framing at all, while a large b0 means that the investor is evaluating each of assets m + 1

through n almost entirely in isolation. For simplicity, we take the degree of narrow framing

to be the same for all n−m assets, but our analysis extends very easily to the more general

case where

Vt = W

⎛⎝Ct, µ(Ṽt+1|It) +
n∑

i=m+1

bi,0Et(v(G̃i,t+1))

⎞⎠ . (13)

Finally, we note that the preferences in (7)-(11) are dynamically consistent. Today,

the agent knows how he will frame future gains and losses and what function v(·) he will

apply to those narrowly framed gains and losses. Moreover, he takes all of this into account

when making today’s decisions. Standard dynamic programming techniques can therefore

be applied, and dynamic consistency follows.5

4 The Consumption-Portfolio Problem

In this section, we derive the first-order conditions for optimal consumption and portfolio

choice, and illustrate the tractability of our framework by solving a simple portfolio problem.

4Kahneman (2003) suggests an explanation for why prospect theory and narrow framing might appear in
combination like this. He argues that prospect theory captures the way people act when they make decisions
intuitively, rather than through effortful reasoning. Since narrow framing is also thought to derive, at least
in part, from intuitive decision-making, it is natural that prospect theory would be used in parallel with
narrow framing.

5Of course, if the agent does not correctly forecast the way he will frame future gains and losses, dynamic
inconsistency can arise – but this is not the case here.
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The Bellman equation that corresponds to (7) is

Vt = J(Wt, It) = max
Ct,θt

W

⎛⎝Ct, µ(J(W̃t+1, It+1)|It) + b0
n∑

i=m+1

Et(v(G̃i,t+1))

⎞⎠

= max
Ct,θt

⎡⎣(1 − β)Cρ
t + β

⎡⎣µ(J(W̃t+1, It+1)|It) + b0
n∑

i=m+1

Et(v(G̃i,t+1))

⎤⎦ρ⎤⎦
1
ρ

. (14)

Given the form of G̃i,t+1 in equation (10), we can show that

J(Wt, It) = A(It)Wt ≡ AtWt, (15)

so that

AtWt = max
Ct,θt

⎡⎣(1 − β)Cρ
t + β(Wt − Ct)

ρ

⎡⎣µ(At+1θ
′
tR̃t+1|It) + b0

n∑
i=m+1

Et(v(θi,t(R̃i,t+1 − Ri,z)))

⎤⎦ρ⎤⎦
1
ρ

,

(16)

where

θt = (θ1,t, . . . , θn,t)
′, Rt = (R1,t, . . . , Rn,t)

′. (17)

Equation (16) shows that the consumption and portfolio decisions are separable. In

particular, the portfolio problem is

B∗
t = max

θt

⎡⎣µ(At+1θ
′
tR̃t+1|It) + b0

n∑
i=m+1

Et(v(θi,t(R̃i,t+1 − Ri,z)))

⎤⎦ , (18)

and after defining

αt ≡ Ct

Wt
, (19)

the consumption problem becomes

At = max
αt

[(1 − β)αρ
t + β(1 − αt)

ρ(B∗
t )

ρ]
1
ρ . (20)

The first-order condition for optimal consumption choice α∗
t is

(1 − β)(α∗
t )

ρ−1 = β(1 − α∗
t )

ρ−1(B∗
t )

ρ, (21)

and the second-order condition confirms that equation (21) is not only necessary but also

sufficient for a maximum. Combining equations (20) and (21) gives

At = (1 − β)
1
ρ (α∗

t )
1− 1

ρ , (22)

and similarly,

At+1 = (1 − β)
1
ρ (α∗

t+1)
1− 1

ρ , (23)
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which, when substituted into (18), allows us to rewrite the portfolio problem as

B∗
t = max

θt

⎡⎣µ((1 − β)
1
ραt+1

1− 1
ρ θ′tR̃t+1|It) + b0

n∑
i=m+1

Et(v(θi,t(R̃i,t+1 −Ri,z)))

⎤⎦ . (24)

In Section 4.1, we present a simple numerical example of a portfolio problem in the

presence of narrow framing. For that example, and for many others a researcher might be

interested in, the portfolio problem can easily be solved using only equations (21) and (24).

For some applications, though, it can be useful to lay out in full the necessary and sufficient

first-order conditions for consumption and portfolio choice, and we do this in Proposition 1

below.

Since our emphasis is on the effects of narrow framing, Proposition 1 restricts the form

of the certainty equivalent functional µ(·) to the simple case of

µ(x̃) = (E(x̃ζ))
1
ζ , 0 �= ζ < 1. (25)

However, the same method of proof used for Proposition 1 can also be applied to other

explicitly defined forms of µ(·), whether expected utility or not, that satisfy the homogeneity

property (9). For example, it is straightforward to derive the first-order conditions that hold

when µ(·) takes the non-expected utility form proposed by Chew (1983), namely “weighted

utility”:

µ(x̃) =

(
E(x̃1−γ+δ)

E(x̃δ)

) 1
1−γ

, γ �= 1. (26)

Proposition 1: The necessary and sufficient first-order conditions for the decision problem

that maximizes (7), subject to (3), (8), (10), (11), and (25), are, for each t, that

(
1 − αt

αt
)1− 1

ρ

⎡⎣β 1
ρ

[
Et(α

ζ(1− 1
ρ
)

t+1 (θ′tR̃t+1)
ζ)
] 1

ζ

+ b0(
β

1 − β
)

1
ρ

n∑
i=m+1

Et(v(θi,t(R̃i,t+1 −Ri,z)))

⎤⎦ = 1

(27)

and that there exists ψt such that, for i = 1, . . . n,

ψt − (1 − β)
1
ρ [Et(α

ζ(1− 1
ρ
)

t+1 (θ′tR̃t+1)
ζ)]

1
ζ
−1Et[α

ζ(1− 1
ρ
)

t+1 (θ′tR̃t+1)
ζ−1R̃i,t+1] (28){

= b01{i>m}sgn(θi,t)Et[v(sgn(θi,t)(R̃i,t+1 − Ri,z))]

∈ [b01{i>m}Et(v(R̃i,t+1 −Ri,z)),−b01{i>m}Et(v(Ri,z − R̃i,t+1))]
for

θi,t �= 0

θi,t = 0
.

Proof of Proposition 1: See the Appendix.

Equation (27) is simply a rearrangement of the first-order condition for consumption

choice in equation (21). Equation (28) is the first-order condition for the portfolio problem
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in (24); in the Appendix, we show it to be both necessary and sufficient. The right-hand side

of equation (28) is non-zero only if asset i is framed narrowly, in other words, only if i > m.

Since v(·) is not smooth at zero, the first-order condition takes the form of an inequality

when θi,t = 0.

Equations (27) and (28) lend themselves very naturally to the backward induction method

of dynamic programming. Given (αt+1, θt+1), equation (28) can be solved for θt, and with θt

in hand, equation (27) can be solved for αt.

Applications of recursive utility often consider the special case of (25) in which ζ = ρ,

in other words, the case where the exponent in the certainty equivalent functional is the

same as the exponent in the aggregator function in (8). The corollary below presents the

simplified first-order conditions that apply in this case. We use 1− γ to denote the common

value of ζ and ρ.

Corollary: When ζ = ρ = 1 − γ, the necessary and sufficient first-order conditions for the

decision problem that maximizes (7), subject to (3), (8), (10), (11), and (25), are, for each

t, that

(
1 − αt

αt

)
−γ
1−γ

⎡⎣β 1
1−γ

[
Et(α

−γ
t+1(θ

′
tR̃t+1)

1−γ)
] 1

1−γ + b0(
β

1 − β
)

1
1−γ

n∑
i=m+1

Et(v(θi,t(R̃i,t+1 − Ri,z)))

⎤⎦ = 1

(29)

and that there exists ψt such that, for i = 1, . . . , n,

ψt − (1 − β)
1

1−γ [Et(α
−γ
t+1(θ

′
tR̃t+1)

1−γ)]
γ

1−γEt[α
−γ
t+1(θ

′
tR̃t+1)

−γR̃i,t+1] (30){
= b01{i>m}sgn(θi,t)Et[v(sgn(θi,t)(R̃i,t+1 − Ri,z))]

∈ [b01{i>m}Et(v(R̃i,t+1 −Ri,z)),−b01{i>m}Et(v(Ri,z − R̃i,t+1))]
for

θi,t �= 0

θi,t = 0
.

Conditions (28) and (30) simplify slightly when θi,t > 0. In this case,

sgn(θi,t)Et[v(sgn(θi,t)(R̃i,t+1 −Ri,z))] = Et(v(R̃i,t+1 − Ri,z)). (31)

4.1 An example

To illustrate the effects of narrow framing, we now use the preceding analysis to solve a

simple portfolio problem in which the investor allocates his wealth across three assets. Asset

1 is riskless and earns a constant gross risk-free rate of Rf in each period. Assets 2 and 3

are risky, with gross returns R̃2,t+1 and R̃3,t+1 given by

log R̃i,t+1 = gi + σiε̃i,t+1, i = 2, 3, (32)

13



where (
ε̃2,t

ε̃3,t

)
∼ N

((
0

0

)
,

(
1 ω

ω 1

))
, i.i.d. over time. (33)

The investor’s wealth evolves according to

W̃t+1 = (Wt − Ct)((1 − θ2,t − θ3,t)Rf + θ2,tR̃2,t+1 + θ3,tR̃3,t+1), (34)

where θ2,t (θ3,t) is the fraction of post-consumption wealth allocated to asset 2 (3).

We can simplify the portfolio problem further, and still demonstrate the effects of narrow

framing, by making one additional assumption: that the fraction of the investor’s wealth

in asset 2 is fixed at θ2,t = θ2, so that the investor simply has to split the remainder of his

wealth between the riskless asset and risky asset 3. We can think of asset 2 as a non-financial

asset, such as housing wealth or human capital, and asset 3 as the domestic stock market.

In this case, given a fixed position in the non-financial asset, the investor is thinking about

how to allocate the rest of his wealth between the risk-free asset and a risky stock market.

Alternatively, asset 2 could be domestic stock and asset 3, foreign stock.

We now investigate what happens if, in making this decision, the investor frames asset 3

narrowly, so that his preferences are given by

Vt = W (Ct, µ(Ṽt+1) + b0Et(v(G̃3,t+1))) (35)

W (C, x) = ((1 − β)C1−γ + βx1−γ)
1

1−γ , 0 < β < 1, 0 < γ �= 1 (36)

µ(x̃) = (E(x̃1−γ))
1

1−γ , 0 < γ �= 1 (37)

G̃3,t+1 = θ3,t(Wt − Ct)(R̃3,t+1 − Rf) (38)

v(x) =

{
x

λx
for

x ≥ 0

x < 0
, λ > 1. (39)

Comparing this to the general specification in equations (7)-(11), we have set n = 3 and

m = 2 – in words, there are three assets and just one of them is framed narrowly – and

we have given µ(·) the simplest possible form: power utility with an exponent equal to the

exponent in the aggregator function W (·, ·). Finally, we have set the reference return Ri,z

equal to the risk-free rate Rf , so that a return is only considered a gain – in other words, is

only assigned positive utility – if it exceeds the risk-free rate.

In terms of Kahneman’s (2003) accessibility theory of framing, we can interpret the

narrow framing of asset 3 as indicating that information about the distribution of that asset

is very accessible to the investor – more so than information about the distribution of his

total wealth once a position in asset 3 is merged with his fixed position in asset 2.6

6One could argue that the investor should also frame the outcome of asset 2 narrowly, on the grounds
that the distribution of that asset’s returns may also be more accessible than the distribution of overall
wealth once the two risky assets are combined. While it is clear, from equation (7), that this can easily be
accomodated, it adds little to the intuition of this section. For simplicity, then, we assume that only asset 3
is framed narrowly.
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We use the return process parameters shown in Table 1. For simplicity, we set the mean

returns on the two risky assets, and also their volatilities, to the same value. Their correlation

is ω = 0.1. A fixed fraction θ2 = 50% of wealth is allocated to asset 2, the non-financial

asset, and the gross risk-free rate is 1.02%. Finally, we set the preference parameter β, which

has little direct influence on attitudes to risk, to 0.98, and consider a range of values for the

remaining preference parameters: γ, λ, and b0.

Before presenting the results, we outline a simple way of solving this problem. Given the

i.i.d investment opportunity set, we conjecture that

(θ3,t, αt, At) = (θ3, α, A), ∀ t. (40)

The portfolio problem in (24) then becomes

B∗ = max
θ3

[
(1 − β)

1
1−γα

−γ
1−γ [E((θ′R̃t+1)

1−γ)]
1

1−γ + b0E(v(θ3(R̃3,t+1 −Rf )))
]
. (41)

The only difficulty here is that the portfolio problem depends on the consumption policy

constant α. This can be addressed in the following way. Given a candidate optimal con-

sumption policy α, solve (41) for that α. Substitute the resulting B∗ into equation (21) to

generate a new candidate α, and continue this iteration until convergence occurs.

Table 2 shows the portfolios chosen by an investor who maximizes the utility function

in (35). Recall that a fixed 50% of the investor’s wealth is held in risky asset 2. For four

pairs of values of (γ, λ), and for a wide range of values of b0, the table lists the percentage of

the investor’s remaining wealth that is allocated to risky asset 3, as opposed to the risk-free

asset. For example, a figure of 100% in the table means that all remaining wealth, or 50%

of total wealth, is invested in asset 3.

Note first that, when b0 = 0, in other words, when there is no narrow framing at all,

the investor either puts all of his remaining wealth, or the vast majority of it, into asset 3.

The intuition is simple. Asset 3 not only earns a premium over the risk-free rate, but is also

almost uncorrelated with asset 2, thereby offering the investor substantial diversification.

Since the investor does not frame narrowly, he pays attention to overall wealth risk, and

therefore finds the diversification very attractive.

At the other end of the table, when b0 = 0.5, the investors puts none of his remaining

wealth into risky asset 3. At this level of narrow framing, the investor evaluates asset 3 so

much in isolation that he misses its diversification benefits. Instead, he focuses narrowly on

the asset’s potential gains and losses, and since, through the parameter λ, he is much more

sensitive to losses than to gains, he rejects the asset completely.

The portfolio choice results in Table 2 – specifically, the fact that, for a wide range

of values of b0, the investor allocates nothing to asset 3, thereby completely ignoring its
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diversification benefits – immediately suggest a number of possible applications for narrow

framing.

To see this, note that there are many contexts in which investors do indeed appear to

reject obvious diversification opportunities. In what has come to be known as the stock

market participation puzzle, many U.S. households have for decades refused to add even

a small amount of stock market risk to their portfolios, even though the stock market is

relatively uncorrelated with other major household risks (Heaton and Lucas, 2000). Very

similar is the home bias puzzle: the fact that many investors have historically refused to

diversify what holdings of domestic stock they do have with even a small position in foreign

stock, in spite of the low correlation between the two asset classes. Yet another example is

the fact that some households invest a relatively large fraction of their wealth in just a few

individual stocks.

In the absence of frictions, it is hard to explain such behavior with traditional utility func-

tions defined only over wealth or consumption. Investors who pay attention to the riskiness

of their overall wealth are invariably keen to take advantage of opportunities for diversifica-

tion. This is true even for utility functions that exhibit “first-order” risk aversion (Barberis,

Huang, and Thaler, 2006). Table 2 suggests that narrow framing, on the other hand, can

potentially explain the widespread under-diversification in household portfolios: an investor

who evaluates risks in isolation misses diversification opportunities, thereby making it easier

to understand why he might fail to exploit them.

5 Attitudes to Timeless Gambles

Economists are often interested in attitudes to timeless gambles – gambles whose uncertainty

is resolved immediately. Attitudes to such gambles can be used to decide if a particular

parameterization of a utility function corresponds to “reasonable” risk aversion or not. In

this section, we show how an agent who engages in narrow framing would evaluate a timeless

gamble.

The earlier literature has already discussed how an agent with the recursive utility spec-

ification in (4) would evaluate a timeless gamble (Epstein and Zin, 1989). The reason we

need to do more analysis is that, if the agent frames some risks narrowly, as the agent with

the preferences in (7)-(11) does, then he may also frame timeless gambles narrowly.

The narrow framing of a timeless gamble can be motivated, as before, by Kahneman’s

(2003) notion of accessibility. Suppose that, at time τ , the agent is offered a timeless gamble

g̃, a 50:50 bet to win $x or lose $y, independent of other risks, and whose outcome provides

no information about future investment opportunities. The gamble payoffs, x and y, are
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highly accessible and, in particular, may be more accessible than the distribution of overall

wealth once g̃ is mixed with the agent’s other risks. As a result, the distribution of the

gamble, taken alone, may play a more important part in the agent’s decision-making than

would be predicted by traditional utility functions.

Even if the timeless gamble g̃ is framed narrowly, there is still some flexibility in how it

is evaluated. One possible approach, proposed in the earlier literature on recursive utility,

is that, when evaluating a timeless gamble, the investor inserts an infinitesimal time step

∆τ around the moment where the gamble’s uncertainty is resolved, and then applies the

recursive calculation over this time step (Epstein and Zin, 1989). In this case, then, the

investor waits for the outcome of the timeless gamble to be revealed and then decides what

fraction of his wealth to consume between τ and τ + 1.

Under this approach, the investor’s utility after taking the gamble is7

Vτ = W (0, µ(Ṽτ+∆τ |Iτ ) + b0E(v(g̃))). (42)

Since

µ(Ṽτ+∆τ |Iτ ) = µ(Aτ+∆τ (Iτ+∆τ )W̃τ+∆τ |Iτ ) = Aτµ(Wτ + g̃|Iτ ) = Aτµ(Wτ + g̃), (43)

where the second equality comes from the fact that g̃ provides no information about future

investment opportunities, the third from the fact that g̃ is independent of time τ information,

and Aτ is defined in equation (15), equation (42) becomes

Vτ = W

(
0, Aτµ(Wτ + g̃) + b0(

x− λy

2
)

)
. (44)

If the investor chooses not to take the gamble, this reduces to

Vτ = W (0, AτWτ ). (45)

The gamble is therefore accepted iff

Aτµ(Wτ + g̃) + b0(
x− λy

2
) > AτWτ . (46)

If g̃ is small relative to the investor’s wealth, and if µ is “smooth” – in the sense of

exhibiting “second-order” risk aversion, say, as in Segal and Spivak (1990) – then µ(Wτ +g̃) ≈
Wτ + E(g̃) and condition (46) becomes

x

y
>
Aτ + b0λ

Aτ + b0
. (47)

7To keep equation (42) simple, we suppose that the agent frames only the timeless gamble narrowly. It
is straightforward to extend the calculations to the case where the agent also frames some of his other risks
narrowly.
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Note that, if b0 is large relative to Aτ , the gamble is accepted iff the ratio x:y exceeds

λ. Intuitively, when b0 is large, the investor evaluates the gamble largely in isolation and

therefore accepts it only if its ratio of gain to loss exceeds his sensitivity to losses, λ.

A second possibility is that the investor evaluates the timeless gamble g̃ over the same

time interval he uses to evaluate his other risks, which, from (7), is the time interval between

τ and τ + 1. In this case, then, the investor makes the time τ consumption decision before

seeing the outcome of the timeless gamble.

Under this approach, if the investor does not take the gamble, his utility, from (15), is

Vτ = AτWτ . (48)

If he does take the gamble, his utility is

Vτ = ÂτWτ = W (Ĉτ , µ(Ṽτ+1|Iτ ) + b0Ev(g̃)), (49)

where the hats over Âτ and Ĉτ are a reminder that, if the gamble is accepted, optimal

consumption and portfolio policies are affected. Since

µ(Ṽτ+1|Iτ ) = µ(Aτ+1W̃τ+1|Iτ ) = µ(Aτ+1((Wτ − Ĉτ )R̃W,τ+1 + g̃)|Iτ ), (50)

equation (49) becomes

Vτ = W

(
Ĉτ , (Wτ − Ĉτ )µ

(
Aτ+1(R̃W,τ+1 +

g̃

Wτ − Ĉτ

)|Iτ
)

+ b0(
x− λy

2
)

)
. (51)

The investor therefore takes the gamble iff

W

(
Ĉτ , (Wτ − Ĉτ )µ

(
Aτ+1(R̃W,τ+1 +

g̃

Wτ − Ĉτ

)|Iτ
)

+ b0(
x− λy

2
)

)
> AτWτ . (52)

We now present an illustrative example. Consider an investor who, at time τ , has wealth

of $500, 000 invested in a risky asset with gross return R̃t+1, given by

log R̃t+1 ∼ N(0.04, 0.03), i.i.d over time. (53)

The investor is offered a timeless gamble g̃, a 50:50 bet to win $200 or lose $100, independent

of other risks. Suppose that the investor engages in narrow framing, so that he evaluates

the timeless gamble according to either (46) or (52). We set

W (C, x) = ((1 − β)C1−γ + βx1−γ)
1

1−γ , 0 < β < 1, 0 < γ �= 1 (54)

µ(x̃) = (E(x̃1−γ))
1

1−γ , 0 < γ �= 1, (55)

so that, as in Section 4.1, µ(·) has a power utility form with exponent equal to the exponent

in the aggregator function.
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The top panel in Figure 1 shows, for β = 0.98 and γ = 1.5, the range of values of b0 and

λ for which the agent rejects the 200/100 gamble when the gamble is evaluated according

to the first method laid out above, corresponding to equation (46).8 The figure shows that,

for high values of b0, the agent rejects the gamble when λ > 2 and accepts it otherwise.

The intuition is simple. For high values of b0, the agent effectively evaluates the gamble in

isolation: whether he takes it or not is therefore determined by his sensitivity to narrowly

framed losses, λ. If he is more than twice as sensitive to losses as to gains, the 200/100

gamble, with its 2:1 ratio of gain to loss, becomes unattractive.

As b0 falls, it takes higher values of λ to reject the gamble. To understand this, consider

the extreme case where b0 = 0. In this case, the preferences in (7), coupled with (54) and

(55), collapse to standard power utility. For such preferences, the investor is almost risk-

neutral to small gambles and is therefore delighted to accept a small, independent, actuarially

favorable gamble like 200/100. As b0 falls towards 0 then, the investor becomes more and

more interested in the 200/100 gamble and progressively higher values of λ are required to

scare him away from it.

The bottom panel in Figure 1 shows, again for β = 0.98 and γ = 1.5, the range of

values of b0 and λ for which the agent rejects 200/100 when the gamble is evaluated using

the second method laid out above, corresponding to equation (52).9 The figure shows that,

for this gamble, the alternative procedure produces identical results. The reason is that,

since the 200/100 gamble is small relative to the investor’s wealth, it makes little difference

whether the time τ consumption decision is made before or after observing the gamble’s

outcome.

Sometimes, the researcher is interested not in whether the agent accepts or rejects a

gamble x/y, but in what premium π the agent would pay to avoid a symmetric gamble g̃: a

50:50 bet to win or lose a fixed amount x, say. For an agent who engages in narrow framing,

the premium can easily be computed using the analysis above.

For example, following the first evaluation method in equation (44), the utility from

taking the gamble is

Vτ = W (0, Aτµ(Wτ + g̃) + b0
x

2
(1 − λ)), (56)

while the utility after paying the premium is

Vτ = W (0, Aτµ(Wτ − π) − b0λπ). (57)

The premium paid is therefore given by

Aτµ(Wτ + g̃) + b0
x

2
(1 − λ) = Aτ (Wτ − π) − b0λπ, (58)

8See the Appendix for computational details.
9See the Appendix for computational details.

19



so that

π =
Aτ (Wτ − µ(Wτ + g̃)) + b0

x
2
(λ− 1)

Aτ + b0λ
. (59)

Alternatively, the gamble can be evaluated according to the method assumed in equation

(51), leading, in many cases, to very similar results.

6 Equilibrium Analysis

We now show that our preference specification is tractable not only in partial equilibrium,

but also in a full equilibrium setting, thereby allowing us to study the impact of narrow

framing on asset prices.

The simplest way of implementing narrow framing in an equilibrium context is to assign

our preferences to a representative agent. In this case, the first-order conditions (29) and

(30) give the relationship that must hold between aggregate consumption and asset returns.

The following lemma rewrites those first-order conditions in a way that brings the role of

consumption out more clearly and that is therefore easier to apply in equilibrium settings.

Lemma: Suppose that asset 1 is the risk-free asset and that the reference return is set to

Ri,z = Rf,t, ∀i. If, moreover, θi,t > 0, ∀i > 1, then the first-order conditions for consumption

and portfolio choice in equations (29)-(30) reduce to[
βRf,tEt((

Ct+1

Ct
)−γ)

] [
βEt((

Ct+1

Ct
)−γRW,t+1)

] γ
1−γ

= 1(60)

Et((
Ct+1

Ct
)−γ(Ri,t+1 −Rf,t))

Et((
Ct+1

Ct
)−γ)

+ b01{i>m}Rf,t(
β

1 − β
)

1
1−γ (

1 − αt

αt
)

−γ
1−γEt(v(Ri,t+1 − Rf,t)) = 0,(61)

i = 2, . . . , n.

Proof of Lemma: See the Appendix.

One last equation that will prove useful is the weighted sum of the equations in (61),

where the i’th equation is weighted by θi,t:

Et((
Ct+1

Ct
)−γ(RW,t+1 − Rf,t))

Et((
Ct+1

Ct
)−γ)

+ b0Rf,t(
β

1 − β
)

1
1−γ (

1 − αt

αt
)

−γ
1−γ

n∑
i=m+1

Et(θi,tv(Ri,t+1 −Rf,t)) = 0.

(62)

We now show how equations (60)-(62) can be implemented in a simple equilibrium setting.

To illustrate the tractability of our framework, we use it to analyze the effect of narrow

framing on the magnitude of the equity premium.
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6.1 An example

Consider an economy with just three assets. Asset 1, the risk-free asset, is in zero net supply

and earns a gross return Rf,t. Assets 2 and 3 are risky and are in positive net supply. Asset

2 can be thought of as a non-financial asset, such as housing wealth or human capital, and

earns a gross return of R̃N,t+1. Asset 3 is the stock market and earns a gross return of R̃S,t+1.

We investigate the implications for the risk-free rate and equity premium when the rep-

resentative agent frames stock market risk narrowly, in other words, when he has the pref-

erences

Vt = W (Ct, µ(Ṽt+1) + b0Et(v(G̃S,t+1))) (63)

W (C, x) = ((1 − β)C1−γ + βx1−γ)
1

1−γ , 0 < β < 1, 0 < γ �= 1 (64)

µ(x̃) = (E(x̃1−γ))
1

1−γ , 0 < γ �= 1 (65)

G̃S,t+1 = θS,t(Wt − Ct)(R̃S,t+1 −Rf,t) (66)

v(x) =

{
x

λx
for

x ≥ 0

x < 0
, λ > 1, (67)

where θS,t is the fraction of wealth allocated to the stock market and where, relative to the

general specification in (7)-(11), we have set n = 3 and m = 2, given µ(·) a power utility

form with exponent equal to the exponent in the aggregator function W (·, ·), and set the

reference return Ri,z equal to the risk-free rate Rf,t.

In terms of Kahneman’s (2003) accessibility theory of framing, we can interpret the

narrow framing of the stock market as indicating that information about the distribution of

stock returns is very accessible to the investor, perhaps because of regular exposure to such

information in books, newspapers, and other media; and, in particular, that this information

is more accessible than information about the distribution of overall wealth once the stock

market is merged with the investor’s holdings of the non-financial asset.10

We consider an equilibrium in which: (i) the risk-free rate is a constant Rf ; (ii) consump-

tion growth and stock returns are distributed as

log
Ct+1

Ct
= gC + σCεC,t+1 (68)

logRS,t+1 = gS + σSεS,t+1, (69)

10One could argue that the investor should also frame the outcome of the non-financial asset narrowly, on
the grounds that the distribution of that asset’s returns may also be more accessible than the distribution
of overall wealth once the two risky assets are combined. While it is clear, from (7), that this can easily be
accomodated, doing so leaves the equity premium largely unaffected. For simplicity, then, we assume that
only stock market risk is framed narrowly.
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where (
εC,t

εS,t

)
∼ N

((
0

0

)
,

(
1 ρCS

ρCS 1

))
, i.i.d. over time; (70)

(iii) the consumption-wealth ratio αt is a constant α, which, using

RW,t+1 =
Wt+1

Wt − Ct
=

1

1 − α

Ct+1

Ct
, (71)

implies that

logRW,t+1 = gW + σW εW,t+1, (72)

where

gW = gC + log
1

1 − α
(73)

σW = σC (74)

εW,t+1 = εC,t+1; (75)

and (iv) the fraction of total wealth made up by the stock market, θS,t, is a constant over

time, θS , so that

θS,t =
St

St +Nt
= θS, ∀t, (76)

where St and Nt are the total market value of the stock and of the non-financial asset,

respectively.

One question that arises immediately is whether the structure we propose in conditions

(i)-(iv) can be embedded in a general equilibrium framework. Condition (iv), the condition

that θS,t be constant over time, make this a non-trivial challenge. For example, this condition

cannot emerge from the simplest model of the production sector, the Lucas tree. In the

Appendix, we show that a slightly richer model of the production sector can be consistent

with conditions (i)-(iv). While we place this analysis in the Appendix, we emphasize that

it represents one of our paper’s more important contributions: it is this analysis that clears

the way for a numerical investigation of the equilibrium implications of narrow framing.

Under conditions (i)-(iv), equations (60)-(62) simplify to

β
1

1−γ (1 − α)
−γ
1−γRfE((

Ct+1

Ct

)−γ)(E((
Ct+1

Ct

)1−γ))
γ

1−γ = 1 (77)

E((Ct+1

Ct
)−γ(RS,t+1 −Rf ))

E((Ct+1

Ct
)−γ)

+ b0Rf (
β

1 − β
)

1
1−γ (

1 − α

α
)

−γ
1−γE(v(RS,t+1 − Rf)) = 0 (78)

E((Ct+1

Ct
)−γ(RW,t+1 − Rf ))

E((Ct+1

Ct
)−γ)

+ b0Rf(
β

1 − β
)

1
1−γ (

1 − α

α
)

−γ
1−γ θSE(v(RS,t+1 − Rf)) = 0. (79)

We now use these three equations to compute the equilibrium equity premium. First,

we set the return and consumption process parameters to the values in Table 3. These
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values are estimated from annual data spanning the 20th century and are standard in the

literature. Then, for given preference parameters β, γ, b0, and λ, and a given stock market

fraction of total wealth θS, equations (77)-(79) can be solved for the consumption-wealth

ratio α, the risk-free rate Rf , and the mean log stock return gS, thereby giving us the equity

premium. Luckily, analytical expressions for all the expectation terms in equations (77)-(79)

are available, making the calculations straightforward. These expressions are given in the

Appendix.11

Table 4 presents the results. We take β = 0.98, θS = 0.3, and consider various values

of γ, λ, and b0; the parameter β has little effect on attitudes to risk, and the results are

quite similar over a range of values of θS . The table shows that narrow framing of stocks

can generate a substantial equity premium at the same time as a low risk-free rate. The

parameter triple (γ, λ, b0) = (1.5, 3, 0.02), for example, produces an equity premium of 5.45%

and a risk-free rate of 2.3%. The intuition is simple: if the agent gets utility directly from

changes in the value of the stock market and, via the the parameter λ, is more sensitive to

losses than to gains, he finds the stock market risky and will only hold the available supply

if compensated by a high average return.12

The results in Table 4 confirm the findings of Barberis, Huang, and Santos (2001), whose

paper is, to our knowledge, the only other attempt to incorporate narrow framing into

standard preferences. They study the implications for the equity premium when investors

are loss averse, in other words, more sensitive to losses – even small losses – than to gains

of the same magnitude. For part of their analysis, Barberis, Huang, and Santos (2001) take

the gains and losses to be gains and losses in stock market wealth, rather than in total

wealth; in this case, then, they are implicitly assuming that investors frame narrowly, and

their preference specification reflects this. In their analysis, they find, as in Table 4, that,

in combination with loss aversion, narrow framing of the stock market can generate large

equity premia.

In Sections 4 and 5, we have already seen two important ways in which our preference

specification improves on that of Barberis, Huang, and Santos (2001). Our specification is

tractable in partial equilibrium, while theirs is not. And our preference specification allows

for an explicit value function, while their does not, making it difficult to calibrate their utility

function by computing attitudes to timeless monetary gambles.

11The goal of this section is to provide a framework for equilibrium analysis of narrow framing, and, in
particular, to derive the first-order conditions (77)-(79). In what follows, we present some brief numerical
computations based on these equations. This is not the focus of our paper, however. For more detailed
numerical analysis, see Barberis and Huang (2007), who take equations (77)-(79) as their starting point.

12Of course, in assigning our preferences to a representative agent, we are assuming that properties of
individual preferences survive aggregation. We do not prove any results about aggregation here, but we
can gain some insight from Chapman and Polkovnichenko (2006), who study the effect of heterogeneity on
the link between “disappointment aversion” preferences and the equity premium. They find that the equity
premium in a heterogeneous agent model, while lower than in a representative agent model, is still sizeable.
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We now show that, even in an equilibrium setting, where Barberis, Huang, and Santos’

(2001) model is also tractable, our specification offers an important advantage. To see this,

note that another question a researcher may be interested in is whether the parameters used

by narrow framing models to generate high equity premia are reasonable, in terms of making

sensible predictions about attitudes to timeless monetary gambles. Since Barberis, Huang,

and Santos’ (2001) preferences do not admit an explicit value function, they cannot address

this question. Our preferences, on the other hand, can easily do so.

Consider, for example, a simple thought experiment proposed by Epstein and Zin (1990)

and Kandel and Stambaugh (1991). The experiment posits an agent with current wealth

of $75, 000 and asks what premium the agent would pay to avoid a 50:50 bet to win or

lose $25, 000; and also, what premium he would pay to avoid a 50:50 bet to win or lose

$250. By comparing the premia predicted by a particular parameterization of a utility

function to our intuition as to what the answers should be, we can judge how reasonable

that parameterization is.

The columns labelled πL and πS in Table 4 present, for each preference parameterization

we consider, the premia that would be charged by the representative agent in our economy,

given his equilibrium holdings of risky assets and current wealth of $75, 000. The quantities

πL and πS correspond to the large and small gambles, respectively. We compute πL and πS

using equation (59). The parameter Aτ in that equation can be computed from equation

(22) using the consumption-wealth ratio α obtained from equations (77)-(79).

The table shows that, while all the parameterizations produce reasonable values of πL,

the predicted values of πS are more reasonable for b0 ≤ 0.03 in the case of (γ, λ) = (1.5, 2),

and for b0 ≤ 0.01 in the case of (γ, λ) = (1.5, 3). Our model therefore provides an additional

insight not available using Barberis, Huang, and Santos’ (2001) specification: that narrow

framing of stocks can easily produce large equity premia while also matching reasonable

attitudes to large-scale gambles; but that if the researcher is also interested in matching

attitudes to small -scale gambles, there are limits to the size of the equity premium that

narrow framing can generate.

7 Conclusion

Experimental work on decision-making shows that, when people evaluate risk, they often

engage in “narrow framing”: that is, in contrast to the prediction of traditional utility func-

tions defined over wealth or consumption, they often evaluate risks in isolation, separately

from other risks they are already facing. While narrow framing has many potential ap-

plications to understanding attitudes to real-world risks, there does not currently exist a

tractable preference specification that incorporates it into the standard framework used by
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economists. In this paper, we propose such a specification and demonstrate its tractability

in both portfolio choice and equilibrium settings.
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8 Appendix

Proof of Proposition 1: Substituting the expression for B∗
t in equation (24) into the

following rearrangement of equation (21),

(
β

1 − β
)

1
ρ (

1 − αt

αt
)1− 1

ρB∗
t = 1, (80)

gives

(
β

1 − β
)

1
ρ (

1 − αt

αt

)1− 1
ρ

⎡⎣µ((1 − β)
1
ρα

1− 1
ρ

t+1 θ
′
tR̃t+1|It) + b0

n∑
i=m+1

Et(v(θi,t(R̃i,t+1 − Ri,z)))

⎤⎦ = 1,

(81)

which, after applying the form of µ(·) in equation (25), gives equation (27).

To derive equations (28), let K(θt) equal the argument being maximized in equation (24),

and recall that the certainty equivalent functional is given by (25), so that

K(θt) ≡ H(θt) +G(θt), (82)

where

H(θt) ≡ (1 − β)
1
ρµ(αt+1

1− 1
ρ θ′tR̃t+1|It)

= (1 − β)
1
ρ [Et(α

ζ(1− 1
ρ
)

t+1 (θ′tRt+1)
ζ)]

1
ζ (83)

G(θt) ≡ b0
n∑

i=m+1

Et(v(θi,t(R̃i,t+1 −Ri,z))). (84)

The optimal portfolio weights θt can be computed by solving

max
θt

[
H(θt) +G(θt) + ψt

(
1 −

n∑
i=1

θi,t

)]
, (85)

where the Lagrange multiplier ψt satisfies

n∑
i=1

θi,t = 1. (86)

Since µ(·) is strictly concave, and αt+1 and {R̃i,t+1}n
i=1 are all non-zero random variables,

H(θt) is also strictly concave in θt. Moreover, since v(·) is concave in θt, so is G(θt). The

argument to be maximized in (85) is therefore strictly concave in θt and any local maximum

is also a global maximum.

Since H(θt)+G(θt) has well-defined first derivatives everywhere except at θi,t = 0 for i >

m, the necessary and sufficient conditions for optimality, other than the standard constraint

(86), are
∂H(θt)

∂θi,t
+
∂G(θt)

∂θi,t
− ψt = 0, for θi,t �= 0, (87)
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and ⎧⎪⎨⎪⎩
∂H(θt)
∂θi,t

+ ∂G(θt)

∂θ+
i,t

− ψt ≤ 0

∂H(θt)
∂θi,t

+ ∂G(θt)

∂(−θ−i,t)
− ψt ≥ 0

, for θi,t = 0. (88)

Writing out the partial derivatives in full gives conditions (28).

Computing Attitudes to Timeless Gambles

Condition (46) can be easily implemented as soon as Aτ is computed. Given that in-

vestment opportunities are i.i.d., it is straightforward to show that At = A, ∀t, and that

αt = α, ∀t. The quantity A can then be computed from (16), where, given our simplifying

assumption that the investor does not frame any of his pre-existing risks narrowly, b0 can be

set to 0. Equation (18) then becomes

B∗ = A(E(R̃1−γ
t+1 ))

1
1−γ , (89)

which, when substituted into equation (21), gives

α = 1 − β
1
γ (E(R̃1−γ

t+1 ))
1
γ . (90)

A can then be computed from equation (22).

To implement condition (52), note that the left-hand side can be written

max
α

{(1−β)α1−γ+β(1−α)1−γ

[
A(E(R̃τ+1 +

g̃

Wτ (1 − α)
)1−γ)

1
1−γ + b0

x− λy

2Wτ (1 − α)

]1−γ

} 1
1−γWτ .

(91)

This maximization can be performed numerically.

Proof of Lemma: Note that

αt+1θ
′
tRt+1 = αt+1

Wt+1

Wt − Ct

=
αtCt+1

(1 − αt)Ct

. (92)

Substituting this into equation (29) gives,

β
1

1−γ

[
Et((

Ct+1

Ct
)−γθ′tRt+1)

] 1
1−γ

+ b0(
β

1 − β
)

1
1−γ (

1 − αt

αt
)

−γ
1−γ

n∑
i=m+1

Et(v(θi,t(Ri,t+1 −Rf,t))) = 1.

(93)

Substituting equation (92) into conditions (30), recalling that θi,t > 0 for i > 1, and then

taking the difference between equation (30) for security i > 1 and equation (30) for security

1, gives, for i > 1,

β
1

1−γ [Et((
Ct+1

Ct

)−γθ′tRt+1)]
γ

1−γEt[(
Ct+1

Ct

)−γ(Ri,t+1 − Rf,t)] +

b01{i>m}(
β

1 − β
)

1
1−γ (

1 − αt

αt

)
−γ
1−γEt(v(Ri,t+1 − Rf,t)) = 0. (94)
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Note that equation (94) also holds trivially for i = 1. Subtracting

n∑
i=1

θi,t(eqn(94) for asset i) (95)

from equation (93) gives equations (60) and (61).

Simplifying the First-order Conditions (77)-(79)

Using

E(eaε) = ea2/2 (96)

E(1ε<ε̂) = N(ε̂) (97)

E(1ε<ε̂e
aε) = ea2/2N(ε̂− a), (98)

the first-order conditions (77)-(79) become

α = 1 − β
1
γR

1−γ
γ

f e
1
2
(1−γ)σ2

C (99)

0 = b0Rf(
β

1 − β
)

1
1−γ (

1 − α

α
)

−γ
1−γ

[
egS+ 1

2
σ2

S − Rf + (λ− 1)
[
egS+ 1

2
σ2

SN(ε̂S − σS) − RfN(ε̂S)
]]

+

egS+ 1
2
σ2

S−γσSσCρCS − Rf (100)

0 = b0Rf(
β

1 − β
)

1
1−γ (

1 − α

α
)

−γ
1−γ θS

[
egS+ 1

2
σ2

S − Rf + (λ− 1)
[
egS+ 1

2
σ2

SN(ε̂S − σS) − RfN(ε̂S)
]]

+

1

1 − α
egC+ 1

2
σ2

C−γσ2
C −Rf , (101)

where

ε̂S =
log(Rf) − gS

σS
. (102)

A General Equilibrium Model to support conditions (i)-(iv) of Section 6.1

We now show that the structure described in conditions (i)-(iv) of Section 6.1 can be

embedded in a simple general equilibrium model. To repeat, the conditions are that: (i) the

risk-free rate is a constant Rf ; (ii) RS,t+1 and Ct+1

Ct
follow the i.i.d processes in (68)-(70); (iii)

the consumption-wealth ratio is a constant α; and (iv) the fraction of wealth made up by

the stock market is a constant, θS . Of course, the last condition implies that the fraction of

total wealth made up by the non-financial asset, θN,t, is also constant over time, and equal

to θN = 1 − θS.

Consider an economy with two firms. Asset 3 in Section 6.1, stock, is a claim to the

payout of one of the firms, the “stock” firm, say, while asset 2 in that section, the non-

financial asset, is a claim to the payout of the other firm, the “non-stock” firm. Total output
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in the economy, Yt, is the sum of the output of the stock firm, YS,t, and of the non-stock

firm, YN,t,

Yt = YS,t + YN,t. (103)

Each firm divides its output between a consumption good payout and capital investment,13

YS,t = ĈS,t + IS,t, YN,t = ĈN,t + IN,t, (104)

so that

Yt = Ĉt + It, (105)

where Ĉt and It are the total consumption good payout and total investment in the economy,

Ĉt = ĈS,t + ĈN,t, It = IS,t + IN,t. (106)

The production technologies are

YS,t+1 = fS(IS,t, IN,t), YN,t+1 = fN (IS,t, IN,t). (107)

For simplicity, labor input is not modeled explicitly, and capital investment made at time t

is assumed 100% depreciated after t+ 1.

We write Ŝt− and Ŝt (N̂t− and N̂t) to denote the total market value of all shares of the

stock firm (non-stock firm) at time t, immediately before and after the consumption good

payout, respectively, so that

Ŝt− = ĈS,t + Ŝt, N̂t− = ĈN,t + N̂t. (108)

We also define the total market value of both firms, before and after the consumption good

payout, as

Ŵt− = Ŝt− + N̂t−, Ŵt+ = Ŝt + N̂t. (109)

The conditions for general equilibrium are the conditions for capital market optimality

Et(m
∂YS,t+1

∂IS,t

) = 1, Et(m
∂YN,t+1

∂IN,t

) = 1, ∀t, (110)

where m is the stochastic discount factor; and the market clearing conditions, both for the

consumption good and for shares in the firms,

Ĉt = Ct, Ŝt = St, N̂t = Nt, ∀t. (111)

The last equation implies

Wt − Ct = Ŵt+, Wt = Ŵt−. (112)

13If the consumption equilibrium in conditions (i)-(iv) shares a variable with the production economy we
consider here, we distinguish the latter with a hat sign.
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We seek an equilibrium with the following properties:

Ĉt = ξYt, It = (1 − ξ)Yt, ∀t
IS,t = ζIt = ζ(1 − ξ)Yt, IN,t = (1 − ζ)It = (1 − ζ)(1 − ξ)Yt, ∀t, (113)

and where

Ŝt = ASIS,t, N̂t = ANIN,t, Ŵt− = ΛYt. (114)

Under these assumptions, the returns on the stock firm, on the non-stock firm, and on total

wealth are

R̂S,t+1 =
Ŝ(t+1)−
Ŝt

=
(YS,t+1 − IS,t+1) + ASIS,t+1

ASIS,t
=
YS,t+1 + (AS − 1)ζ(1− ξ)Yt+1

ASIS,t
(115)

R̂N,t+1 =
N̂(t+1)−
N̂t

=
(YN,t+1 − IN,t+1) + ANIN,t+1

ANIN,t
=
YN,t+1 + (AN − 1)ζ(1− ξ)Yt+1

ANIN,t
(116)

R̂W,t+1 =
Ŵ(t+1)−
Ŵt+

= (1 − ξ)
Λ

Λ − ξ

Yt+1

It
. (117)

Note also that since

Ŵt− = Ĉt + Ŝt + N̂t, (118)

we have

Λ = ξ + (1 − ξ)(ASζ + AN (1 − ζ)). (119)

We can now state:

Proposition 2: There exists a consumption-production general equilibrium in which the

consumption and return processes are given by equations (68), (69), (72), and (77)-(79),

and the production process is given by (113)-(114), with

YS,t+1 = (IS,tIN,t)
1
2 νS,t+1, YN,t+1 = (IS,tIN,t)

1
2νN,t+1, ∀t, (120)

where

νS,t+1 =
1 + α

α
(
θS

θN
)

1
2

[
exp(gS + σSεS,t+1) − 1

1 + α
exp(gC + σCεC,t+1)

]
(121)

vS,t+1 + νN,t+1 = 2(θSθN )
1
2

1

1 − α
exp(gC + σCεC,t+1), (122)

and where the constant coefficients are given by

ξ =
1 + α

2
, Λ =

1 + α

2α
, AS = AN =

1 + α

α
, ζ = θS. (123)
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Proof of Proposition 2: First note that conditions (i)-(iv) of Section 6.1 hold if and only

if:

Ct = Ĉt, for some t, to set the scale, (124)

Ct

Wt
=

Ĉt

Ŵt

=
ξYt

ΛYt
, ∀t, which implies α =

ξ

Λ
, (125)

θS = θ̂S ≡ Ŝt

Ŝt + N̂t

=
ASζ

ASζ + AN (1 − ζ)
, θN = θ̂N ≡ N̂t

Ŝt + N̂t

=
AN(1 − ζ)

ASζ + AN(1 − ζ)
(126)

RS,t = R̂S,t, RN,t = R̂N,t, ∀t. (127)

Note that the last condition implies RW,t = R̂W,t, ∀t.

We now prove the proposition by explicit construction. Suppose that

YS,t+1 = (IS,t)
a(IN,t)

bνS,t+1, YN,t+1 = (IS,t)
a′
(IN,t)

b′νN,t+1. (128)

Then14

∂YS,t+1

∂IS,t
= a

YS,t+1

IS,t
= aASR̂S,t+1 − a(AS − 1)ζ(1− ξ)

Yt+1

IS,t

= aASR̂S,t+1 − a(AS − 1)
Λ − ξ

Λ
R̂W,t+1, (129)

and similarly
∂YN,t+1

∂IN,t
= b′ANR̂N,t+1 − b′(AN − 1)

Λ − ξ

Λ
R̂W,t+1. (130)

The conditions for capital market optimality in (110) become

aAS − a(AS − 1)
Λ − ξ

Λ
= 1, b′AN − b′(AN − 1)

Λ − ξ

Λ
= 1. (131)

Our independent equations are therefore (119), (125), (126), (127) and (131), and the

unknowns are ξ, Λ, AS, AN , ζ , a, b, a′, b′, νS,t+1, and νN,t+1. Since we have some extra

degrees of freedom, we can simplify by setting AS = AN . Then, from (131), a = b′. We also

have

a+ b = a′ + b′ = 1. (132)

Further assuming that a = b, we have

a = b = a′ = b′ =
1

2
. (133)

14Here, we are effectively assuming that the “stock” firm is one of infinitely many identical “stock” firms,
and likewise for the “non-stock” firm. This simplifies the analysis by allowing us to ignore strategic behavior.
Even in an economy where firms do behave strategically, however, an equilibrium satisfying conditions (i)-(iv)
of Section 6.1 can still be constructed.
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Finally, we obtain

ζ = θS, A ≡ AS = AN =
Λ − ξ

1 − ξ
,

A

2
− (A− 1)

2

Λ − ξ

Λ
= 1. (134)

Combining these, we obtain

ξ =
1 + α

2
, Λ =

1 + α

2α
, AS = AN =

1 + α

α
, (135)

as in the proposition. Putting these solutions into equations (115)-(117), we obtain

R̂W,t+1 =
1

2
(θSθN )

1
2 (νS,t+1 + νN,t+1) (136)

R̂S,t+1 =
α

1 + α
(
θN

θS

)
1
2 νS,t+1 +

1 − α

2(1 + α)
(θSθN )

1
2 (νS,t+1 + νN,t+1) (137)

R̂N,t+1 =
α

1 + α
(
θN

θS

)
1
2 νN,t+1 +

1 − α

2(1 + α)
(θSθN )

1
2 (νS,t+1 + νN,t+1). (138)

Setting equation (136) equal to equation (72), we obtain equation (122). Setting equation

(137) equal to equation (69), we obtain equation (121). That RN,t+1 = R̂N,t+1 follows from

the portfolio identity.
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Table 1: Parameter values for the return processes in a portfolio choice problem
with three assets. Asset 1 is riskless and earns the gross risk-free rate Rf . Assets
2 and 3 are risky: g2 and σ2 (g3 and σ3) are the mean and standard deviation of
log gross returns on asset 2 (asset 3); ω is the correlation of log returns on assets
2 and 3. Finally, θ2 is the fixed fraction of wealth held in asset 2.

Parameter

Rf 1.02%

g2 0.04

σ2 0.10

g3 0.04

σ3 0.10

ω 0.01

θ2 0.50
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Table 2: The table shows, for given aversion to consumption risk γ, sensitivity to
narrowly framed losses λ, and degree of narrow framing b0, the percentage of his
remaining wealth that an investor with 50% of his wealth already invested in one
risky asset would invest in another similar, weakly correlated risky asset.

γ = 1.5 γ = 1.5 γ = 5 γ = 5

λ = 2 λ = 3 λ = 2 λ = 3

b0 = 0 100 100 90 90

b0 = 0.005 100 100 88 68

b0 = 0.01 100 100 86 44

b0 = 0.02 100 70 82 0

b0 = 0.03 100 0 76 0

b0 = 0.04 100 0 72 0

b0 = 0.05 100 0 68 0

b0 = 0.1 100 0 40 0

b0 = 0.2 52 0 0 0

b0 = 0.3 0 0 0 0

b0 = 0.4 0 0 0 0

b0 = 0.5 0 0 0 0
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Table 3: Parameter values for a representative agent equilibrium model: gC and
σC are the mean and standard deviation of log consumption growth, respectively,
σS is the standard deviation of log stock returns, and ρCS is the correlation of log
consumption growth and log stock returns.

Parameter

gC 1.84%

σC 3.79%

σS 20.0%

ρCS 0.10
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Table 4: The table shows, for given aversion to consumption risk γ, sensitivity to
narrowly framed losses λ, and degree of narrow framing b0, the risk-free rate Rf

and equity premium EP generated by narrow framing in a simple representative
agent economy. πL (πS) is the premium the representative agent would pay, given
his equilibrium holdings of risky assets and current wealth of $75,000, to avoid a
50:50 bet to win or lose $25,000 ($250).

γ λ b0 Rf EP πL πS

1.5 2 0 4.7% 0.12% $6,371 $0.63

1.5 2 0.01 4.2% 1.39% $6,336 $18

1.5 2 0.02 3.7% 2.41% $6,312 $31

1.5 2 0.03 3.4% 3.15% $6,296 $39

1.5 2 0.04 3.1% 3.66% $6,286 $44

1.5 3 0 4.7% 0.12% $6,371 $0.63

1.5 3 0.005 4.1% 1.54% $6,836 $20

1.5 3 0.010 3.4% 2.99% $7,237 $37

1.5 3 0.015 2.8% 4.35% $7,552 $50

1.5 3 0.020 2.3% 5.45% $7,773 $60
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Figure 1. The figure shows how an agent who frames narrowly would react, at a current
wealth level of $500,000, to a timeless gamble offering a 50:50 chance to win $200 or lose
$100. The two plots correspond to different assumptions as to how the agent evaluates
the gamble.
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