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Abstract
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very few models of why people go to casinos or of how they behave when they get
there. In this paper, we show that prospect theory can offer a surprisingly rich theory
of gambling, one that captures many features of actual gambling behavior. First,
we demonstrate that, for a wide range of parameter values, a prospect theory agent
would be willing to gamble in a casino, even if the casino only offers bets with zero
or negative expected value. Second, we show that prospect theory predicts a plausible
time inconsistency: at the moment he enters a casino, a prospect theory agent plans
to follow one particular gambling strategy; but after he enters, he wants to switch to
a different strategy. The model therefore predicts heterogeneity in gambling behavior:
how a gambler behaves depends on whether he is aware of the time-inconsistency; and,
if he is aware of it, on whether he is able to commit, in advance, to his initial plan of
action.
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1 Introduction

Casino gambling is a hugely popular activity. The American Gaming Association reports

that, in 2007, 54 million people made 376 million trips to casinos in the United States alone.

U.S. casino revenues that year totalled almost $60 billion.

In order to fully understand how people think about risk, we need to make sense of the

existence and popularity of casino gambling. Unfortunately, there are still very few models of

why people go to casinos or of how they behave when they get there. The challenge is clear.

The standard economic model of risk attitudes couples the expected utility framework with

a concave utility function. This model is helpful for understanding a range of phenomena.

It cannot, however, explain casino gambling: an agent with a concave utility function will

always turn down a wealth bet with a negative expected value.

While casino gambling is hard to reconcile with the standard model of risk attitudes,

researchers have made some progress in understanding it better. One approach is to introduce

non-concave segments into the utility function. A second approach argues that people derive

a separate component of utility from gambling. This utility may be only indirectly related

to the bets themselves – for example, it may stem from the social pleasure of going to a

casino with friends; or it may be directly related to the bets, in that the gambler enjoys the

feeling of suspense as he waits for the bets to play out (see Conlisk (1993) for a model of

this last idea). A third approach suggests that gamblers simply overestimate their ability

to predict the outcome of a bet; in short, they think that the odds are more favorable than

they actually are.

In this paper, we present a new model of casino gambling based on Tversky and Kah-

neman’s (1992) cumulative prospect theory. Cumulative prospect theory, one of the most

prominent theories of decision-making under risk, is a modified version of Kahneman and

Tversky’s (1979) prospect theory. It posits that people evaluate risk using a value function

that is defined over gains and losses, that is concave over gains and convex over losses, and

that is kinked at the origin, so that people are more sensitive to losses than to gains, a fea-

ture known as loss aversion. It also posits that people use transformed rather than objective

probabilities, where the transformed probabilities are obtained from objective probabilities

by applying a weighting function. The main effect of the weighting function is to overweight

the tails of the distribution it is applied to. The overweighting of tails does not represent

a bias in beliefs; it is simply a modeling device for capturing the common preference for a

lottery-like, or positively skewed, wealth distribution.

We choose prospect theory as the basis for a possible explanation of casino gambling

because we would like to understand gambling in a framework that also explains other

evidence on risk attitudes. Prospect theory can explain a wide range of experimental evidence
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on attitudes to risk – indeed, it was designed to – and it can also shed light on much field

evidence on risk-taking: for example, it can address a number of facts about risk premia in

asset markets (Benartzi and Thaler, 1995; Barberis and Huang, 2008). By offering a prospect

theory model of casino gambling, our paper suggests that gambling is not necessarily an

isolated phenomenon requiring its own unique explanation, but rather one of a family of

facts that can be understood using a single model of risk attitudes.

The idea that prospect theory might explain casino gambling is initially surprising.

Through the overweighting of the tails of distributions, prospect theory can easily explain

why people buy lottery tickets. Casinos, however, offer gambles that, aside from their low

expected values, are also much less skewed than a lottery ticket. Since prospect theory agents

are more sensitive to losses than to gains, one would think that they would find these gambles

very unappealing. Initially, then, prospect theory does not seem to be a promising starting

point for a model of casino gambling. Indeed, it has long been thought that gambling is the

one major risk-taking phenomenon that prospect theory is not well-suited to explain.

In this paper, we show that, in fact, prospect theory can offer a rich theory of casino

gambling, one that captures many features of actual gambling behavior. First, we demon-

strate that, for a wide range of preference parameter values, a prospect theory agent would

be willing to gamble in a casino, even if the casino only offers bets with zero or negative

expected value. Second, we show that prospect theory – in particular, its probability weight-

ing feature – predicts a plausible time inconsistency : at the moment he enters a casino, a

prospect theory agent plans to follow one particular gambling strategy; but after he enters,

he wants to switch to a different strategy. How a gambler behaves therefore depends on

whether he is aware of this time inconsistency; and, if he is aware of it, on whether he is

able to commit in advance to his initial plan of action.

What is the intuition for why, in spite of loss aversion, a prospect theory agent might

still be willing to enter a casino? Consider a casino that offers only zero expected value bets

– specifically, 50:50 bets to win or lose some fixed amount $h – and suppose that the agent

makes decisions by maximizing the cumulative prospect theory utility of his accumulated

winnings or losses at the moment he leaves the casino. We show that, if the agent enters

the casino, his preferred plan is to gamble as long as possible if he is winning, but to stop

gambling and leave the casino if he starts accumulating losses. An important property of this

plan is that, even though the casino offers only 50:50 bets, the distribution of the agent’s

perceived overall casino winnings becomes positively skewed: by stopping once he starts

accumulating losses, the agent limits his downside; and by continuing to gamble when he is

winning, he retains substantial upside.

At this point, the probability weighting feature of prospect theory plays an important

role. Under probability weighting, the agent overweights the tails of probability distribu-

tions. With sufficient probability weighting, then, the agent may like the positively skewed
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distribution generated by his planned gambling strategy. We show that, for a wide range of

parameter values, the probability weighting effect indeed outweighs the loss-aversion effect

and the agent is willing to enter the casino. In other words, while the prospect theory agent

would always turn down the basic 50:50 bet if it were offered in isolation, he is nonetheless

willing to enter the casino because, through a clever choice of exit strategy, he gives his over-

all casino experience a positively skewed distribution, one which, with sufficient probability

weighting, he finds attractive.

Prospect theory offers more than just an explanation of why people go to casinos.

Through the probability weighting function, it also predicts a time inconsistency. At the

moment he enters a casino, the agent’s preferred plan is to keep gambling if he is winning

but to stop gambling if he starts accumulating losses. We show, however, that once he starts

gambling, he wants to do the opposite: to keep gambling if he is losing and to stop gambling

if he accumulates a significant gain.

As a result of this time inconsistency, our model predicts significant heterogeneity in

gambling behavior. How a gambler behaves depends on whether he is aware of the time

inconsistency. A gambler who is aware of the time inconsistency has an incentive to try to

commit to his initial plan of action. For gamblers who are aware of the time inconsistency,

then, their behavior further depends on whether they are indeed able to find a commitment

device.

To study these distinctions, we consider three types of agents. The first type is “naive”:

he is unaware that he will exhibit a time inconsistency. This gambler plans to keep gambling

as long as possible if he is winning and to exit only if he starts accumulating losses. After

entering the casino, however, he deviates from this plan and instead gambles as long as

possible when he is losing and stops only after making some gains.

The second type of agent is “sophisticated” but unable to commit: he recognizes that, if

he enters the casino, he will deviate from his initial plan; but he is unable to find a way of

committing to his initial plan. He therefore knows that, if he enters the casino, he will keep

gambling when he is losing and will stop gambling after making some gains, a strategy that

will give his overall casino experience a negatively skewed distribution. Since he overweights

the tails of probability distributions, he finds this unattractive and therefore refuses to enter

the casino in the first place.

The third type of agent is sophisticated and able to commit: he also recognizes that, if

he enters the casino, he will want to deviate from his initial plan; but he is able to find a

way of committing to his initial plan. Just like the naive agent then, this agent plans, on

entering the casino, to keep gambling as long as possible when winning and to exit only if he

starts accumulating losses. Unlike the naive agent, however, he is able, through the use of a

commitment device, to stick to this plan. For example, he may bring only a small amount
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of cash to the casino while also leaving his ATM card at home; this guarantees that he will

indeed leave the casino if he starts accumulating losses. According to our model, we should

observe some actual gamblers behaving in this way. Anecdotally, at least, some gamblers do

use techniques of this kind.

In summary, under the view proposed in this paper, casinos are popular because they

cater to two aspects of our psychological make-up. First, they cater to the tendency to

overweight the tails of distributions, which makes even the small chance of a large win at the

casino seem very alluring. And second, they cater to what we could call “naivete,” namely

the failure to recognize that, after entering a casino, we may deviate from our initial plan of

action.

Our model is a complement to existing theories of gambling, not a replacement. The

popularity of casinos is probably driven by many factors, and we suspect that some of the

factors that have already been mentioned in the literature – the utility of gambling, for

example, and the misperception of casino odds – play at least as large a role as prospect

theory.

At the same time, we think that prospect theory can add significantly to our under-

standing of casino gambling. As noted above, one attractive feature of the prospect theory

approach is that it not only explains why people go to casinos, but also offers a rich de-

scription of what they do once they get there. Moreover, it explains a number of features of

casino gambling that have not emerged from earlier models: for example, the tendency to

gamble longer than planned in the region of losses, the strategy of leaving one’s ATM card

at home, and casinos’ practice of issuing free vouchers to people who are winning. Finally,

our approach shows that we can understand casino gambling in the context of a model –

cumulative prospect theory – that already explains a range of other evidence on attitudes

to risk.

In recent years, there has been a surge of interest in the time inconsistency that stems

from hyperbolic discounting.1 While it has long been understood that probability weighting

can also lead to a time inconsistency, there has been very little analysis of this idea. In this

paper, we make the case that this second type of inconsistency may also be important in

practice. While casino gambling is its most obvious application, it may also play a significant

role in other contexts. For example, in Section 5, we briefly outline an application to stock

market trading.

In Section 2, we review both prospect theory and cumulative prospect theory. In Section

3, we present a model of casino gambling. Section 4 discusses the model further and Section

5 presents an application to stock market trading. Section 6 concludes.

1See, for example, Laibson (1997), O’Donoghue and Rabin (1999), Della Vigna and Malmendier (2006),
and the references therein.
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2 Cumulative Prospect Theory

In Section 3, we present a model of casino gambling in which agents evaluate risk in the way

described by cumulative prospect theory. In this section, we introduce cumulative prospect

theory after first reviewing the original version of prospect theory, due to Kahneman and

Tversky (1979). Readers who are already familiar with cumulative prospect theory may

prefer to jump directly to Section 3.

Consider the gamble

(x, p; y, q), (1)

to be read as “gain x with probability p and y with probability q, independent of other risks,”

where x ≤ 0 ≤ y or y ≤ 0 ≤ x, and where p + q = 1. In the expected utility framework, an

agent with utility function U(·) evaluates this gamble by computing

pU(W + x) + qU(W + y), (2)

where W is his current wealth. In the original version of prospect theory, the agent assigns

the gamble the value

π(p)v(x) + π(q)v(y), (3)

where v(·) and π(·) are known as the value function and the probability weighting function,

respectively. Figure 1 shows the forms of v(·) and π(·) suggested by Kahneman and Tversky

(1979). The functions satisfy v(0) = 0, π(0) = 0, and π(1) = 1.

There are four important differences between (2) and (3). First, the carriers of value in

prospect theory are gains and losses, not final wealth levels: the argument of v(·) in (3) is

x, not W + x. Second, while U(·) is typically concave everywhere, v(·) is concave only over

gains; over losses, it is convex. This captures the experimental finding that people tend to be

risk averse over moderate-probability gains – they prefer a certain gain of $500 to ($1000, 1
2
)

– but risk-seeking over moderate-probability losses, in that they prefer (−$1000, 1
2
) to a

certain loss of $500.2

Third, while U(·) is typically differentiable everywhere, the value function v(·) is kinked

at the origin so that the agent is more sensitive to losses – even small losses – than to gains

of the same magnitude. As noted in the Introduction, this element of prospect theory is

known as loss aversion. Kahneman and Tversky (1979) infer it from the widespread aversion

to bets such as ($110, 1
2
;−$100, 1

2
).

Finally, under prospect theory, the agent does not use objective probabilities when evalu-

ating the gamble, but rather, transformed probabilities obtained from objective probabilities

via the probability weighting function π(·). The most important feature of this function is

2We abbreviate (x, p; 0, q) to (x, p).
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that low probabilities are overweighted: in the right panel of Figure 1, the solid line lies

above the 45-degree dotted line for low p. This is inferred from subjects’ preference for

($5000, 0.001) over a certain $5, and from their preference for a certain loss of $5 over

(−$5000, 0.001); in other words, it is inferred from their simultaneous demand for both

lotteries and insurance. Spelling this out in more detail,

($5, 1) ≺ ($5000, 0.001)

⇒ v(5)π(1) < v(5000)π(0.001) < 1000 v(5)π(0.001)

⇒ π(0.001) > 0.001, (4)

so that low probabilities are overweighted. A similar calculation in the case of the (−$5000, 0.001)

gamble, using the fact that v(·) is convex over losses, produces the same result.

The transformed probabilities π(p) and π(q) in (3) should not be thought of as be-

liefs, but as decision weights which help us capture the experimental evidence on risk atti-

tudes. In Kahneman and Tversky’s (1979) framework, an agent evaluating the lottery-like

($5000, 0.001) gamble understands that he will only receive the $5000 with probability 0.001.

The overweighting of 0.001 introduced by prospect theory is simply a modeling device which

captures the agent’s preference for the lottery over a certain $5.

In this paper, we do not work with the original prospect theory, but with a modified

version, cumulative prospect theory, proposed by Tversky and Kahneman (1992). In this

modified version, Tversky and Kahneman (1992) suggest explicit functional forms for v(·) and

π(·). Moreover, they apply the probability weighting function to the cumulative probability

distribution, not to the probability density function. This ensures that cumulative prospect

theory does not violate first-order stochastic dominance – a weakness of the original prospect

theory – and also that it can be applied to gambles with any number of outcomes, not just

two. Finally, Tversky and Kahneman (1992) allow the probability weighting functions for

gains and losses to differ.

Formally, under cumulative prospect theory, the agent evaluates the gamble

(x−m, p−m; . . . ; x−1, p−1; x0, p0; x1, p1; . . . ; xn, pn), (5)

where xi < xj for i < j and x0 = 0, by assigning it the value

n∑
i=−m

πiv(xi), (6)

where3

πi =

{
w+(pi + . . . + pn) − w+(pi+1 + . . . + pn)

w−(p−m + . . . + pi) − w−(p−m + . . . + pi−1)
for

0 ≤ i ≤ n

−m ≤ i < 0
(7)

3When i = n and i = −m, equation (7) reduces to πn = w+(pn) and π−m = w−(p−m), respectively.

7



and where w+(·) and w−(·) are the probability weighting functions for gains and losses,

respectively. Tversky and Kahneman (1992) propose the functional forms

v(x) =

{
xα

−λ(−x)α for
x ≥ 0

x < 0
(8)

and

w+(P ) =
P γ

(P γ + (1 − P )γ)1/γ
, w−(P ) =

P δ

(P δ + (1 − P )δ)1/δ
, (9)

where α, γ, δ ∈ (0, 1) and λ > 1.

For α ∈ (0, 1) and λ > 1, the value function v(·) in (8) captures the features highlighted

earlier: it is concave over gains, convex over losses, and exhibits a greater sensitivity to

losses than to gains. The degree of sensitivity to losses is determined by λ, the coefficient

of loss aversion. For γ, δ ∈ (0, 1), the weighting functions w+(·) and w−(·) in (9) capture

the overweighting of low probabilities described earlier: for low, positive P, w−(P ) > P and

w+(P ) > P .

Equation (7) shows that, under cumulative prospect theory, the weighting function is ap-

plied to the cumulative probability distribution. If it were instead applied to the probability

density function, as in the original prospect theory, the probability weight πi, for i < 0 say,

would be w−(pi). Instead, equation (7) shows that, under cumulative prospect theory, the

probability weight πi is obtained by taking the total probability of all outcomes equal to or

worse than xi, namely p−m + . . . + pi, the total probability of all outcomes strictly worse

than xi, namely p−m + . . . + pi−1, applying the weighting function to each, and computing

the difference.

The effect of applying the weighting function to a cumulative probability distribution is

to make the agent overweight the tails of that distribution. In equations (6)-(7), the most

extreme outcomes, x−m and xn, are assigned the probability weights w−(p−m) and w+(pn),

respectively. If p−m and pn are small, we then have w−(p−m) > p−m and w+(pn) > pn.

The most extreme outcomes – the outcomes in the tails – are therefore overweighted. Just

as in the original prospect theory, then, a cumulative prospect theory agent likes positively

skewed, or lottery-like, wealth distributions. This will play an important role in our analysis.

Using experimental data, Tversky and Kahneman (1992) estimate α = 0.88, λ = 2.25,

γ = 0.61, and δ = 0.69 for their median subject. Since the estimates of γ and δ are similar,

we set γ = δ for simplicity, so that

w+(P ) = w−(P ) ≡ w(P ) =
P δ

(P δ + (1 − P )δ)1/δ
. (10)

To ensure the monotonicity of w(·), we require δ ∈ (0.28, 1).
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Figure 2 plots the weighting function w(·) in (10) for δ = 0.65 (the dashed line), for

δ = 0.4 (the dash-dot line), and for δ = 1, which corresponds to no probability weighting at

all (the solid line). The overweighting of low probabilities is clearly visible for δ < 1.

3 A Model of Casino Gambling

In the United States, the term “gambling” typically refers to one of four things: (i) casino

gambling, of which the most popular forms are slot machines and the card game of blackjack;

(ii) the buying of lottery tickets; (iii) pari-mutuel betting on horses at racetracks; and (iv)

fixed-odds betting through bookmakers on sports such as football, baseball, basketball, and

hockey – a form of gambling that is legal only in Nevada. The American Gaming Association

estimates the 2007 revenues from each type of gambling at $59 billion, $24 billion, $4 billion,

and $200 million, respectively.4

While the four types of gambling listed above have some common characteristics, they

also differ in some ways. Casino gambling differs from playing the lottery in that the payoff

of a casino game is typically much less positively skewed than that of a lottery ticket. And

it differs from racetrack-betting and sports-betting in that casino games usually require less

skill: while some casino games have an element of skill, many are purely games of chance.

In this paper, we focus our attention on casino gambling, largely because, from the

perspective of prospect theory, it is the hardest to explain. The buying of lottery tickets is

already directly captured by prospect theory through the overweighting of low probabilities.

Casino games are much less skewed than a lottery ticket, however. It is therefore not at

all clear that we can use the overweighting of low probabilities to explain the popularity of

casinos. Meanwhile, many authors have suggested that the popularity of racetrack-betting

and sports-betting stems from the bettors’ belief that they are informed about the sporting

event in question.

We model a casino in the following way. There are T + 1 dates, t = 0, 1, . . . , T . At time

0, the casino offers the agent a 50:50 bet to win or lose a fixed amount $h. If the agent turns

the gamble down, the game is over: he is offered no more gambles and we say that he has

declined to enter the casino. If the agent accepts the 50:50 bet, we say that he has agreed to

enter the casino. The gamble is then played out and, at time 1, the outcome is announced.

At that time, the casino offers the agent another 50:50 bet to win or lose $h. If he turns it

down, the game is over: the agent settles his account and leaves the casino. If he accepts the

gamble, it is played out and, at time 2, the outcome is announced. The game then continues

4The $200 million figure refers to sports-betting through legal bookmakers. It it widely believed that
this figure is dwarfed by the revenues from illegal sports-betting. Also excluded from these figures are the
revenues from online gambling.
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in the same way. If, at time t ∈ [0, T − 2], the agent agrees to play a 50:50 bet to win or lose

$h, then, at time t+ 1, he is offered another such bet and must either accept it or decline it.

If he declines it, the game is over: he settles his account and leaves the casino. At time T ,

the agent must leave the casino if he has not already done so. We think of the interval from

0 to T as an evening of play at a casino.

By assuming an exogeneous date, date T , at which the agent must leave the casino if

he has not already done so, we make our model somewhat easier to solve. This is not,

however, the reason we impose the assumption. Rather, we impose it because we think that

it makes the model more realistic: whether because of fatigue or because of work and family

commitments, most people simply cannot stay in a casino indefinitely.

Of the major casino games, our model most closely resembles blackjack: under optimal

play, the odds of winning a round of blackjack are close to 0.5, which matches the 50:50 bet

offered by our casino. Slot machines offer a positively skewed payoff and therefore, at first

sight, do not appear to fit the model as neatly. In Section 4, however, we argue that the

model may be able to shed as much light on slot machines as it does on blackjack.

In the discussion that follows, it will be helpful to think of the casino as a binomial tree.

Figure 3 illustrates this for T = 5. Each column of nodes corresponds to a particular time:

the left-most node corresponds to time 0 and the right-most column to time T . The various

nodes within a column represent the different possible accumulated winnings or losses at

that time. At time 0, then, the agent starts in the left-most node. If he takes the time 0

bet and wins, he moves one step up and to the right; if he takes the time 0 bet and loses, he

moves one step down and to the right, and so on. Whenever the agent wins a bet, he moves

up a step in the tree, and whenever he loses, he moves down a step.

We refer to the nodes in the tree by a pair of numbers (t, j). The first number, t, which

ranges from 0 to T , indicates the time that the node corresponds to. The second number, j,

which, for given t, can range from 1 to t + 1, indicates how far down the node is within the

column of t + 1 nodes for that time: the highest node in the column corresponds to j = 1

and the lowest node to j = t+1. The left-most node in the tree is therefore node (0, 1). The

two nodes in the column immediately to the right, starting from the top, are nodes (1, 1)

and (1, 2); and so on.

Throughout the paper, we use a simple color scheme to represent the agent’s behavior.

If a node is colored white, this means that, at that node, the agent agrees to play a 50:50

bet. If the node is black, this means that the agent does not play a 50:50 bet at that node,

either because he leaves the casino when he arrives at that node, or because he has already

left the casino in an earlier round and therefore never even reaches the node. For example,

the interpretation of Figure 3 is that the agent agrees to enter the casino at time 0 and then

keeps gambling until time T = 5 or until he hits node (3, 1), whichever comes first. Clearly,
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a node that can only be reached by passing through a black node must itself be black. In

Figure 3, the fact that node (3, 1) has a black color immediately implies that node (4, 1)

must also have a black color.

As noted above, the basic gamble offered by the casino in our model is a 50:50 bet to

win or lose $h. We assume that the gain and the loss are equally likely only because this

simplifies the exposition, not because it is necessary for our analysis. In fact, our analysis

can easily be extended to the case in which the probability of winning $h is different from

0.5. Indeed, we find that the results we obtain below continue to hold even if, as in actual

casinos, the basic gamble has a slightly negative expected value: even if it entails a 0.48

chance of winning $h, say, and a 0.52 chance of losing $h. We discuss this issue again in

Section 4.1.

Now that we have described the structure of the casino, we are ready to present the

behavioral assumption that drives our analysis. Specifically, we assume that the agent in

our model maximizes the cumulative prospect theory utility of his accumulated winnings or

losses at the moment he leaves the casino, where the cumulative prospect theory value of a

distribution is given by (6)-(8) and (10). In making this assumption, we recognize that we

are almost certainly leaving out other factors that also affect the agent’s decision-making.

Nonetheless, we hope to show in this and subsequent sections that our assumption is not

only parsimonious but also leads to a rich theory of gambling.

Our behavioral assumption immediately raises an important issue, one that plays a central

role in our analysis. This is the fact that cumulative prospect theory – in particular, its

probability weighting feature – introduces a time inconsistency: the agent’s plan, at time t,

as to what he would do if he reached some later node is not necessarily what he actually

does when he reaches that node.

To see this, consider the following example with T = 5 and h = $10. Suppose that,

at time 0, the agent is trying to decide between two exit strategies. Under exit strategy

A, shown in the left panel of Figure 4, he would leave the casino only at the last date,

T = 5. Under exit strategy B, shown in the right panel of Figure 4, he would leave the

casino only at the last date or in node (4, 1), whichever comes first. We now show that,

from the perspective of time 0, the agent prefers strategy A, while, from the perspective of

time 4, he prefers strategy B. In other words, there is a time inconsistency: at time 0, the

agent plans to gamble in node (4, 1); but if he actually reaches that node, he instead leaves

the casino.

Which of the two exit strategies offers higher utility from the perspective of time 0?

Under exit strategy A, the accumulated win or loss at the moment the agent leaves the

casino has the distribution

($50,
1

32
; $30,

5

32
; $10,

10

32
;−$10,

10

32
;−$30,

5

32
;−$50,

1

32
).
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Under exit strategy B, the accumulated win or loss at the moment the agent leaves the casino

has the distribution

($40,
1

16
; $30,

4

32
; $10,

10

32
;−$10,

10

32
;−$30,

5

32
;−$50,

1

32
).

The two strategies differ only in the size and the probability of the two highest winnings

that they offer. This means that, to see which of the two strategies the agent prefers at time

0, we need only look at the contribution of the two highest winnings to total utility.

Applying (6)-(8) and (10), the contribution of the two highest potential winnings to the

cumulative prospect theory utility of strategy A, as evaluated at time 0, is

v(50)w(
1

32
) + v(30)

[
w(

5

32
+

1

32
) − w(

1

32
)
]
. (11)

The contribution of the two highest potential winnings to the cumulative prospect theory

utility of strategy B, as evaluated at time 0, is

v(40)w(
1

16
) + v(30)

[
w(

4

32
+

1

16
) − w(

1

16
)
]
. (12)

The agent therefore prefers strategy A – in other words, from the perspective of time 0, he

would prefer to keep gambling after arriving at node (4, 1) – if

(v(50) − v(30))w(
1

32
) > (v(40) − v(30))w(

1

16
). (13)

Since the argument of v(·) in this condition is always a gain, the condition depends only

on α, which governs the concavity of the value function in the region of gains, and on δ,

which controls the degree of probability weighting. It does not depend on the degree of loss

aversion λ.

The shaded area in Figure 5 shows the range of values of α and δ for which condition

(13) holds. The figure shows that, for the vast majority of values of α and δ, the agent,

from the perspective of time 0, prefers exit strategy A: in other words, he would prefer to

keep gambling in node (4, 1). The intuition is that, from the perspective of time 0, the agent

is keen to give himself the chance of reaching node (5, 1): although the $50 prize in that

node has low probability, namely 1
32

, this low probability is overweighted under cumulative

prospect theory, making the node very appealing to the agent. But in order to reach node

(5, 1), he must, of course, keep gambling at node (4, 1).5

Now consider what the agent actually does if he arrives at node (4, 1). If he leaves the

casino at this node, he earns utility of

v(40). (14)

5The concavity of v(·) in the region of gains makes it harder for condition (13) to hold. What Figure
5 shows, however, is that, for the vast majority of values of α and δ, the probability weighting function
overcomes the concavity of v(·) and ensures that condition (13) does hold.
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Alternatively, he can keep gambling, which, from the perspective of time 4, offers cumulative

prospect theory utility of

v(50)w(
1

2
) + v(30)

[
1 − w(

1

2
)
]
. (15)

The agent therefore wants to keep gambling at node (4, 1) if

(v(50) − v(30))w(
1

2
) > v(40) − v(30). (16)

It is straightforward to check that condition (16) never holds for α, δ ∈ (0, 1). In other

words, from the perspective of time 4, the agent prefers exit strategy B: if he reaches node

(4, 1), he always wants to leave the casino. This means that, for the vast majority of values

of α and δ – specifically, for all the values indicated by the shaded area in Figure 5 – the

agent is time inconsistent: if he arrives at node (4, 1) , he no longer wants to keep gambling

as his original time 0 plan stipulated that he should. What is the intuition? From the time

0 perspective, node (5, 1) was unlikely, overweighted, and hence appealing. From the time 4

perspective, however, it is no longer unlikely: once the agent is at node (4, 1), node (5, 1) can

be reached with probability 0.5. The probability weighting function underweights moderate

probabilities like 0.5. From the perspective of time 4, then, the $50 win in node (5, 1) is no

longer as appealing.6

The time inconsistency we have just described stems entirely from probability weighting.

In the absence of probability weighting, conditions (13) and (16) are identical and the agent

always prefers to leave the casino at node (4, 1) rather than to continue gambling, whether

this is judged from the perspective of time 0 or from the perspective of time 4.

Our example illustrates a time inconsistency in the upper part of the binomial tree. For

the vast majority of values of α and δ, there is an analogous time inconsistency in the bottom

part of the tree. From the perspective of time 0, the agent would like to stop gambling if he

were to arrive at node (4, 5), the bottom node in the second column from the right. However,

if he actually arrives in node (4, 5), he wants to keep gambling, contrary to his initial plan.

The intuition for this inconsistency parallels the intuition for the inconsistency in the upper

part of the tree.

Given the time inconsistency, the agent’s behavior depends on two things. First, it

depends on whether he is aware of the time inconsistency. An agent who is aware of the

time inconsistency has an incentive to try to commit to his initial plan of action. For this

agent, then, his behavior further depends on whether he is indeed able to commit. To explore

these distinctions, we consider three types of agents. Our classification parallels the one used

in the related literature on hyperbolic discounting.

6The concavity of v(·) in the region of gains only strengthens the agent’s desire to leave the casino if he
arrives at node (4, 1).
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The first type of agent is “naive”. An agent of this type does not realize that, at time

t > 0, he will deviate from his initial plan. We analyze his behavior in Section 3.1.

The second type of agent is “sophisticated” but unable to commit. An agent of this type

recognizes that, at time t > 0, he will deviate from his initial plan. He would therefore like

to commit to his initial plan – but is unable to find a way to do so. We analyze his behavior

in Section 3.2.

The third and final type of agent is sophisticated and able to commit. An agent of

this type also recognizes that, at time t > 0, he will want to deviate from his initial plan.

However, he is able to find a way of committing to this initial plan. We analyze his behavior

in Section 3.3.7

3.1 Case I: The naive agent

The naive agent is unaware of his time inconsistency: at time t, he does not realize that,

at time t′ > t, he will deviate from the plan of action he crafts at time t. We analyze his

behavior in two steps. First, we study his behavior at time 0 as he decides whether to enter

the casino. If we find that, for some parameter values, he is willing to enter the casino, we

then look, for those parameter values, at his behavior after entering the casino, in other

words, at his behavior for t > 0.

The initial decision

At time 0, the naive agent chooses a plan of action. A “plan” is a mapping from every

node in the binomial tree between t = 1 and t = T − 1 to one of two possible actions:

“exit,” which indicates that the agent plans to leave the casino if he arrives at that node;

and “continue,” which indicates that he plans to keep gambling if he arrives at that node.

We denote the set of all possible plans as S(0,1), with the subscript (0, 1) indicating that this

is the set of plans that is available at node (0, 1), the left-most node in the tree. Even for

low values of T , the number of possible plans is very large.8

For each plan s ∈ S(0,1), there is a random variable G̃s which represents the accumulated

7An implicit assumption here is that, at time 0, the agent disapproves of his future preferences, in other
words, of the preferences that will lead him to deviate from his initial plan. It is this disapproval that makes
the sophisticated agent want to commit. In Section 4.4, we discuss this idea in more detail.

8Since, for each of the T (T + 1)/2 − 1 nodes between time 1 and time T − 1, the agent can either exit
or continue, an upper bound on the number of elements of S(0,1) is 2 to the power of T (T + 1)/2 − 1. For
T = 5, this equals 16, 384; for T = 6, it equals 1, 048, 576. The number of distinct plans is lower than 2 to
the power of T (T + 1)/2 − 1, however. For example, for any T ≥ 2, all plans that assign the action “exit”
to nodes (1, 1) and (1, 2) are effectively the same.
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winnings or losses the agent will experience if he exits the casino at the nodes specified by

plan s. For example, if s is the exit strategy shown in Figure 3, then

G̃s ∼ ($30,
7

32
; $10,

9

32
;−$10,

10

32
;−$30,

5

32
;−$50,

1

32
).

With this notation in hand, we can write down the problem that the naive agent solves

at time 0. It is:

max
s∈S(0,1)

V (G̃s), (17)

where V (·) computes the cumulative prospect theory value of the gamble that is its argument.

We emphasize that the naive agent chooses a plan at time 0 without regard for the possibility

that he might stray from the plan in future periods. After all, he is naive: he does not realize

that he might later depart from the plan.

The non-concavity and nonlinear probability weighting embedded in V (·) make it very

difficult to solve problem (17) analytically. However, we can solve it numerically and find that

this approach allows us to draw out the economic intuition in full. Throughout the paper,

we check the robustness of our conclusions by solving (17) for a wide range of preference

parameter values.

The time inconsistency introduced by probability weighting means that we cannot use

dynamic programming to solve the above problem. Instead, we use the following procedure.

For each plan s ∈ S(0,1) in turn, we compute the gamble G̃s and calculate its cumulative

prospect theory value V (G̃s). We then look for the plan s∗ with the highest cumulative

prospect theory value V ∗ = V (G̃s∗). The naive agent enters the casino – in other words, he

plays a gamble at time 0 – if and only if V ∗ ≥ 0.9

We now present some results from our numerical analysis. We set T = 5 and h = $10.

The shaded areas in Figure 6 show the range of values of the preference parameters α, δ,

and λ for which the naive agent is willing to enter the casino, in other words, the range for

which V ∗ ≥ 0. To understand the figure, recall that, based on experimental data, Tversky

and Kahneman’s (1992) median estimates of the preference parameters are

(α, δ, λ) = (0.88, 0.65, 2.25). (18)

Each of the three panels in the figure fixes one of the three parameters at its median estimate

and shows the range of the other two parameters for which the agent enters the casino. The

small circles correspond to the median estimates in (18).

The key result in Figure 6 is that, even though the agent is loss averse and even though

the casino offers only 50:50 bets with zero expected value, there is still a wide range of

9Recall that the set S(0,1) consists only of plans that involve gambling at node (0, 1). The agent is
therefore willing to gamble at this node if the best plan that involves gambling, plan s∗, offers higher utility
than not gambling; in other words, higher utility than zero.
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parameter values for which the agent is willing to enter the casino. Note that, for Tversky

and Kahneman’s median estimates in (18), the agent is not willing to enter the casino.

Nonetheless, for parameter values that are not far from those in (18), he is willing to gamble.

To understand why, for some parameter values, the agent is willing to gamble, we examine

his optimal exit plan s∗. Consider the case of (α, δ, λ) = (0.95, 0.5, 1.5); we find that, for

these parameter values, the agent is willing to enter the casino. The left panel in Figure 7

shows the agent’s optimal exit plan in this case. Recall that, if the agent arrives at a solid

black node, he leaves the casino at that node; otherwise, he continues gambling. The figure

shows that, roughly speaking, the agent’s optimal plan is to keep gambling until time T or

until he starts accumulating losses, whichever comes first. Through extensive checks, we find

that, for almost all the parameter values for which the naive agent is willing to enter the

casino, the optimal exit strategy is similar to the one in Figure 7.

The exit plan in Figure 7 helps us understand why it is that, even though the agent is

loss averse and even though the casino offers only zero expected value bets, the agent is still

willing to enter the casino. The reason is that, even though the basic 50:50 bet offered by

the casino is unappealing when considered on its own, the agent is able, through his exit

plan, to give his overall casino experience a positively skewed distribution: by exiting once

he starts accumulating losses, he limits his downside; and by continuing to gamble when he

is winning, he retains substantial upside.

At this point, probability weighting plays an important role. Since the agent overweights

the tails of probability distributions, he may like the positively skewed distribution offered by

the overall casino experience. In particular, under probability weighting, the chance, albeit

small, of winning the large jackpot $Th in the top-right node (T, 1) becomes particularly

enticing. In summary, then, while the agent would always turn down the basic 50:50 bet

offered by the casino if that bet were offered in isolation, he is nonetheless able, through

a clever choice of exit strategy, to give his overall casino experience a positively skewed

distribution, one which, with sufficient probability weighting, he finds attractive.1011

We suspect that when actual gamblers enter a casino, they often have in mind a plan that

10For a very small range of parameter values – a range in which α and λ are much lower than Tversky and
Kahneman’s (1992) estimates and δ much higher – the naive agent enters the casino with a different plan in
mind, namely one in which he keeps gambling if he is losing and stops if he accumulates some gains. This
strategy gives his perceived overall casino experience a negatively skewed distribution; but since α is so low
and δ is so high, he does not find this unappealing.

11The formulation in (17) assumes that the agent’s “reference point” for computing gains and losses is
always fixed at his initial wealth at the moment he enters the casino. We know little about how reference
points move over time. Our strategy is therefore to pick one simple assumption – that the reference point
remains fixed – and to show that this leads to a rich model of gambling. Intuitively, a model in which the
agent updates his reference point over time would have a harder time explaining casino gambling: in such a
model, the agent would often be at the most risk averse point of the value function, the kink.
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is broadly similar to the one in the left panel of Figure 7 – specifically, a plan under which

they continue to gamble when they are winning but stop gambling once their accumulated

losses reach some cutoff level. However, we also suspect that they may not have in mind the

exact plan in Figure 7. In particular, they may be uncomfortable with a plan under which

they might have to leave the casino after just one bet: it might feel silly to leave the casino

so early if they have just traveled a long time to get there. While our thesis in this paper is

that prospect theory can shed much light on casino gambling, one thing it does not capture,

at least in the basic model we have outlined so far, is an aversion to leaving the casino soon

after arriving.

It is straightforward to incorporate an aversion to an early exit into our model. Specifi-

cally, at time 0, instead of solving (17), the naive agent can maximize V (G̃s) over a subset

of the plans in S(0,1), namely that subset for which the probability of leaving the casino in

the first few rounds is lower than some given number. We find that there are several plans

that have a positive cumulative prospect theory value – so that, under these plans, the agent

would be willing to enter the casino – but that nonetheless entail a low probability of exit in

the early rounds. Figure 8 illustrates one such plan for the same preference parameter values

as in Figure 7. This plan, which we suspect is more typical of the plans that many actual

gamblers have in mind, is not optimal in our basic model; but it may be optimal in a slightly

extended model that combines cumulative prospect theory with an aversion to leaving the

casino in the very early rounds.12

Figure 6 shows that the agent is more likely to enter the casino for low values of δ, for

low values of λ, and for high values of α. The intuition is straightforward. By adopting

an exit plan under which he rides gains as long as possible but stops gambling once he

starts accumulating losses, the agent gives his overall casino experience a positively skewed

distribution. As δ falls, the agent overweights the tails of probability distributions all the

more heavily. He is therefore all the more likely to find a positively skewed distribution

attractive and hence all the more likely to enter the casino. As λ falls, the agent becomes

less loss averse. He is therefore less scared by the potential losses he could incur at the casino

and therefore more willing to enter. Finally, as α falls, the marginal utility of additional gains

diminishes more rapidly. The agent is therefore less excited about the possibility of a large

win and hence less likely to enter the casino.

We noted above that, due to the convexity of the value function in the region of losses

and the use of transformed probabilities, it is difficult to solve problem (17) analytically. We

12In particular, we conjecture that a plan similar to the one in Figure 8 is optimal in a model in which
the agent, in addition to deriving cumulative prospect theory utility from his gain or loss at the moment of
exit, also derives a per-period utility of gambling. As such, this would be an example of the way in which
our model complements earlier models based on utility of gambling. In Section 4.4, we discuss an alternative
extension of our model in which the agent’s optimal plan is less extreme, and therefore potentially more
realistic, than the one in Figure 7.
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have, however, been able to derive the follow result, which states a sufficient condition for

the naive agent to be willing to enter the casino. The proof is in the Appendix.

Proposition 1: For given preference parameters (α, δ, λ) and a given number of rounds of

gambling T , the naive agent is willing to enter the casino at time 0 if13

T−[T
2 ]∑

j=1

(T + 2 − 2j)α

(
w(2−T

(
T − 1

j − 1

)
) − w(2−T

(
T − 1

j − 2

)
)

)
≥ λw(

1

2
). (19)

To derive condition (19), we take one particular exit strategy which, from extensive

numerical analysis, we know to be either optimal or close to optimal for a wide range of

parameter values – roughly speaking, a strategy in which the agent keeps gambling when

he is winning but stops gambling once he starts accumulating losses – and compute its

cumulative prospect theory value explicitly. Condition (19) checks whether this value is

positive; if it is, we know that the naive agent enters the casino. The condition is useful

because it can shed light on the agent’s behavior when T is high without requiring us to

solve problem (17) explicitly, something which, for high values of T , is computationally very

taxing.

For four different values of T , Figure 9 sets α = 0.88 and plots the range of values of δ

and λ for which condition (19) holds. We emphasize that the condition is sufficient but not

necessary. If it holds, the naive agent enters the casino; but he may enter the casino even

if it does not hold. Nonetheless, by comparing the top-left panels in Figures 6 and 9, both

of which correspond to T = 5, we see that the parameter values for which condition (19)

holds and the parameter values for which the naive agent actually enters the casino are very

similar. In this sense, condition (19) is not only sufficient but almost necessary as well.

The top-right and bottom panels in Figure 9 suggest that, as the number of rounds

of gambling T goes up, the naive agent is willing to enter the casino for a wider range of

preference parameter values. Intuitively, as T goes up, the agent, through a careful choice of

exit strategy, can create an overall casino experience that is all the more positively skewed

and therefore, for someone who overweights tails, all the more attractive.14

Figures 6 and 9 show that, for Tversky and Kahneman’s (1992) median estimates of α, δ,

and λ, the prospect theory agent is only willing to enter the casino for high values of T ; and

Figure 9 suggests that even for high values of T , he is just barely willing to enter. There is

13In this expression,
(
T−1
−1

)
is assumed to be equal to 0.

14It is easy to prove that the range of preference parameter values for which the naive agent enters the
casino when T = τ is at least as large as the range for which he enters when T = τ + 1. In particular, this
follows from the fact that any plan that can be implemented in τ rounds of gambling can also be implemented
in τ + 1 rounds of gambling. Figure 9 gives us a sense of how much the range expands as T goes up.
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a sense in which this fits with the evidence. Although 54 million people visited U.S. casinos

in 2007, this still represents a minority of the U.S. population. The fact that the median

U.S. resident does not gamble is consistent with the fact that, for the median values of the

preference parameters, the prospect theory agent in our model often refuses to gamble. From

the perspective of our model, the people who visit casinos are those with lower values of δ

or λ than the median U.S. resident.

We noted earlier that we are dividing our analysis of the naive agent into two parts. We

have just completed the first part: the analysis of the agent’s time 0 decision as to whether

or not to enter the casino. We now turn to the second part: the analysis of what the agent

does at time t > 0. We know that, at time t > 0, the agent will depart from his initial plan.

Our goal is to understand exactly how he departs from it.

Subsequent behavior

Suppose that, at time 0, the naive agent decides to enter the casino. In node j at some

later time t ≥ 1, he solves

max
s∈S(t,j)

V (G̃s). (20)

Here, S(t,j) is the set of plans the agent could follow subsequent to time t, where, in a similar

way to before, a “plan” is a mapping from every node between time t + 1 and time T − 1 to

one of two actions: “exit,” indicating that the agent plans to leave the casino if he reaches

that node, and “continue,” indicating that the agent plans to keep gambling if he reaches

that node. As before, G̃s is a random variable which represents the accumulated winnings

or losses the agent will experience if he exits the casino at the nodes specified by plan s, and

V (G̃s) is its cumulative prospect theory value. If s∗ is the plan that solves problem (20), the

agent gambles in node j at time t if

V (G̃s∗) ≥ v(h(t + 2 − 2j)), (21)

where the right-hand side of condition (21) is the utility of leaving the casino at this node.

To see how the naive agent actually behaves for t ≥ 1, we return to the example from

earlier in this section in which T = 5, h = $10, and (α, δ, λ) = (0.95, 0.5, 1.5). Recall that,

for these parameter values, the naive agent is willing to enter the casino at time 0. The right

panel of Figure 7 shows what the naive agent does subsequently, at time t ≥ 1. By way of

reminder, the left panel in the figure shows the initial plan of action he constructs at time 0.

Figure 7 shows that, while the naive agent’s initial plan was to keep gambling as long as

possible when winning but to stop gambling once he started accumulating losses, he actually,

roughly speaking, does the opposite: he stops gambling once he accumulates some gains and

instead continues gambling as long as possible when he is losing. We find a similar pattern of

behavior across all parameter values for which the naive agent is willing to enter the casino
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at time 0. Our model therefore captures a commonly heard intuition, namely that people

often gamble more than they planned to in the region of losses.

Why does the naive agent behave in this way? Suppose that he has accumulated some

gains. Whether or not he continues to gamble depends on two opposing forces. On the one

hand, since he has accumulated gains, he is in the concave section of the value function. This

induces risk aversion which, in turn, encourages him to stop gambling and to leave the casino.

On the other hand, the probability weighting function encourages him to keep gambling: by

continuing to gamble, he keeps alive the chance of winning a much larger amount of money;

while this is a low probability event, the low probability is overweighted, making it attractive

to keep gambling. As the agent approaches the end of the tree, however, the possibility of

winning a large prize becomes less unlikely; it is therefore overweighted less, and continuing

to gamble becomes less attractive. In other words, as the agent approaches the end of the

tree, the concavity effect overwhelms the probability weighting effect and the agent stops

gambling.

A similar set of opposing forces is at work in the bottom part of the binomial tree.

Since, here, the agent has accumulated losses, he is in the convex part of the value function.

This induces risk-seeking which encourages him to keep gambling. On the other hand, the

probability weighting function encourages him to stop gambling: if he keeps gambling, he

runs the risk of a large loss; while this is a low probability event, the low probability is

overweighted, making gambling a less attractive option. The right panel in Figure 7 shows

that, at all points in the lower part of the tree, the convexity effect overwhelms the probability

weighting effect and the agent continues to gamble.15

3.2 Case II: The sophisticated agent, without commitment

In section 3.1, we considered the case of a naive agent – an agent who, at time t, does not

realize that, at time t′ > t, he will deviate from his time t plan. In Sections 3.2 and 3.3, we

study sophisticated agents, in other words, agents who do recognize that they will deviate

from their initial plan. A sophisticated agent has an incentive to find a commitment device

that will enable him to stick to his time 0 plan. In this section, we consider the case of a

sophisticated agent who is unable to find a way of committing to his time 0 plan; we label

this agent a “no-commitment sophisticate” for short. In Section 3.3, we study the case of a

15The naive agent’s “naivete” can be interpreted in two ways. The agent may fail to realize that, after
he starts gambling, he will be tempted to depart from his initial plan. Alternatively, he may recognize that
he will be tempted to depart from his initial plan, but he may erroneously think that he will be able to
resist the temptation. Over many repeated casino visits, the agent may learn his way out of the first kind
of naivete. It may take much longer, however, for him to learn his way out of the second kind. People often
continue to believe that they will be able to exert self-control in the future even when they have repeatedly
failed to do so in the past.
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sophisticated agent who is able to commit to his initial plan.

To determine a course of action, the no-commitment sophisticate uses dynamic program-

ming, working leftward from the right-most column of the binomial tree. If he has not yet

left the casino at time T , he must necessarily exit at that time. His value function in node j

at time T – here, we mean “value function” in the dynamic programming sense rather than

in the prospect theory sense – is therefore

JT,j = v(h(T + 2 − 2j)). (22)

The agent then continues the backward iteration from t = T − 1 to t = 0 using

Jt,j = max{v(h(t + 2 − 2j)), V (G̃t,j)}, (23)

where Jt,j is the value function in node j at time t. The term before the comma on the right-

hand side is the agent’s utility if he leaves the casino in node j at time t. The term after

the comma is the utility of continuing to gamble: specifically, it is the cumulative prospect

theory value of the random variable G̃t,j which measures the winnings or losses the agent

will exit the casino with if he continues gambling at time t. The gamble G̃t,j is determined

by the exit strategy computed in earlier steps of the backward iteration. Continuing this

iteration back to t = 0, the agent can see whether or not it is a good idea to enter the casino

in the first place.

We now return to the example of Section 3.1 in which T = 5, h = $10, and (α, δ, λ) =

(0.95, 0.5, 1.5). Figure 10 illustrates the outcome of the backward iteration in this case. A

solid black node indicates that the agent will leave the casino if he reaches that node; at

the other nodes, the agent keeps gambling. The fact that the left-most node is black means

that, for these parameter values, the agent chooses not to enter the casino at all.

The intuition for why the no-commitment sophisticate chooses not to enter the casino

is straightforward. He realizes that, if he does enter the casino, he will leave as soon as he

accumulates some gains but will keep gambling as long as possible if he is losing. This exit

policy gives his overall casino experience a negatively skewed distribution. Recognizing this

in advance, he decides not to enter the casino: since he overweights the tails of distributions,

the negative skewness is unattractive.

The result in Figure 10 – that the no-commitment sophisticate refuses to enter the casino

– holds for a wide range of preference parameter values. Indeed, after extensive checks, we

have been unable to find any (α, δ, λ) ∈ (0.5, 1) × (0.28, 0.8) × (1.3,∞) for which the no-

commitment sophisticate is willing to enter the casino at time 0.16

16For a very small range of parameter values – a range in which α and λ are much lower than Tversky
and Kahneman’s (1992) estimates and δ much higher – the no-commitment sophisticate is willing to enter
the casino. While he recognizes that his overall casino experience has a negatively skewed distribution, the
fact that α is so low and δ so high means that he does not find this unappealing.
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3.3 Case III: The sophisticated agent, with commitment

A sophisticated agent – an agent who recognizes that, at time t > 0, he will want to deviate

from his initial plan – has an incentive to find a commitment device that will enable him to

stick to his initial plan. In this section, we study the behavior of a sophisticated agent who

is able to commit. We call this agent a “commitment-aided sophisticate.”

We proceed in the following way. We assume that, at time 0, the agent can find a way

of committing to any exit strategy s ∈ S(0,1). Once we identify the strategy that he would

choose, we then discuss how he might actually commit to this strategy in practice.

At time 0, then, the commitment-aided sophisticate solves exactly the same problem as

the naive agent, namely:

max
s∈S(0,1)

V (G̃s). (24)

In particular, since the agent can commit to any exit strategy, we do not need to restrict

the set of strategies he considers. He searches across all elements of S(0,1) until he finds the

strategy s∗ with the highest cumulative prospect theory value V ∗ = V (G̃s∗). He enters the

casino if and only if V ∗ ≥ 0.

Since the commitment-aided sophisticate and the naive agent solve exactly the same

problem at time 0, they will, for given preference parameter values, choose exactly the same

optimal strategy. Moreover, they will enter the casino for exactly the same range of preference

parameter values. For T = 5 and h = $10, for example, the commitment-aided sophisticate

enters the casino for the parameter values indicated by the shaded areas in Figure 6. And

for (α, δ, λ) = (0.95, 0.5, 1.5), his optimal plan is the one in the left panel of Figure 7, a plan

under which he continues to gamble when he is winning but stops gambling once he starts

accumulating losses.17

The naive agent and the commitment-aided sophisticate solve the same problem at time

0 because they both think that they will be able to maintain any plan they select at that

time. The two types of agents differ, however, in what they do after they enter the casino.

Since he has a commitment device at his disposal, the commitment-aided sophisticate is

able to stick to his initial plan. The naive agent, on the other hand, deviates from his initial

plan: after he enters the casino, he continues to gamble when is losing and stops once he

accumulates a significant gain.

Now that we have identified the strategy the commitment-aided sophisticate would like

to commit to, the natural question is: how does he commit to it? For example, in the lower

part of the binomial tree, how does he manage to stop gambling when he is losing even

17In the same way, the sufficient condition (19) for the naive agent to be willing to enter the casino is also
a sufficient condition for the commitment-aided sophisticate to be willing to enter the casino.
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though he is tempted to continue? And in the upper part of the tree, how does he manage

to continue gambling when he is winning even though he is tempted to stop?

In the lower part of the tree, one simple commitment strategy is for the agent to go to the

casino with only a small amount of cash in his pocket and to leave his ATM card at home. If

he starts losing money, he is sorely tempted to continue gambling, but, since he has run out

of cash, he has no option but to go home. It is a prediction of our model that some casino

gamblers will use a strategy of this kind. Anecdotally, at least, this is a common gambling

strategy, which suggests that at least some of those who go to casinos fit the mold of our

commitment-aided sophisticate.

In the upper part of the tree, it is less easy to think of a common strategy that gamblers

use to solve the commitment problem, in other words, to keep gambling when they are

winning even though they are tempted to go home. In a way, this is not surprising. One

thing our model predicts – something which, as we will see in Section 4.5, is especially true

for higher values of T – is that the time inconsistency is much more severe in the lower part

of the tree than in the upper part. By comparing the two panels in Figure 7, we see that

in the lower part of the tree, the time inconsistency, and hence the commitment problem,

is severe: the agent wants to gamble at every node in the region of losses even though his

initial plan was to gamble at none of them. In the upper part of the tree, however, the

time inconsistency, and hence the commitment problem, is less acute: the agent’s initial

plan conflicts with his subsequent actions at only a few nodes. It therefore makes sense that

the commitment strategies gamblers use in practice seem to be aimed primarily at the time

inconsistency in the lower part of the tree.

Although it is hard to think of ways in which gamblers themselves commit to their initial

plan in the upper part of the tree, note that here, casinos have an incentive to help. In

general, casinos offer bets with negative expected values; it is therefore in their interest that

gamblers stay on site as long as possible. From the casinos’ perspective, it is alarming that

gamblers are tempted to leave earlier than they originally planned when they are winning.

This may explain the common practice among casinos of offering vouchers for free food and

lodging to people who are winning. In our framework, casinos do this in order to encourage

gamblers who are thinking of leaving with their gains, to stay longer.

In this section, we have identified some important and arguably unique predictions of

our framework. For example, our model predicts the common gambling strategy of bringing

only a fixed amount of money to the casino; and it predicts the common casino tactic of

giving free vouchers to people who are winning. These features of gambling have not been

easy to understand in earlier models but emerge naturally from the one we present here. In

particular, they are a direct consequence of the time inconsistency at the heart of our model.
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4 Discussion

In Section 3, we presented an explanation of why people go to casinos. An important feature

of our approach is that we explain casino gambling using a theory of decision under risk –

prospect theory – that already explains a lot of other evidence on risk-taking. As such, our

paper suggests that casino gambling is not necessarily an isolated phenomenon requiring its

own unique explanation, but rather one of a large family of facts that can be understood

using a single model of risk attitudes.

Our result that prospect theory can explain casino gambling is initially surprising: casinos

offer gambles that have low expected values and that are much less skewed than a lottery

ticket. These are gambles that, one would think, loss-averse agents would find unappealing.

The reason why prospect theory agents are sometimes willing to enter a casino traces back

to probability weighting. In our model, both types of agents who enter the casino – both the

naive agents and the commitment-aided sophisticates – do so with the same plan in mind,

namely a plan in which they continue gambling when they are winning but stop gambling

once they start accumulating losses. This gives their perceived overall casino experience a

positively skewed distribution – a distribution which, with sufficient probability weighting,

they find attractive.

While all the agents who enter the casino in our model do so with the same plan in mind,

the set of casino gamblers nonetheless consists of two very different subgroups. Some agents

– the commitment-aided sophisticates – are able to stick to their initial plan even though

they are later tempted to deviate from it. Other agents – the naive agents – deviate from

their initial plan: they leave the casino earlier than planned when they are winning and

later than planned when they are losing.

In summary, under the view proposed in this paper, casinos are popular because they

cater to two aspects of our psychological make-up. First, they cater to the tendency to

overweight the tails of distributions, which makes even the small chance of a large win at the

casino seem very alluring. And second, they cater to what we could call “naivete,” namely

the failure to recognize that, after entering a casino, we may deviate from our initial plan of

action.

Of all casino games, the model in Section 3 corresponds most closely to blackjack.

Nonetheless, it may also be able to explain why another casino game, the slot machine,

is as popular as it is. In our model, the agents who enter the casino do so because they relish

the positively skewed distribution they perceive it to offer. Since slot machines already offer

a skewed payoff, they may make it easier for the agent to give his overall casino experience

a significant amount of positive skewness. It may therefore make sense that they would

outstrip blackjack in popularity.
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Our model does not necessarily predict that all gamblers will prefer slot machines to

blackjack, however. Precisely because it offers a simpler bet – one that approximates a 50:50

bet to win or lose some amount – it may be blackjack rather than a slot machine that makes

it easier for the gambler to construct the specific payoff he most prefers – put differently, it

may be blackjack that provides the more versatile “building block”.

In the rest of this section, we discuss a number of other issues raised by the analysis in

Section 3.

4.1 Average losses

The analysis in Section 3 shows that the set of casino gamblers is made up of two distinct

types: naive agents and commitment-aided sophisticates. Which of these two types loses

more money in the casino, on average?

In the context of the model of Section 3 – a model in which the basic bet offered by

the casino is a 50:50 bet to win or lose $h – the answer is straightforward. Since the basic

bet has an expected value of zero, the average winnings are zero for both naive agents and

commitment-aided sophisticates.

Now suppose, however, that the basic bet has a negative expected value, as in actual

casinos. For example, suppose that the basic bet is now

($h, 0.49;−$h, 0.51). (25)

An agent’s average winnings are the (negative) expected value of the basic bet multiplied

by the average number of rounds the agent gambles. To see which of naive agents and

commitment-aided sophisticates has greater average losses, we therefore need to determine

which of the two groups gambles for longer, on average. The group that gambles for longer

will do worse.

For T = 5, h = $10, and (α, δ, λ) = (0.95, 0.5, 1.5), we compute the gambling behavior of

the two types of agents when the basic bet has the form in (25). We find that the behavior

of the naive agent is still that shown in the right panel in Figure 7 while the behavior of

the commitment-aided sophisticate is still that shown in the left panel in Figure 7. This

allows us to compute that the naive agent stays in the casino almost twice as long as the

sophisticated agent, on average. His average losses are therefore almost twice as large. In

this sense, the naivete of the naive agent – his failure to foresee his time inconsistency – is

costly.18

18In Section 4.5, we will see that, for higher values of T , the average length of stay in a casino for a naive
agent is even longer, relative to that for a commitment-aided sophisticate.
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4.2 One-time gambles

The analysis in Section 3 raises the following question. Given that the agents who enter the

casino in our model do so because they like the positively skewed payoff offered by an evening

of gambling, why do casinos not offer them this positively skewed payoff as a single bet? For

example, when (α, δ, λ) = (0.95, 0.5, 1.5), the naive agent chooses the initial plan shown in

the left panel of Figure 7 because he likes the positively skewed gamble it represents, namely

G̃s ∼ ($50,
1

32
; $30,

3

32
; $10,

2

32
; $0,

5

16
;−$10,

1

2
).

Why does the casino not allow him to play this gamble in one go?

At first sight, allowing gamblers to collapse their evening at the casino into a single bet

seems to have two advantages. First, it saves time: the agent can complete his gambling in

the space of a few minutes rather than over the course of a few hours. Second, by allowing

agents to collapse their gambling into a single bet, the casino is essentially offering them an

explicit way of committing to their initial plan of action. As a result, it can attract to the

casino all the no-commitment sophisticates who stay away precisely because they are unable

to find a way of committing to their initial plan.

On reflection, we see two reasons why casinos would not, in fact, want to offer one-shot

bets in this way. First, such a product would be hard to administer. Depending on his

values of α, δ, and λ, a given gambler will have his own preferred positively skewed payoff

and there is no way for the casino to know in advance what this preferred payoff is. Instead,

by offering simple bets such as the 50:50 bet available at blackjack tables, the casino leaves

it to the gambler to construct the positively skewed payoff he most prefers through his own

personal choice of exit strategy.

Even if a casino can overcome this first difficulty, it is still far from clear that it would

want to offer one-shot bets in the way described above. At first sight, it seems that it

would be profitable to do so: the casino could attract the no-commitment sophisticates who

are currently staying away. However, this argument misses another consequence of offering

one-shot bets. If a naive agent thinks that there is any chance at all that he may be time

inconsistent, he will take the one-shot bet, thereby in a sense converting himself from a naive

agent to a commitment-aided sophisticate. If many naive agents act in this way, the casino

will lose money because, as we saw in Section 4.1, it makes more money from naive agents

than from commitment-aided sophisticates. Any profits the casino makes by attracting the

no-commitment sophisticates could therefore be wiped out by allowing the naive agents to

commit to their initial plan.
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4.3 Predictions and other evidence

Researchers have not, as yet, had much success in obtaining large-scale databases on gambling

behavior. While our model matches a range of anecdotal evidence on gambling – for example,

the tendency to gamble longer than planned in the region of losses, the strategy of leaving

one’s ATM card at home, and casinos’ practice of giving free vouchers to people who are

winning – there is, unfortunately, little systematic evidence by which to judge our model.

Our model does, however, make a number of novel predictions – predictions that, we

hope, can eventually be tested. Perhaps the clearest prediction is that gamblers’ planned

behavior will differ from their actual behavior in systematic ways. If we survey people when

they first enter a casino as to what they plan to do, we should find that they are planning to

gamble for longer if they start accumulating gains than if they start accumulating losses –

in our model, both naive and sophisticated agents plan to gamble for longer in the region of

gains. If we then look at what people actually do, we should find that, on average, they exit

sooner than planned in the region of gains and later than planned in the region of losses.

Moreover, if gamblers who are more sophisticated in the real-world sense of the word – in

terms of education or income, say – are also more sophisticated in terms of recognizing their

time inconsistency, we should see a larger difference between planned and actual behavior

among the less sophisticated.

Some recent experimental evidence gives us hope that these predictions will be confirmed

in the field. Andrade and Iyer (2008) offer subjects a sequence of 50:50 bets in a laboratory

setting; but before playing the gambles, subjects are asked how they plan to gamble in each

round. Andrade and Iyer find that, consistent with our model, subjects plan to gamble more

after a gain than after a loss. They also find, again consistent with our model, that subjects

systematically gamble more than planned after an early loss. After an early gain, however,

there is no statistically significant difference between planned and actual behavior.

Another prediction comes from Figure 6, which shows that people are more likely to enter

a casino if they have low values of δ and λ – in other words, if they overweight the tails of

distributions more and if they are less loss averse. If we estimate δ and λ for casino goers

– perhaps with the help of gambles like those used by Tversky and Kahneman (1992) – we

should obtain lower values than for non-casino goers.19

19A commonly heard term in the context of casino gambling is the “house money effect,” the idea that
people are more willing to take risk after winning some money than they were before. There is very little
direct evidence of this effect from casinos, but Thaler and Johnson (1990) document it in an experimental
setting. The naive agent in our model exhibits a house money effect, and he does so for the reason proposed
by Thaler and Johnson (1990), namely that, after a gain, the agent moves away from the kink, the most risk
averse point of the value function.
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4.4 An alternative specification

In Section 3.3, we formulated the commitment-aided sophisticate’s problem in the way shown

in (24). This specification assumes that, while the sophisticate knows that his future “selves”

will have different preferences over exit strategies, he puts no weight on those preferences

when choosing a strategy to commit to at time 0. For example, at time 0, he chooses an

exit strategy under which he will leave the casino if he loses in the first round even though

he knows that his time 1 self would prefer to keep gambling at that point.

In our view, the specification in (24) is a reasonable way of formulating the commitment-

aided sophisticate’s decision problem – in other words, we think it reasonable that the

sophisticate would ignore his future preferences even though he is aware of them. One

justification for this is that the sophisticate disapproves of his future preferences. He knows

that, if he does put weight on those future preferences, he will act more like a naive agent,

which, from Section 4.1, means that he will stay in the casino longer on average and will

therefore lose more money, on average. As a result, he does not like his future preferences.20

Nonetheless, we are also open to an alternative model, one in which the sophisticate puts

at least some weight on his future preferences. Intuitively, this is an agent who is only mildly

disapproving of his future preferences. Instead of solving (24), this agent maximizes the sum

of five cumulative prospect theory terms, each one corresponding to the cumulative prospect

theory value of an exit strategy as perceived at each of the five dates, t = 0, . . . , 4.

Intuitively, since he puts weight on his future preferences, this sophisticate would behave

more like a naive agent: he would gamble longer in the region of losses than the commitment-

aided sophisticate of Section 3.3 but not as long as the naive agent of Section 3.1; and he

would gamble longer in the region of gains than the naive agent of Section 3.1 but not as

long as the commitment-aided sophisticate of Section 3.3. While much more complex than

the framework of Section 3.3, this alternative specification has at least one advantage: it

predicts that the agent enters the casino with a plan that may be closer to that of actual

gamblers, namely one in which he allows himself to accumulate some losses before exiting,

rather than exiting as soon as he accumulates any loss at all.

20In a general discussion of non-expected utility preferences, Machina (1989) suggests another sense in
which the time 0 agent may disapprove of his future preferences. When, at time t > 0, the agent departs
from his initial plan, he is committing what Machina (1989) calls a fallacy of “consequentialism,” in which
he wrongly ignores branches of the binomial tree that have not been realized but whose risk has been borne
in earlier stages. In this sense, the time 0 agent views his future inconsistency as an error.
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4.5 Higher values of T

In our analysis so far, we have focused primarily on the case of T = 5. The reason is that,

for higher values of T , the set of feasible plans S(0,1) that we search over in problems (17)

and (24) becomes very large.

Can we nonetheless say more about what happens for higher values of T ? It turns out

that we can. We now present some results for T = 10. In this case, even though the set

of plans S(0,1) is very large, we can still describe the behavior of naive agents and of no-

commitment sophisticates; and with one reasonable simplification, we can also describe the

behavior of commitment-aided sophisticates. In brief, we find that the results for T = 10

are similar to those for T = 5.

Throughout this section, we again set h = $10 and (α, δ, λ) = (0.95, 0.5, 1.5). Figure 11

shows the behavior of the naive agent when T = 10. As for T = 5, the naive agent is willing

to enter the casino; and once he does so, he continues gambling as long as possible when he

is losing but stops gambling once he accumulates significant gains.

How did we do the calculations behind Figure 11? The naive agent gambles at node (t, j)

if and only if

max
s∈S(t,j)

V (G̃s) ≥ v(h(t + 2 − 2j)). (26)

For t ≥ 5, it is straightforward to check condition (26) because the set S(t,j) contains a

manageable number of elements. But how can we check this condition for t < 5, when

S(t,j) is vastly larger in size? We use a simple trick: so long as we can find some plan s ∈
S(t,j) for which V (G̃s) exceeds v(h(t + 2 − 2j)), we immediately know that condition (26)

holds and hence that the naive agent gambles at node (t, j). We therefore check whether

V (G̃s) exceeds v(h(t + 2 − 2j)) for any of a small number of plans that, intuitively, should

deliver high prospect theory utility. For all nodes with t < 5, we were quickly able to find a

plan with positive prospect theory utility. We can therefore be certain that the naive agent

gambles at all of these nodes, as shown in Figure 11.

We now turn to the no-commitment sophisticate. Since this agent uses dynamic pro-

gramming to determine his course of action and since the state space has a low dimension, it

is straightforward to solve the problem he faces, even for large values of T . Figure 12 shows

his behavior. The agent realizes that, if he does enter the casino, he will keep gambling if

he is losing and will stop gambling if he accumulates some gains. This strategy generates

a negatively skewed distribution of casino winnings which, under probability weighting, is

unattractive. As for T = 5, then, the agent decides not to enter the casino.

The most difficult case is that of the commitment-aided sophisticate. This agent looks
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for the plan s = s∗ which solves

max
s∈S(0,1)

V (G̃s) (27)

and enters the casino if V (G̃s∗) ≥ 0. To determine his behavior, we would need to search

across all the vast number of elements in S(0,1). Since this is computationally infeasible,

we make the following simplification. We restrict the commitment-aided sophisticate to a

subset S
′
(0,1) of the plans in S(0,1) that consists of what we call “threshold” plans. These are

plans in which, either, (i) at each date t ∈ [1, T − 1], the agent leaves the casino only if his

accumulated winnings fall below some level, which can depend on t; or, (ii) at each date

t ∈ [1, T − 1], the agent leaves the casino only if his accumulated winnings rise above some

level, which can again depend on t. For T ≤ 5, we have always found the solution to (27) to

be a threshold plan.

With this restriction, the commitment-aided sophisticate now solves

max
s∈S

′
(0,1)

V (G̃s). (28)

Figure 13 shows the plan which solves this problem. As for T = 5, the agent plans to continue

gambling as long as possible if he is winning but to stop gambling if he starts accumulating

losses.21

5 Other Applications

The framework in this paper can be applied in contexts other than casino gambling. To

illustrate this, we now briefly show how it can shed light on the trading behavior of individual

investors.

To see this, we first reinterpret the binomial tree in Section 3 as capturing not the

accumulated winnings in a casino, but rather the evolution of a stock price over time. Under

this interpretation, each column of nodes represents the different possible stock prices on a

particular date. Specifically, if the initial stock price in the left-most node is P0 and, in each

period, the stock either has a good return Ru – a step up in the binomial tree – or a poor

return Rd < Ru – a step down in the binomial tree – then the stock price in node (t, j) is

P0R
t−j+1
u Rj−1

d . The stock return is i.i.d across time and, in each period, a good stock return

and a poor stock return are equally likely.

Now suppose that, at time 0, an investor is deciding how to split his wealth between the

stock we have just described and a risk-free asset that earns a net return of zero in each

21Figures 11 and 13 also illustrate two points we noted in earlier sections: first, that the time inconsistency
is much more severe in the lower part of the tree; and second, that the naive trader stays in the casino much
longer, on average, than the commitment-aided sophisticate.
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period. To keep the exposition simple, we assume that if the investor takes a position in

the stock at time 0, then, in future periods, he either maintains his position or else sells

his entire holdings. Finally, we assume that the investor derives cumulative prospect theory

utility from the gain or loss on the stock at the moment he sells his position. The question we

are interested in is: if the investor buys stock at time 0, what is his planned selling strategy

and how does this differ from his actual selling strategy?

The investment problem we have just described is exactly analogous to the casino problem

of Section 3: just as the gambler derives prospect theory utility from his gain or loss when he

exits the casino, so the investor derives prospect theory utility from his gain or loss when he

exits the stock. We have analyzed the solution to this investment problem in detail. Here,

we simply summarize the results without going through the analysis – this is in part for

space reasons, but also because the results directly parallel those in Section 3.

Just as in Section 3, the prospect theory assumption leads to a time inconsistency. We

therefore again consider three types of agents: a naive trader, a no-commitment sophisticate,

and a commitment-aided sophisticate.

We find that, when the naive trader buys the stock at time 0, his initial plan parallels that

of the naive gambler: he plans to keep holding the stock if its price remains above purchase

price but to sell it if its price falls below purchase price. His actual selling behavior, however,

follows the opposite pattern: he holds on to the stock if it falls below purchase price but

sells it if it rises significantly above purchase price.

The no-commitment sophisticate recognizes that he will sell the stock if it goes up signifi-

cantly and that he will hold on to it if it falls. While he dislikes the negatively skewed payoff

this strategy produces, he is nonetheless willing to buy the stock at time 0 if its average

return is high enough. This contrasts with the no-commitment sophisticate of Section 3 who

refuses to enter the casino because, unlike stocks, the bets offered by the casino have a very

low expected value.

Finally, the commitment-aided sophisticate recognizes that he will want to deviate from

his initial plan and therefore finds a way to commit to it in advance. In other words, perhaps

with the help of his broker, he commits to sell the stock if it falls but to hold on to it if it

rises.

Earlier papers have also analyzed the trading behavior of an investor who derives prospect

theory utility from the realized gain or loss when he sells a stock (see Barberis and Xiong,

2009, and the references therein). These papers show that the investor exhibits a “disposition

effect,” the name given to the propensity of actual individual investors to sell stocks in their

portfolios that have risen in value since purchase, rather than fallen in value, a phenomenon

that is hard to explain in more standard models of trading behavior.

31



The crucial difference between these earlier papers and our discussion here is that the

prior work ignores probability weighting. Our discussion in this section shows that, as soon as

we take probability weighting into account, we obtain a much richer model of the disposition

effect.

First, while the earlier papers which ignore probability weighting predict that all investors

exhibit a disposition effect, the framework in this section predicts a more interesting hetero-

geneity: some traders – specifically, the naive traders and the no-commitment sophisticates

– exhibit a disposition effect, while others, namely the commitment-aided sophisticates, ex-

hibit the opposite of the disposition effect. This is significant because while, in reality, most

individual investors exhibit a disposition effect, some do not. Moreover, in our framework,

naive agents always exhibit the disposition effect while sophisticated agents may or may not

exhibit it, depending on their ability to commit. If investors who are sophisticated in the

real-world sense of the word are also sophisticated in the sense of recognizing their time

inconsistency, our framework predicts that investors who are more sophisticated will exhibit

the disposition effect less. This is exactly what we find in the data (Dhar and Zhu, 2006).

Second, in the earlier papers which ignore probability weighting, the disposition effect

always represents time-consistent behavior. By contrast, our framework raises the interesting

possibility that it can represent time-inconsistent behavior. Naive agents, for example, plan

to exhibit the opposite of the disposition effect; but in their actual trading, they exhibit the

disposition effect itself. Meanwhile, sophisticated agents who recognize their inconsistency

will try to commit in advance to their initial plan. There is evidence that fits with this

view. Many asset management firms set in place formal rules that require a position to be

unwound if it loses a certain amount of value – 15% of its value, say. This is consistent with

a framework in which, while, ex-ante, traders would like to sell a stock if it goes down, they

nonetheless, ex-post, find themselves reluctant to execute this plan. They therefore put in

place a commitment device to ensure that the sale takes place.

6 Conclusion

Casino gambling is a hugely popular activity around the world, but there are still very few

models of why people go to casinos or of how they behave when they get there. In this

paper, we show that prospect theory can offer a surprisingly rich theory of gambling, one

that captures many features of actual gambling behavior. First, we demonstrate that, for

a wide range of parameter values, a prospect theory agent would be willing to gamble in

a casino, even if the casino only offers bets with zero or negative expected value. Second,

we show that prospect theory predicts a plausible time inconsistency: at the moment he

enters a casino, a prospect theory agent plans to follow one particular gambling strategy;
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but after he enters, he wants to switch to a different strategy. The model therefore predicts

heterogeneity in gambling behavior: how a gambler behaves depends on whether he is aware

of the time-inconsistency; and, if he is aware of it, on whether he is able to commit, in

advance, to his initial plan of action.
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8 Appendix

Proof of Proposition 1: Through extensive numerical analysis, we find that when the

naive agent enters the casino, he almost always chooses the following strategy or one similar

to it: he exits (i) if he loses in the first round; (ii) if, after the first round, his accumulated

winnings ever drop to zero; and (iii) at time T , if he has not already left by that point.

Condition (19) simply checks whether the cumulative prospect theory value of this exit

strategy is positive. If it is, we know that the agent enters the casino.

If the agent exits because he loses in the first round, then, since the payoff of −$h is

the only negative payoff he can receive under the above exit strategy, its contribution to the

cumulative prospect theory value of the strategy is

−λhαw(
1

2
).

If he exits because, at some point after the first round, his accumulated winnings equal

zero, this contributes nothing to the cumulative prospect theory value of the exit strategy,

precisely because the payoff is zero. All that remains, then, is to compute the component of

the cumulative prospect theory value of the exit strategy that stems from the agent exiting

at date T .

Under the above exit strategy, there are T − [T
2
] date T nodes with positive payoffs at

which the agent might exit, namely nodes (T, j), where j = 1, . . . , T − [T
2
]. The payoff in

node (T, j) is (T + 2 − 2j)h. We need to compute the probability that the agent exits at

node (T, j), in other words, the probability that he moves from the initial node (0, 1) to node

(T, j) without losing in the first round and without his accumulated winnings hitting zero

at any point after that. With the help of the reflection principle – see Feller (1968) – we

compute this probability to be

2−T

[(
T − 1

j − 1

)
−
(
T − 1

j − 2

)]
.

The probability weight associated with node (T, j) is therefore

w(2−T

(
T − 1

j − 1

)
) − w(2−T

(
T − 1

j − 2

)
).

In summary then, the exit strategy we described above has positive cumulative prospect

theory value – and hence the naive agent is willing to enter the casino – if

T−[T
2 ]∑

j=1

((T + 2 − 2j)h)α

(
w(2−T

(
T − 1

j − 1

)
) − w(2−T

(
T − 1

j − 2

)
)

)
− λhαw(

1

2
) ≥ 0.

This is condition (19).
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Figure 1. The left panel shows the value function proposed by Kahneman and Tversky
(1979) as part of prospect theory, their model of decision-making under risk. The right
panel shows the probability weighting function they propose.
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Figure 2. The figure plots the probability weighting function proposed by Tversky and
Kahneman (1992), namely w(P ) = P δ/(P δ + (1 − P )δ)1/δ, for three different values of
δ. The dashed line corresponds to δ = 0.65, the dash-dot line to δ = 0.4, and the solid
line to δ = 1.
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Figure 3. The figure shows how a casino can be represented as a binomial tree. Each
column of nodes corresponds to a particular moment in time. Within each column, the
various nodes correspond to the different possible accumulated winnings or losses at that
time. A solid black node indicates that, if the agent arrives at that node, he does not
gamble. At the remaining nodes, the agent does gamble.
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Figure 4. The figure shows two possible gambling strategies a prospect theory agent
could follow. If a node has a black color, the agent plans not to gamble at that node. At
the remaining nodes, he plans to gamble.
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Figure 5. The figure shows the range of values of the preference parameters α and δ for
which a prospect theory agent who, at time 0, is thinking about his optimal strategy at a
casino, would like to keep gambling later on once he has accumulated a substantial gain.
The lower the value of α, the lower the marginal utility of additional gains. The lower the
value of δ, the more the agent overweights the tails of distributions.
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Figure 6. The “+” signs in the graphs show the range of values of the preference param-
eters α, δ, and λ for which an agent with prospect theory preferences would be willing to
enter a casino offering 50:50 bets to win or lose a fixed amount $h. The agent is naive:
he does not realize that he will behave in a time-inconsistent way. Each of the three
panels sets one of the three preference parameters to Tversky and Kahneman’s (1992)
median estimate of its value and shows the range of the other two parameters for which
the agent enters the casino. The circles mark the median parameter estimates, namely
(α, δ, λ) = (0.88, 0.65, 2.25).
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Figure 7. The left panel shows the strategy that a prospect theory agent plans to use when
he enters a casino. The agent is naive: he does not realize that he will behave in a time-
inconsistent way. If the agent arrives at a solid black node, he plans not to gamble at
that node. At the remaining nodes, he plans to gamble. The right panel shows the actual
strategy that the agent uses. If the agent arrives at a solid black node, he does not gamble.
At the remaining nodes, he does gamble.
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Figure 8. The figure shows a strategy under which a prospect theory agent would be
willing to enter a casino and which entails a low probability of exiting in the very early
rounds. The agent is naive: he does not realize that he will behave in a time-inconsistent
way. If the agent arrives at a solid black node, he does not gamble. At the remaining
nodes, he does gamble.

43



0.4 0.6 0.8

1.5

2

2.5

3
T = 5

δ

λ

0.4 0.6 0.8

1.5

2

2.5

3
T = 10

δ

λ

0.4 0.6 0.8

1.5

2

2.5

3
T = 20

δ

λ

0.4 0.6 0.8

1.5

2

2.5

3
T = 40

δ

λ

Figure 9. The “+” signs in the graphs show the range of values of the preference parame-
ters δ and λ that satisfy a sufficient condition for an agent with prospect theory preferences
to be willing to enter a casino offering 50:50 bets to win or lose a fixed amount $h. The
agent is naive: he does not realize that he will behave in a time-inconsistent way. The
four panels correspond to four different values of T, the maximum number of rounds
of gambling. In all four panels, we set the preference parameter α to 0.88. The circles
mark the median parameter estimates computed by Tversky and Kahneman (1992) from
experimental evidence, namely (α, δ, λ) = (0.88, 0.65, 2.25).
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Figure 10. The figure shows the outcome of the dynamic programming procedure that
a prospect theory agent uses to decide whether or not to enter a casino. The agent is
sophisticated: he realizes that he will behave in a time-inconsistent way. A solid black
node indicates that, if the agent were to arrive at that node, he would not gamble. If the
agent were to arrive at any other node, he would gamble. The fact that the left-most node
is black indicates that, in this case, the agent does not enter the casino in the first place.
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Figure 11. The figure shows how a prospect theory agent behaves after he enters a casino
that offers at most ten rounds of gambling. The agent is naive: he does not realize that he
will behave in a time-inconsistent way. If the agent arrives at a solid black node, he does
not gamble at that node. At the remaining nodes, he gambles.
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Figure 12. The figure shows the outcome of the dynamic programming procedure that a
prospect theory agent uses to decide whether or not to enter a casino that offers at most
ten rounds of gambling. The agent is sophisticated – he realizes that he will behave in
a time-inconsistent way – but is unable to commit in advance to any particular plan of
action. A solid black node indicates that, if the agent were to arrive at that node, he would
not gamble. If the agent were to arrive at any other node, he would gamble. The fact that
the left-most node is black indicates that, in this case, the agent does not enter the casino
in the first place.
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Figure 13. The figure shows how a prospect theory agent behaves after he enters a casino
that offers at most ten rounds of gambling. The agent is sophisticated – he realizes that he
will behave in a time-inconsistent way – but he is able to commit in advance to any plan
of action he chooses. If the agent arrives at a solid black node, he does not gamble at that
node. At the remaining nodes, he gambles.
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