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INTEREST RATES AND THE DURABILITY OF CONSUMPTION GOODS

Abstract

In this article I study an economy with irreversible durable investment and investors who consume
a durable and a nondurable good. In a general equilibrium setting, these assumptions lead to
endogenous variation in the implied risk aversion of investors and in the term structure of interest
rates. In the model, the magnitude of the intertemporal elasticity of substitution places certain
restrictions on the joint dynamical behavior of durable consumption, nondurable consumption, and
the yield curve. Tests of the model using postwar U.S. data are supportive of these restrictions.
However, while the model is able to generate a relatively large term spread, the level and the
variation of the resultant short rate are not empirically plausible. An approximate closed form
solution of the model is derived.

JEL Classification: G1, D5, E2
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1 Introduction

The relationship between interest rates and consumption is one of the central issues in financial
economics. While it is intuitively clear that a relationship between these quantities should exist,
the exact nature of this relationship, as well as the economic forces which bring it about, are far less
obvious. However, the potential payoffs from having a good understanding of how interest rates and
consumption interact are vast. For example, such knowledge would render the predictability present
in consumption data useful for forecasting interest rate movements, and vice versa. Alternatively,
variation in the joint behavior of interest rates and consumption may shed light on how investor
preferences differ over time and across countries.

Unfortunately relatively little is know about the joint behavior of interest rates and consump-
tion. Traditional models of this interaction are based on the following simple observation: If people
choose consumption in an optimizing way, then consumption growth should be related to avail-
able investment opportunities, and therefore to interest rates. In models with a single, nondurable
consumption good and time separable preferences, such as Lucas (1978) and Breeden (1979), this

relationship takes on the following form
Consumption Growth = Contant + IES x r. (1)

The intertemporal elasticity of substitution (IES) is a measure of the willingness of consumers
to postpone consumption in response to changes in their investment opportunities. As interest
rates rise, and hence as investment opportunities look more favorable, consumers will postpone
consumption in favor of investment.

Under the assumption that consumption consists of only nondurables and services, empirical
research has shown that the model in (1) is a poor description of aggregate consumption and
interest rate data (see Hansen and Singleton (1983), Hall (1988), Hansen and Jaganathan (1993)
and Mankiw and Zeldes (1996)). An obvious argument against the validity of the relationship in
(1) is that nondurables and services may not be the only relevant consumption goods. Cognizant
of this objection, past researchers have pointed out that the restriction in (1) may still hold even if
other consumption goods exist, as long as consumers have separable preferences: u(cy,...,cy) =
ui(c1) + -+ +un(cn) (see Hansen and Singleton (1983)).

Unfortunately, the claim that utility over consumption goods is separable has little empirical
support. Dunn and Singleton (1986) and Ogaki and Reinhart (1998) show, for example, that the
representative consumer has a nonseparable utility function over consumption of nondurables and
services, on the one hand, and durables on the other (see also Mankiw (1985)). Furthermore, these
papers suggest that models which take into account consumer preferences over durable goods are
better able to account for the joint behavior of consumption (durable and nondurable) and asset
returns (see also Heaton (1993,1995)).! Durability, therefore, seems to be an important ingredient

in any recipe which purports to explain how and why interest rates are connected to consumption.

n the remainder of the paper, nondurable consumption will refer to nondurables and services, and durable
consumption will refer to durables and investment into residential real estate. The classifications are taken from the
U.S. Department of Commerce.



The approach taken by Dunn and Singleton (1986) and by Ogaki and Reinhart (1998) is to esti-
mate moment conditions implied by the optimal consumption choice of investors with nonseparable
utilities over nondurable and durable goods. Indeed this approach, of looking at restrictions implied
by first order conditions, has become a mainstay of empirical consumption asset pricing. Because
it does not require solving for optimal investment policies of investors, it is amenable to empirical
work. However papers which look only at first order conditions have the following drawback: Be-
cause they do not actually solve for the equilibrium in their model economies, they are unable to
relate consumption and interest rates to economic fundamentals, such as the stocks of nondurable
and durable capital. After all, how many houses have already been built to serve a given population
must have an important affect of the latter’s consumption and investment decisions. Any complete
theory of the joint behavior of interest rates and consumption must take into account the fact that
these quantities are outcomes of investor decisions, and must therefore be related to the amounts
of nondurable and durable capital to which these investors already have access.

In the present paper, I formulate and solve a general equilibrium model in which investors
consume durable and nondurable goods. Rather than simply characterize optimal consumption
policies, I am able to solve for the optimal consumption and investment policies of investors. At the
same time, I solve for the endogenous market clearing rates of interest in the economy. Furthermore,
I am able to relate all three quantities, namely consumption, investment, and interest rates, to
economic primitives, which in the model are the nondurable and durable capital stocks. The payoff
of this approach is twofold. First, having a self consistent equilibrium model of the economy allows
us to gain insights into the economic forces which connect interest rates with consumption. Second,
the model yields a rich set of testable empirical implications.

For example, Figure 1 shows a time-series of the correlation (computed in rolling windows)
between the shares of GNP devoted to durable and nondurable consumption, and between the
share of GNP devoted to durable consumption and the term spread.? Even a casual inspection of
the graph suggests the two correlations are intimately related. The model in this paper suggests
that this relationship is not an artifact of the data, but instead arises from a very fundamental
economic interaction (discussed shortly). As this paper will argue, whether the shares of GNP
devoted respectively to nondurable and durable consumption tend to be high at the same time
or not, determines how the term spread and expected excess stock returns fluctuate over the
business cycle.> Furthermore, this model provides a theoretical justification for why ratios such as
nondurable consumption to aggregate wealth have predictive power for asset returns (see Lettau
and Ludvigson (2001)).

The model in this paper is a modification of Cox, Ingersoll, Ross (1985a). Agents in the model

%In this paper, the term spread is the difference in yields between a portfolio of intermediate maturity (approxi-
mately 5 years) U.S. government bonds and 3 month t-bills.

3Previous research, for example Fama and French (1989), Chen (1991), and Stock and Watson (1998), found
that the term spread is countercyclical, as are excess expected stock returns. The theoretical analysis of this paper
suggests that this does not necessarily have to be the case, and the empirical analysis of this paper suggests that this
countercyclical behavior is true usually, but not always.
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Figure 1: The solid line shows the correlation between the ratio of durables over GNP and the
lagged ratio of nondurables over GNP (all variables are in real terms). The dashed line shows
the correlation between durables over GNP and the term spead (the difference between 5 year
government yields and the t-bill yield). Correlations are computed in rolling 20 quarter windows.

are assumed to have preferences over consumption given by

Iy
<0521—5>

u(e,z) = T
where ¢ is the instantaneous nondurable good consumption, and z is the service flow derived from
an agent’s holdings of a durable good. Agents are able to invest their holdings of the nondurable
good in a production technology with a constant investment opportunity set. Furthermore, at any
time, they are able to transfer a unit of nondurable into a unit of the durable good. In order to
qualitatively capture aggregate investment behavior, I assume that such transfers are irreversible.
Once a unit of nondurable has been transferred into a unit of the durable good, the reverse transfer
is technologically infeasible. I solve the model numerically, and also obtain an approximate closed
form solution using the method of perturbation analysis.

I show that preferences over durable and nondurable goods, and the fact that durable investment
is irreversible, are the driving forces of the results in the paper. Unless both assumptions are
made, interest rates in this model are constant.* Since investment into durables is irreversible,
agents choose to invest only after periods of high growth in the nondurable stock. Hence durable
investment is procyclical. The key feature of equilibrium in the model is that agents optimally

adjust their consumption of nondurables as they approach the investment point for durables. In

Tt is well known that in the Cox, Ingersoll, and Ross (1985a,b) representative agent economy, if the production
opportunity set is constant, the short term interest rate turns out to be constant as well, implying that the term
structure of interest rates is flat. A nontrivial term structure can be obtained in this setting by assuming exogenous
variation in the production opportunity set. Two prominent models of the term structure which do not need to
assume exogenous state variables are Dumas (1989) and Wang (1996). Both models look at an economy with two
groups of agents that have different risk aversions inside the HARA class. This paper shows that endogenous variation
in interest rates can be obtained by having heterogeneous consumption goods, rather than heterogeneous investors.



particular, the ratio of nondurable consumption to the total nondurable capital stock (¢/K) can
increase or decrease as the durable investment point draws near. It will decrease if the intertemporal
elasticity of substitution (or 1/v) is sufficiently high. Intuitively, if people are sufficiently willing
to substitute consumption through time they will defer going out to dinner when they are close to
buying a house. If not, ¢/ K will increase as durable investment becomes imminent.

Consider the case where the ¢/K ratio is decreasing in times of high durable investment. First
we note that due to irreversibility, this implies that ¢/ K is decreasing in K. Therefore a 1% increase
in the nondurable stock K will be accompanied by a less than 1% increase in consumption c¢. The
elasticity of consumption with respect to capital will therefore be low around times of high durable
investment. In this paper, I show that the implied risk aversion of investors is directly proportional
to this elasticity. The intuition is quite clear: Since agents dislike uncertainty only to the extent
that it affects their actual consumption, and since consumption becomes less sensitive to production
shocks, agents are willing to bear higher amounts of production risk, and are therefore less risk
averse.

The short term interest rate which induces zero borrowing and lending therefore rises in times
when durable investment is high. Since the term structure reflects expectations of future short
rates, it becomes downward sloping. Hence if the IES is sufficiently high, the ratio of nondurable
consumption to capital (¢/K) and durable investment are negatively correlated. Furthermore,
durable investment should be negatively correlated with the term spread. Since implied risk aversion
is lowest when new investment is about to occur (after periods of high capital growth) the expected
excess returns on equity should be lowest at this point, and therefore countercyclical.

Of course all of these conclusions are reversed if the IES is low, and therefore if ¢/K increases
when durable investment is high. And it is this observation which provides the main empirical
predictions of the model. One of these is that if the shares of GNP devoted to nondurable and
durable consumption are negatively correlated, hence suggesting that the IES is high, then the
term spread should be countercyclical. Figure 1 is supportive of this prediction. More formal
statistical tests are carried out later in the paper, and reach the same conclusion. Furthermore, the
above argument suggests that the ratio of nondurable consumption to the capital stock should be
positively correlated with the term spread regardless of the IES (simply repeat the arguments of
the preceding paragraphs for the case when ¢/K increases when durable investment is high). This
too is supported by the data. On a cautionary note, the time variation in the above correlations
suggests that certain parameters which the model assumes to be constant are indeed fluctuating
(perhaps slowly) over time.

Despite this empirical success, the model is unable to match certain salient moments of the
data. For a reasonable choice of parameters, the level of the short rate generated by the model is
too high. Furthermore the variation in the short rate, as a function of the capital stocks in the
economy, is too low. On the other hand, the curvature of the term structure (relative to the highest
and lowest possible short rates) is sufficiently high to be empirically plausible. The underlying
cause of these shortcomings is the model’s inability to separate out local risk aversion from the

intertemporal elasticity of substitution. A higher elasticity implies more short rate variation, yet



further raises the already implausible level of the short rate. Given the empirical success of the
model’s predictions, as well as this inability of the model to match certain moments of the data, it
would seem that the “correct” asset pricing model should take into account irreversible durable and
nondurable consumption, as well as a separation between local risk aversion and the intertemporal
elasticity of substitution.

The rest of the paper proceeds as follows. Section 2 formulates the model. Section 3 shows how
the equilibrium asset prices in this economy are derived. Section 4 analyzes the some base cases of
the model, and provides an upper and lower bound for the value function. Section 5 analyzes the
general case of the present model. Section 6 presents the empirical results. Section 7 concludes.

All proofs and the perturbation analysis are in the Appendix.

2 The Model

The underlying uncertainty of the economy is characterized by a 1 dimensional standard Brownian
motion B = {B; : t > 0} defined on its filtered probability space (€2, F,F,P). The filtration
F = {F, : t > 0} represents the information revealed by B over time.

The economy contains a nondurable good (the productive capital) and a durable good. The
nondurable good acts as the numeraire. There is a production technology for the nondurable
in the economy. This technology transforms units of nondurable today into units of nondurable
tomorrow. Units of nondurable may also be transformed into units of the durable good. However,
units of durable good may not be transformed back into the nondurable. Hence investment in the
durable good is irreversible. The stock of durable good depreciates over time to reflect the effects
of physical deterioration. The aggregate nondurable stock K; and the aggregate durable stock z

evolve according to

dK(t) = pKdt+oKdB(t) — c(t)dt — d(t) (2)
dz(t) —0z(t)dt + do(t) (3)

Here c¢(t) is aggregate nondurable consumption, d®(t) is the time ¢ aggregate investment into the
durable, and 6 is the durable depreciation rate. Here p and o are constants which characterize the
production opportunities available for the nondurable goode. We require that ¢(t) > 0, and note
that irreversibility of investment into the durable implies that d®(t) > 0.

In (2-3), the stochastic process ®(¢) is the cumulative amount of nondurable transfered into the

durable good as of time ¢. Investment can occur either in infinitesimal flows or in lumps.® As will

®More formally (following Hindy and Huang (1993)) let us define X as the space of all processes z with paths that
are positive, increasing, and right continuous. An increasing function z(-) has a finite left limit at any ¢, denoted by
x(t~). The convention used in this paper is that (07) = 0. A jump of z(-) at 7 is denoted by Az(7) = z(7) —x(77).
We will assume that ®(t) € X*. For any w € Q the points of discontinuity of ®(w,t) correspond to the times when
agents transfer a non-infinitesimal amount of nondurable into the durable good. The transfer process ®(¢) has an
absolutely continuous component over those times when agents transfer nondurable into the durable at a rate of
d®(w,t)/dt per unit time. Furthermore, ®(w,t) may have a singular component.

The context in which the singular process arises in the present setting is the following. Let B(t) be a standard
Brownian motion on F, and let ¢ be some constant. Define a process A(t) = sup,;(Bs —c¢)T. The process A(t) will be
singularly continuous (as opposed to absolutely continuous) and will be referred to as a singular process. Notice that



become clear, for the optimal policy, infinitesimal investment occurs when it is necessary to keep
the pair {K(t), 2(¢)} inside a region of no-investment. An infinitesimal amount of nondurable will
be transferred into the durable when the pair reaches the boundary of the region, and the transfer is
only large enough so as to push the pair back into the region’s interior. Because the state variables
in the model evolve in a continuous way, once the pair {K(t),z(t)} is either on the boundary or
inside of the no-investment region, it will remain inside this region. Lumpy investment can occur
if at time O the pair {Kj, 2o} lies outside of the no-investment region. The lumpy control is then
exerted to bring the pair to the boundary of the region. In what follows we assume, without loss
of generality, that { Ky, z} is inside the no-investment region.

Each unit of the durable good produces a consumption stream which is valuable to the agents
in the model. Furthermore agents may consume out of their own nondurable stock. Agents’ time

t utility over consumption from the durable and nondurable good is given by

(652175)177 1
4
1 — v ? ( )

u(e,z) =

where ¢ is the consumption rate from the nondurable, z is the service flow from z units of the
durable good, v > 0, and ¢ € (0,1). The case of v = 1 corresponds to separable preferences given
by u = dlogc+ (1 —6)logz. Going forward, it will be convenient to drop the -1 and to rewrite the
above utility function as

2B

T A+B (5)

u(c, )

Here A =0(1 —) and B = (1 — 6)(1 — ). Given the above restrictions on ¢ and -y, we have that
(1) A>0,B>0and A+ B <1,or (2) A<0,B <0. The case of A+ B = 0 corresponds to log
separable utility.

Agents maximize a utility of the form

Eg [/Ooo e Plu(e(t), z(t))dt (6)

by choosing consumption and investment processes {c, ®}, subject to the regularity conditions given
in Lemma 4 in the Appendix, and capital stock dynamics given by (2,3). The economy contains a
continuum of competitive investors, all of whom have identical preferences given by (6).

We make one additional assumption: all agents begin life with identical ratios of capital stocks,
or K;(0)/z;(0) is the same across all individuals. Given this assumption and the fact that all agents
have identical preferences and beliefs, the economy can be characterized by the behavior of a single
representative agent whose initial capital stocks are K(0) = ), K;(0), and 2(0) = ), 2;(0). It is
then easy to show K(0)/z(0) equals K;(0)/2(0) for all <. Rubinstein (1974) contains a discussion
of these types of aggregation results in a setting with a single consumption good. Going forward,

therefore, we will only be concerned with the problem of the aggregate agent.

(i) A(t) is non-decreasing and therefore of finite variation, and (ii) the controlled Brownian motion B*(t) = B(t)— A(t)
will always be less than or equal to c.



2.1 Discussion of the Model

This model can be thought of as an extension of a simplified version of the Cox, Ingersoll, and
Ross (1985a) model. In order to generate a non-trivial term structure in their model, the authors
needed to assume an exogenous state variable. The obvious drawback of this approach is that an
exogenously assumed source of uncertainty is difficult to interpret.

Another related model is Hindy and Huang (1993). They assume that agents only have utility
over durable consumption. Alternatively, one can interpret the preference structure in their case as
allowing for local substitution of nondurable consumption. As in Cox, Ingersoll, and Ross (1985a),
the Hindy and Huang model with a constant investment opportunity set will have constant implied
risk aversion, and therefore, constant interest rates.

The constant investment opportunity set CIR model, and the Hindy and Huang model represent
two base cases of the present model corresponding, respectively, to B =0 and A = 0.

Other related papers include Detemple and Giannikos (1996), who consider investors who con-
sume nondurable and durable goods. In their model agents derive “status” from their durable
goods purchases. This makes the irreversibility constraint faced by these investors non-binding.
Grossman and Laroque (1990) and Cuoco and Liu (2000) study the control problem of an investor
who can make costly transfers of productive capital to and from a durable good. In a setting similar
to the one in this paper, Damgaard, Fuglsbjerg, and Munk (2000) study the control problem of an
investor who consumes durables and nondurables. However they do not consider the asset pricing
implications of durable and nondurable consumption. Hindy, Huang, and Zhu (1997) model an
economy with investors who consume a durable good and form a habit over past durable good con-
sumption. Dumas (1992) analyzes the exchange rate between two otherwise identical nondurable
goods in spatially separated economies. The paper is similar to this one in that frictions exist for
transfers between the capital stocks. One major difference is that both stocks in Dumas (1992) are
of a nondurable consumption good.

There is also an extensive and related literature on the investment decisions of firms. Kogan
(2000) studies the stock prices of profit maximizing firms which invest in a durable good in an
economy where investors’ preferences over durable and nondurable consumption are separable.
Other related papers include Abel and Eberly (1996), Bertola and Caballero (1994), and Dixit
(1991). There has also been a considerable amount of work in macroeconomics on the interaction
of investment decisions and the business cycle. Rouwenhorst (1995) provides a discussion of how

this literature is relevant to topics in asset pricing.

3 The Equilibrium

In this section we will analyze the solution to the representative agent’s control problem, as well as

the asset prices which obtain in equilibrium.



3.1 An Agent’s Control Problem

The solution of a single agent’s problem will give us the solution to the equilibrium of the economy
as long as (1) all agents have identical preferences, and (2) all agents start at time 0 with identical
ratios of nondurable to durable. We will assume that both of these conditions hold.

The nondurable consumption in the current problem occurs at a rate ¢(t). Investment into the
durable good, however, may have a singular component. The latter problem has been studied in
the literature as well. See papers by Hindy and Huang (1993), Dumas (1991), Shreve and Soner
(1994) and the book by Harrison (1990), among others. The joint control of ¢(¢) and the durable
investment process ®(¢) can be handled in much the same way as the control of ®(¢) alone. It
turns out sufficient conditions for this problem are similar to the Bellman conditions of dynamic
programming. This section will heuristically discuss the optimality conditions for the value function
and control. The section concludes with the statement of a verification theorem. A more rigorous
discussion, as well as the proof of the verification theorem, are provided in the Appendix.

Let J(K (%), 2(t),t) be the value function of a single agent. The solution of the control problem

in (6) satisfies the following Bellman type equation

A_B
max [sup {eﬂtLizB FJy— 02, + (Kp — () Jx + %KQUQJKK} - JK] =0 (7

where J, and Ji are partial derivatives. We interpret this inequality as follows. The state space
of the problem is divided into two regions: the no-investment and the investment region. When
the pair {K(t),z(t)} is inside the no-investment region, the agent consumes from the nondurable
good, receives service flow from the current durable stock, but makes no new investment into the
durable. In this case, the left part of the max is equal to zero. Also the agent chooses not to invest
into the durable; hence the value of doing so must be negative. In other words, J, < Jk.

On the other hand, when {K (t), 2(¢)} is outside the no-investment region, the agent transfers
nondurable into the durable good. Recall that the reverse transfer is assumed to be technologically
impossible. At the time of investment, it must be that the value of investing into the durable is
exactly equal to the value of the nondurable given up to do so. Hence we have that J, = Jx at
times when investment takes place. It is also possible that J, > Jx. That is the value of investing
into the durable exceeds the value of nondurable given up to do so. In this case, agents would
invest nondurable into the durable until J, was equal to Jg.

The homogeneity of the problem allows us to write the value function as

J(K (1), 2(1), 1) = ept%g (m%%)) . 8)

This transformation reduces the problem to a time homogeneous problem in one state variable

w(#) = log <IZ{(%)) . (9)

Expressing the state variables as a logarithm of the ratio of the capital stocks, rather than as the

ratio directly, is done for analytical convenience.



The smooth-pasting condition J, = Jg holds at the boundary of the investment region. Given
our single state variable the no-investment region will be given by (—o0,w*], where w* needs to be
determined as part of an agent’s control problem. Agents invest nondurable into the durable good
only when the ratio of nondurable to the durable good becomes sufficiently high.

At the investment boundary w* the smooth-pasting condition is
(€™ +1)¢'(w") = (A+ B)g(w") =0 (10)
The optimal nondurable consumption policy is given by

o= 2 ({;‘”)) (11)

This obtains from the usual envelope condition of dynamic programming, namely U.(c, 2;) =

Ji (K4, 2, t). Notice that the optimal nondurable consumption to durable holdings ratio is a func-
tion of the state variable w.
In the no-investment region, the left part of equation (7) evaluated at the optimal consumption

Ct is

O+ B) 4o+ 0+ wg - (4= ()T Skt =0

So far we have a second-order ordinary differential equation free boundary problem, and only one
boundary condition. The free boundary occurs because we do not know ex-ante where w* should
be.

Another boundary condition for the problem is the super-contact condition which must hold at

the boundary of the no-investment region
Jxr =Jkk or Jy = Jk.

These two equations turn out to be identical in the present problem. Together the smooth-pasting
and the super-contact conditions help to uniquely determine the boundary w* of the no-investment
region. The condition is a consequence of the fact that w* is chosen in a utility maximizing way.
See Dumas (1991) for a discussion of these two conditions. Given the definition of J in (8), the

super-contact condition is

(A+B)e” +1)g' (@) = (¢*" +1)¢"(w") = 0. (13)

Note that the condition only holds at w*.
The final boundary condition obtains when w becomes very small. In the case where A > 0, B >
0, the value function must be equal to zero when K = 0. For A < 0, B < 0, the value function is

equal to negative infinity when nondurable capital is zero. A more formal justification is provided



in Theorem 4. These observations imply the following restrictions on g(-):

lim g(w) = (14)

w—r —0Q

0 when A > 0,B > 0,
oo when A <0,B <0.

Subject to (10), (13) and (14), the non-linear ordinary differential equation in (12) and the boundary
of the no-investment region w* can be solved. Unfortunately a closed form solution to this problem
does not exist. Instead the general problem can be solved numerically. Furthermore, it is possible to
compute a closed-form approximate solution for ¢g(-) by using perturbation analysis (see Appendix
Section 8.7).

The following theorem (stated in a more rigorous way in the Appendix) confirms that as long
as a sufficiently smooth solution to (12) exists, it will be equal to the value function of the problem.
Furthermore, the theorem provides sufficient conditions for the optimality of the consumption

process ¢; and the investment process ;.6

Theorem 1 Assume that § and w* solve (12) subject to (10), (13) and (14). As long as § satisfies

certain regularity conditions then

A+B
_ot % ~
J(K,Z,t) =€ ptm g(lOg(K/Z))

gives the value function. Furthermore, assuming that the consumption process cf (from 11) and an

appropriately defined (see Appendiz) investment process @ ewist, these will be the optimal controls.

3.2 The Optimal Investment Policy

The no investment region in this economy is characterized by a single number, w*. The log of the
nondurables to durables ratio, or simply the nondurables to durables ratio, w(t) is maintained by
agents to be below w*. At any time 7 when w; = w*, we will have d® > 0 and the nondurable
to durable ratio will be pushed back to the no-investment region. The size of the push will be
infinitesimal, just big enough to prevent w(t) from going above w*. Hence for all ¢ it will be the
case that w(t) € (—oo,w*]. Furthermore, for any time ¢ such that w(t) € (—oo,w*), new nondurable
transfers into the durable, that is d®, will be equal to 0. The three boundary conditions discussed
in the previous section allow w* to be determined.

Using a generalized version of the Ito formula (for example, see Harrison (1990) or Karatzas
and Shreve (1991)), we can show that for w(t) = log(K;/z;) we have

14e®
dw(t) = pu(w(t))dt +o0dB — ————dd,, (15)
2t
po@(t) = 0+p— Lo — <L, (16)
Ky

Note from (11) that since the ratio of optimal nondurable consumption to the durable stock is a

function of w(t), the dynamics of w(t) in the no-investment region depend only on w(t), and not on

SA control problem similar to the one in this paper is analyzed in Shreve and Soner (1994). In their setup, they
establish existence of the optimal consumption/investment policy.

10



K, or z; separately. However at the boundary, the singular component does depend on z;. We can

write the singular part of w(t) as

14 e @® 1 1
2 2z Ky

For a small transfer (using a Taylor series expansion) we have that

K —do
1 = log(K —d®) —1 do
s (S5 ) = loe(K —do) logls + do)

1 1
~ log(K)— EdCb —log(z) — ;dCD

(5 (L L) s

This is the origin of the singular term in the evolution of w(t). The size of the nondurable transfer

is just large enough so as to maintain w(t) inside the no-investment region.

3.3 The Price of Durable Goods

The equilibrium price of a marginal unit of durable good can be computed in this economy as
the agents’ shadow price for that unit. Any of the identical agents may sell a unit of the durable
to another agent. However since they are all at their optimal allocation, it must be that the
(shadow) price clears the market by insuring that no trades take place. Recall that the technological
assumption in the paper allows for a single unit of nondurable to be transferred into a single unit of
durable good. This resulted in the (—oo,w*] policy. We already see, therefore, that when w(t) = w*
the price (in terms of units of the nondurable good) of the marginal unit of durable must be equal
to 1. This would induce the same investment behavior at the boundary. Let us call S(w(¢)) the
price of the marginal unit of the durable good.

The following heuristic argument shows the intuition behind the shadow price definition. Theo-
rem 2 provides a rigorous justification. For an infinitesimal purchase, we see that the shadow price

must be given by
J(K -8 xdz,z+dzt) = J(K,z,1t) (18)

where the value function from (8) is given by J(K, z,t) = e 2478 /(A + B)g(w) where w(t) =

log(K}/z). Using a Taylor expansion, for a small investment we can write
J(K -8 xdz,z+dzt) = J(K,21t) — J(K, 2,t) x Sdz + J,(K, Z,t)dz + O(dz?). (19)

For a marginal investment into the durable good, satisfying the value matching condition in (18)
requires that the dz terms in (19) equal zero. Solving for the S(w(t)) which guarantees this condition

produces

S(w(t)) = L?) (20)



Hence the price of the marginal durable unit is simply equal to the ratio of the marginal product
of a unit of durable to the marginal product of a unit of nondurable.”
We can rewrite the durables price as

S(w(t)) = e*® ((A + B)gg,((“’& — 1) (21)

The smooth pasting condition (10) implies that
S(w*) =1

The price of a unit of durable at the investment boundary has to be simply 1 unit of nondurable in
order to induce agents to make the same investment decisions as under the case of irreversibility.

Despite the fact that the nondurables to durables ratio contains a singular component, it turns
out that the durable good price S(w(t)) does not.

Lemma 1 The evolution of S(t) can be written as
dSy = ps(w(t))dt + os(w(t))dBy,
where og(w*) = 0. Notice that dS; does not have a d® part.

3.4 The Short Rate and Bond Prices

The derivation of the short rate and bond prices in the economy uses essentially the same argument

as in Cox, Ingersoll, and Ross (1985a). Imagine that agents solve the following problem

o
max Eg [/ e_ptu(ct,zt)dt] ,
0

Ct, Tt Yt
Such that th == xtK(,udt + O'dBt) + ytK/Pt(dPt + d_D(t))
+(1 — Ty — yt)K’f'(t)dt - Ctdt - Std©t + StdEt,
dZt = —0ztdt + d@'t - dEt

Here P(t) is the ex-dividend price of some financial security, and D(¢) is the cumulative dividend
paid by that security. S; is the durable price in terms of the nondurable, ®; > 0 is the coutinuous,
cumulative investment process, and Z; > 0 is the continuous, cumulative disinvestment process.
Agents choose to invest a fraction x; of their nondurable stock into the risky production technology,
a fraction y; of their nondurable stock into the financial asset, and a fraction 1 — z; — y; of their
nondurable into a locally riskless investment with return r(¢). Agents may choose to consume out
of their own nondurable holdings at a rate of ¢; per unit time.

Keeping in mind the durable good price process, define the equilibrium of the economy as

follows.

"In a similar setting, Kogan (2000) has shown that S(w(t)) is also the marginal value of Tobin’s Q. In Kogan
(2000) the value of a profit maximizing firm which makes irreversible investments into its production capacity is given
by S x z where z is the amount of durable stock owned by that firm.

12



Definition 1 Given an aggregate durable good process z;, a constant returns to scale production
technology with constant coefficients p and o, and a financial security with a cumulative dividend

process of D(t), the equilibrium of the economy is a collection of processes {r(t), P;, S;} such that

e = 1, (22)
b = Oa (23)
z = zj. (24)

Hence equilibrium requires that the total amount of lending and borrowing be zero, that the risky
asset be in zero net supply, and that agents choose to make the same investments into the durable
good as they would have made in the case of irreversible investment.

Given this definition of equilibrium, the following theorem is proved in the Appendix.

Theorem 2 The equilibrium short rate and durable price are given by

o KJkKk
JK

_ el 9w®)
S, ((A+B) 0] 1) (26)

g'(w(t

r(t) = p+o (25)

Assuming that the cumulative dividend process can be written as D(t) = fg a(t)P(t)dt, the price of

the financial security satisfies

2

—Py(s) + (r(w) = a(@))P + (0*7(w) — pu(@)) Py = - Pow = 0 (27)

subject to the appropriate boundary conditions. Here y(ws) = —(Jxkx K)/Jx = 1—g"(w(t))/g' (w(t))

is the time s derived risk aversion, and p,(w(t)) is given by (16).

The price of a zero coupon bond which expires at time 7" is the solution of (27) with a = 0,

subject the following boundary conditions

Z(w(T),T,T) = 1 (28)
Zo(w, 7, T) = 0 (29)
Z(—00,7,T) = 0 (30)

The latter two conditions are necessary to rule out arbitrage opportunities (they follow from the
requirement that the return on the asset at a reflecting boundary should be equal to the risk-free
rate).® In fact, in the present model, condition (29) also guarantees that bond prices do not contain
a singular component (i.e. dZ does not contain a d® term). It is convenient to define the price of

a zero coupon bond in terms of the time left until it expires. Because of the time homogeneity of

8More specifically, for Z = Z(w,t) applying Ito’s lemma yields dZ = Z,dw(t) + Z;dt + %de(w). Since dw
contains an infinite variation part, at a reflecting boundary we must have Z, = 0. This implies that at the boundary
we must have Z; + %02wa = rZ. This follows from the pricing equation (27) when a = 0 and when P, = 0.
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the economy, for any times s and 7
Z(ws,T) = Z(ws, 8,8+ 7) (31)

holds. Here 7 is the time left until maturity. Given (31), we can define the yield of this zero as

log(Z(ws, 7))

y(ws, 7) = (32)

Hence y(ws, ) gives us the term structure of interest rates in this economy. Notice that the entire

term structure curve depends on w, as long as the prices of zero coupon bonds depend on ws.

4 Base Cases of the Model

This section discusses some limiting cases of the present model. First, the cases of consumption
over only durables and only nondurables are treated. Second, closed form lower and upper bounds

for the value function of the general problem are provided.

4.1 Separating Durable and Nondurable Consumption

In order to build some intuition about the paper’s results consider the two limiting cases (durable-
only or nondurable-only consumption) of the present model. In the case of only nondurable con-
sumption (B = 0), the present model reduces to the Cox, Ingersoll, and Ross (1985a) equilibrium
model, where there is only a single constant returns to scale production technology. The latter
assumption of constant coefficients implies that the short rate in the model is constant. Therefore
the term-structure of interest rates is constant as well.

In the current model, when B = 0 agents do not care about service flow from the durable good.

In this case, the value function and optimal consumption policy are given by

_ —pt1—A KtA
J(Kt, t) = € CO 7, (33)
oK) = Cy'Ky (34)
Co = 4-1 (35)

Ap—p+ 3(A—1)A0?

This is a well know result (see, for example, Merton (1990)). The implied risk aversion from the
value function is simply equal to the coefficient of relative risk aversion from the utility function,

and both are given by v =1 — A. The interest rate, from (25), is given by
r(t)=r=p—(1— Ao (36)

In this case, the interest rate is constant. As a comparative static, it decreases with risk-aversion
and with the variability of the production process. As people are either more risk averse or as
there is more risk in the economy, the alternative to investing in the risky production process

must become less desirable in order for the bond market to clear. Similarly as the return on the
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production technology increases, the short rate also must increase to prevent people from borrowing
to invest into production. Implied yields from bond prices are always equal to r.
The case of preferences for only durable service flow has been studied by Hindy and Huang

(1993). Their model is equivalent to the one in this paper when A = 0. While this is a substantially

more complicated problem than the B = 0 case, they were able to obtain a closed form solution.’
The following theorem states the relevant results
Theorem 3 In the present model, with A = 0, the value function is given by
2B
J(Ky,2,t) = eﬂ?ﬁ(%9k+m) (37)
blB(Q*)lfk
by =
’ k(1+ Q%) — BO (38)
1
by = 39
1 T (39)
—O+p— 0%+ \/2(03 +p)o? + (0 + p — 202)2
k = 5 (40)
o
1—k
Qf = 41
Tk (41)

where w(t) = Ky/z. The no-investment region is given by [0, Q*].

The proof is available from the author upon request, or see Hindy and Huang (1993). Notice

that the implied risk aversion in this case is again constant and is given by

=1-k (42)

This is not equivalent to the relative risk aversion of the utility function itself (this would be 1— B).

The quantity
0+ p— 30 (43)

is the drift rate of w(t) = log(K¢/z).
The short rate is given by (25) and is constant

r(t) =r=p—(1—k)o? (44)

The introduction of consumption over service flow does substantially change the results of the
nondurable consumption case. In particular, the implied risk aversion is no longer equal to the risk
aversion of the utility function, and instead depends on the parameters of the model. However, the
implied risk aversion remains a constant. Hence the short rate is constant, and all implied yields

will equal the short rate.

Interestingly, Jonathan Ingersoll has independently solved this same problem. However, he has never published
the derivation.
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Using an argument similar to the one used to derive (21) and using the form of the value

function given in (37), we see that the durable price in this case is given by
Q(k — 14+ Q*Q7F)

Q*k
Here Q* = (kK —1)/(B — k), and we see that when w(t) = Q* the durable price is equal to 1. Also
in order to guarantee 2* > 0, the parameters of the problem must be chosen such that B < k < 1

(this assumes that B < 1 is an exogenously imposed constraint). Given this relationship it is easy
to check that dS/dS2 > 0. Hence the durable price is increasing in w(t) and it approaches its upper

limit of 1 as the economy approaches the investment point 2*.

4.2 Bounds for the Value Function

Though it is difficult to solve for the value function in closed form in the general case of the model,
it is possible to solve for closed form bounds on the value function. An upper bound can be
obtained by counsidering the case where durable investment is perfectly reversible. The details of
the derivation are not presented here (they are available from the author, and a similar derivation
can be found in Damgaard, Fuglbjerg, Munk 2000). The value function turns out to be of the

following form

(K + z)A+B

— Ce Pt
J(K + z,t) = Ce 5

for some constant C.'° No distinction is made between the durable and nondurable stocks because
of the perfect reversibility assumption. The nondurable consumption rate and the durable holdings
are given by constants times the current wealth (i.e. K + z). Hence z responds instantaneously
to changes in K. The implied risk aversion of investors is equal to 1 — A — B and is a constant.
Hence interest rates are also constant. A drawback of this upper bound is that as K — 0, the value
function simply becomes J(z,t), and we learn little about the asymptotic behavior of the value
function of the constrained problem.

Another upper bound, as well as a lower bound, can also be determined in closed form. These
bounds turn out to be extremely useful as they characterize the behavior of the actual value function

as nondurable capital goes to zero. The following theorem states the relevant results.
Theorem 4 A lower bound Jy, for the value function of problem (6) is given by
] ZA+B

T 208) = €77 4 Gl (46)

where w = log(K/z) and Cipy = (A —1)/(Ap — p — B0+ 3(A — 1)Ac?). An upper bound is given

10More specifically, if we write the optimal durable holdings as (K + z), and let

fG.0= 2AC+B ((A;i)c)ﬁ —20 ((%)ﬁ —M+C(0+u)) —2Ai”B —(1-A-B)C(1-()%".

Then C and ( solve the following two nonlinear algebraic equations: f(C,¢) =0 and f¢(C,{) = 0.
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A+B

Jh’igh(Kuzat) = e—pt ‘

A+BC,Z]‘,?(1 + e@)Berd (47)

where Chigh = (A —1)/(Ap + Bp — p). Furthermore, we have

wli}r_noo J(K, z,t) = O(e¥ D).
Comparing (46,47) to equation (8), and using the limiting result of the theorem, provides a rigorous
justification for the boundary conditions for g(-) in (14).

It is instructive to go through the part of the proof dealing with the lower bound (the derivation
of the upper bound is given in the Appendix). Consider the optimal nondurable consumption policy
of an investor with preferences given by (6), but who is constrained to never invest into or disinvest
from the durable good (i.e. d® = 0). We can rewrite this investor’s instantaneous utility function
as follows

A B A A
e_”tu(c,z(t)) = e_ptCAz_ﬁt)B = A+BZ(O)B6_(p+0B)tCZ’

where we have used the fact that with no investment z(t) = exp(—6t)z(0). Upto a constant this is
exactly the same utility function and problem as in the B = 0 case discussed previously, with the
time discount factor replaced by p = p + 6B. Using the results of (33) and (35), the form of Jj,,
follows immediately. Jj,, is a lower bound because the strategy of never investing into the durable
is available to the uncounstrained agent as well. Hence the optimal policy must be no worse than
the d® = 0 one.

We see, therefore, that in the case of nonseparable preferences over durables and nondurables,
but with no ability to change the durable stock, the investor’s problem becomes exactly the same
as in the case of no durable consumption at all, with the time discount factor modified to take into
account the rate of depreciation of the existing durable stock. This observation gives us an intuition
for a stronger limiting result than the one given in the Theorem: as the capital stock goes to 0,
whether or not the agent is able to invest into the durable does not matter (hence only nondurable
consumption matters) which renders the lower bound exactly equal to the value function of the
general problem. While this is true for the numerical solution of the model and in the case of the
perturbation analysis when B is small (see Lemma 2), without having a tighter upper bound than
the one in (47) it is difficult to prove this conjecture in general. Hence we settle for the weaker
result given in the Theorem.

As will be shown in the next section, the introduction of the realistic assumption that economic
agents care about both durable and nondurable consumption (i.e. A # 0 and B # 0) causes the
implied risk aversion to change in response to changes in capital stocks, which in turn causes interest
rate fluctuations. It should be stressed that in the present framework in order for risk aversion and
interest rates to be functions of the state of the economy, consumers must have preferences over
both durables and nondurables, and durable investment must be irreversible. Without either of

these two assumptions interest rates and risk aversion would be constant.
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5 Analysis of the General Case

This section discusses the durable goods investment process, and the joint behavior of interest
rates and consumption in the general case of the model. Unfortunately, the general case of the
economy in this paper can not be solved explicitly. However, an approximate closed form solution
is available by expanding around the base economy with B = 0 (i.e. only nondurable consumption
matters). The case of B being small seems to be justified from the empirical papers of Dunn and
Singleton (1986) and Ogaki and Reinhart (1998). Section 8.1 of the Appendix contains a discussion

of reasonable choices for the parameter values.

5.1 Durable Investment

Recall that the no-investment region in the economy is given by (—oo,w*]. The state variable,
w = log(K/z) measures how much capital stock exists relative to the durable stock in the economy.
When this ratio is sufficiently high, or w = w*, new investment takes place. Since investment into
the durable good is irreversible, agents do not transfer the nondurable stock into the durable stock
until the nondurable stock is sufficiently plentiful. The appropriate measure of “plentifulness” in
this context is the ratio of the two durable stocks.

At the point of new investment, d® units of nondurable capital are instantaneously transferred
into the durable stock. The size of the transfer is just large enough to maintain w in the no-
investment region (—oo,w*]. The cumulative transfer from the nondurable to the durable stock

o(t) :/0 4 (1),

Figure 2 shows the behavior of w and ® for a single realization of uncertainty in the economy.
As can be seen from the Figure, ®(¢) (the increasing line in the graph) increases only at those
times when w hits the upper bound w*. Note that in between investment times, the durable good

stock depreciates at a rate of 6.

5.2 Nondurable Consumption

Durable goods affect interest rates in the model through the effect which durable investment has

on the consumption of nondurables. From (11), we see that the consumption rate is given by

1
/ A-1

Noticing that e = K, /2 we can express consumption as a fraction of the nondurable

9. (g’(w)eAw) = us)

Therefore the nondurable consumption to nondurable capital ratio is a function only of w(t).
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Figure 2: The figure shows w(t) and ®(t) for a single realization of uncertainty in the economy.

For small values of B the consumption to nondurable ratio is given by the following lemma.

Lemma 2 The consumption to nondurable ratio is given by the following lemma.

9 Ak —1)(@(®)-w") |

1Al T Ao maci A - T OB (49)

where w* s the boundary of the no-investment region and is a constant, and where

—0+ 428 + (1 + A)0? + \[2(40 + p)o? + (<0 + 45 + L(1 + A)0?)?

ki = P (50)
Under the following parameter restrictions
P> Pmin = Ap+ %(A - 1)A02a (51)
0+u—to* > 0, 62)
0+ pu— Lo’
A —TQ. (53)

for A > 0 we have that ky > 1, and for A <0 we have k1 < 1. In particular, A(k; —1) > 0. Also
if A < 0 there exists a non-empty region [pmin, —A6] such that if p € [pmin, —A0], we will have
0 <k <1, and for p > —A0, we will have k1 < 0.
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Notice that the term

0+ L — 31+ A)o”
is the drift rate of w(t) = log(K;/2:) in the case where B = 0. We therefore see the connection
between ki and the k£ which obtained in Theorem 3.

Before interpreting the results of the Lemma, a note is in order on conditions (51),(52), and (53).
Condition (51) is necessary to insure that Cy > 0, or that consumption as a fraction of nondurable
capital is positive in the base case of the model when B = 0. Condition (52) is a mild condition
which insures that the economy tends on average to the durable investment point (6 + u — %02 is
the drift of log(K/z) when durable and nondurable consumption are both zero). Finally, condition
(53) says that the representative agent should not be overly risk averse, and is necessary for the
approximate solution to be valid.

From equation (49) we see that as B — 0, the consumption to capital ratio approaches its
constant value in the base case of no durable consumption (see equation (34)). The second term
in (49) adjusts for the fact that durables and nondurables may be substitutes or complements in

the present framework. It is straightforward to check that

sgn (%) = sgn(A) = sgn(B).

Hence if B > 0, the two goods are complements, and if B < 0 the two goods are substitutes. In the
case where they are complements, the ratio of consumption to nondurables increases relative to the
base case. Since the durable stock depreciates over time (hence the presence of the 6 term), the
marginal utility over nondurable consumption will be lower in the future, and agents will consume
a larger fraction of the nondurable stock today. In the case of substitutability, an incentive exists
to defer nondurable consumption to the future when the durable stock will be lower, and when the
marginal utility of nondurable consumption will be higher.

The dependence of the third term in (49) on w(t) indicates that the consumption over non-
durables ratio depends on the state of the economy. Note that in the base case of no durable
consumption, the ratio ¢/K is constant. From the Lemma, we see that A (k; — 1) is always pos-
itive. This allows us to make some statements about the behavior of the third term. When the
economy is far away from the investment point (i.e. when w(t) is small), the third term goes to
zero, and ¢/K becomes approximately constant. In fact, when w = —o0, ¢/K is exactly equal
to the optimal consumption in the case of the lower bound of Theorem 4 (i.e. when no durable
investment is allowed). For small B, this confirms the conjecture made in the discussion following
Theorem 4.

Considering the signs of the following terms

Co > 0,
1—4 > 0,
A(kl - 1) > 0,
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the sign of the third term in (49) is given by the sign of k3 x B. If B > 0, then k; > 1 and
proximity to the investment point decreases ¢/ K. More generally, that is for B < 0, the sign of the
effect depends on whether k; is positive or negative. If k; is negative, then ¢/K is decreasing as
w™* approaches, and if k; is positive, then ¢/K increases. This effect is at the heart of the results in
the paper. As is shown in the Lemma, the sign of k; is negative if A6 + p > 0. Recalling from (5)
that A = 6(1 — ), this condition can be rewritten as

1 06

> .
y 06 + p

(54)

1/~ is the intertemporal elasticity of substitution (IES), or a measure of the willingness of consumers
to postpone consumption over time. Equation (54) states that if the IES is sufficiently high, then
agents will decrease ¢/K as they approach the durables investment point. If the IES is low, then
¢/ K will increase when durable investment is imminent. This IES condition may hold or not hold
for reasonable values of the model parameters (see Appendix section 8.1 for a discussion).

The intution for this result is rather straightforward. When investment into the durable good
becomes imminent, agents who are sufficiently willing to substitute consumption over time (i.e.
with a high TES) will forego present nondurable consumption in order to invest into the durable
good sooner (which is accomplished by lowering ¢/ K, thereby increasing the growth rate of w(t))
— people close to buying a house may choose to defer going out to dinner in order to save money
for the house. However, if an agent’s IES is low, then lowering present nondurable consumption
to accelerate the purchase of the durable good is not optimal. Instead, the higher relative amount
of the nondurable capital causes agents with low IES’s to consume at a higher rate out of the
nondurable stock.

Note that the above effect has to do with the willingness to postpone consumption, rather than
with agents’ aversion to uncertainty. This is most easily seen by noting that in the limit as 0 — 0
(i.e. as the production technology becomes riskless), the sign of k; is still determined by condition
(54). Also, though the discussion has so far focused on the approximate closed form solution, the
same results hold in the numerical solution of the model. The one difference is that the threshold
point at which ¢/K goes from increasing to decreasing is close to, but not exactly equal to, the
value in (54).

5.3 Risk Aversion

This significance of the discussion in the previous section lies in the effect that changes in ¢/ K have
on the implied risk aversion of agents in the economy. Interest rates in the model are set so as to
clear the lending market in the nondurable good, and as such depend on the willingness of agents
to bear risk in the production technology. Hence the appropriate measure of implied risk aversion

in the economy is given by

KJkk
Jr

Yw(t) = -
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This is a measure of the sensitivity of an agent’s value function to fluctuations in K. In the base
case of the model with only nondurable consumption (i.e. when u = ¢!=7/(1 — 7)), we have the
well known result that the implied risk aversion is a constant given by y(w(t)) = 7.

Locally, changes in the capital stock effect the agent only through their effect on nondurable
consumption. Hence changes in ¢/ K ought to impact the sensitivity of agents to production shocks
in the nondurable stock. When ¢/K is decreasing in w(t), it is also decreasing in K (since om(t) =
log(K(t)/=(t))). Hence a 1% positive shock to the productive nondurable capital will increase
nondurable consumption by less that 1% (since ¢/ K will fall). Likewise, a 1% fall in the nondurable
stock will result in a smaller than 1% fall in nondurable consumption (since ¢/K will rise). Hence
when ¢/K decreases as the investment point of the economy approaches, nondurable consumption
is less sensitive to shocks in the productive capital, and agents become less risk averse (that is
v(w(t)) is decreasing in w(t)).

An analogous argument shows that y(w(t)) should be increasing if ¢/ K increases as the durable
investment point approaches. The reason is that a 1% shock to the nondurable capital stock will
result in more than a 1% changes in nondurable consumption.

To make these statements concrete define the capital stock elasticity of nondurable consumption
as follows

Welt) = g

(55)

From the form of nondurable consumption in (11) and from the form of the value function in (8),
it is easy to show that the implied risk aversion of agents in the economy is (upto a constant) equal

to the elasticity of nondurable consumptiona with respect to the nondurable capital stock, or

Yw(®) =1-g"(w(t)/g' (w(t)) = (1 — A) x n(w(t)). (56)

When 7 = 1, which happens when w(t) is low, the implied risk aversion is equal to its value in the
only nondurable economy. As w(t) increases, implied risk aversion either falls (if the IES is high) or
rises (if the IES is low). Whether y(w(t)) rises or falls with w(¢) provides one of the major testable
implications of the model. This is discussed in greater length in the empirical part of the paper.

For small values of B, the following lemma confirms the conclusions of the above discussion.
Recall that A(k; — 1) > 0.
Lemma 3 The implied relative risk aversion s given by

kleA(kl—l)(w(t)—w*)
1+ Ak — 1)

Yw(t) =1 -4) - B +0(B?%) (57)

where ki is given in (50), and w* is the constant boundary of the no-investment region.

The proof is given in the Appendix. Condition (54) determines whether the implied risk aversion

is decreasing or increasing with w(t).
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5.4 The Term Structure

Equation (25) gives the instantaneous risk-free interest rate in the model

r(t) = p—y(w(t))o®.

Note that y and o, the drift and volatility of the production technology, are constant by assumption.
Hence the short rate is highest when the implied risk aversion y(w(t)) is lowest, and is lowest when
Y(w(t)) is highest. The only difference between this result and the analogous result in the base case
of the model (either with B = 0 or A = 0) is that the implied risk aversion is a function of the
state of the economy.

From the preceeding discussion, we see that the size of the IES (from equation (54) is the
determining factor of whether the short rate is highest or lowest at the point when new durable
investment takes place. When the IES is high, the short rate is highest at the point of new
investment. When the IES is low, the short rate is lowest at the point of new durable investment.
Figure 3 shows an example of both cases.

The term structure reflects expectations about future short rates. Hence the shape of the term
structure depends on the behavior of the short rate around the point of new durables investment.
When the short rate is high (for high IES), the term spread should be downward sloping at the
point of new investment, as future short rates have to be lower than the present one (from equation
(25)). When the short rate is lowest at the point of new durable investment (for low IES), the term
spread should be upward sloping. Figure 4 shows an example of both cases.

In the present model, the drift and volatility of the production technology are assumed to be
constant. Clearly this ignores one important source of variation in actual interest rates. However, to
the extent that changes to the production opportunity set are persistent, they ought to affect short
and long rates by the same amount. Hence focusing on the slope of the term spread, rather than
on the absolute level of individual rates, helps to cancel out the effects of changes in the production
set, and thus provides a cleaner test of the implications of durable investment and changing risk
aversion for interest rates.

Another interesting affect on the term structure comes from the rate of depreciation 6 of the
durable good. When 6 is low, the term structure is relatively flat. This is because with a low
depreciation rate, the growth rate of w(t) = log(K/z) is small. Hence the current short rate is
relatively persistent. However, for a large value of 8, the durable stock depreciates quickly, causing
the growth rate of w(t) to be large. Hence the term structure is steeply sloped, reflecting the
relatively rapid anticipated movement of the economy towards the investment point. Figure 4

shows the term structure for a high value of 6.

5.5 Discussion of Results

It is obvious from the figures presented so far that this model does a poor job of matching some
salient moments of the actual data. For example, the variation in interest rates generated by the

model is far too small to be empirically plausible. Also the level of rates is too high. Consider U.S.
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Figure 3: The figures show 7(w(t)) and the implied risk aversion coefficient y(w(t)). The parameter
values are p = 0.0970, 0 = 0.1428, 6 = 0.1, A = —0.54, B = —0.06. The left figures have p = 0.05,
and the right figures have p = 0.07.
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Figure 4: The figures shows the term structure as a function of w(¢). The parameters for the top
two figures are given by p = 0.0970, o = 0.1428, § = 0.1, A = —0.54, B = —0.06. The top figure
p = 0.05, the middle figure has p = 0.07. The bottom figure has p = 0.0970, o = 0.1428, 6§ = 0.3,
A= -0.01, B=-0.0011, p = 0.07.
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nominal interest rate data. From 1947-1999, the monthly term spread in U.S. data has averaged
1.04% with a standard deviation of 1.15%. Over this time period, the annual real short rate (30
day yield) in the U.S. has averaged 1.09% with a standard deviation of 2.68%.

These features of the model fall under the general category of the equity premium puzzle. Mehra
and Prescott (1985) pointed out that models with time separable, CRRA utilities are unable to
match the equity premium and consumption process observed in the U.S. in the 20th century. This
observation has effected a fairly large literature which has taken aim at this puzzle. Prominent
papers include Constantinides (1990), Abel(1990), Epstein and Zin (1989,1991), and Campbell
and Cochrane (2000). Campbell (1999,2000) and Sundaresan (2000) contain summaries of the
literature.

Most relevent to the issue at hand is the work of Epstein and Zin (1989,1991) which shows
that the degree of risk aversion can be separated from the intertemporal elasticity of substitution.
In the present model, when the IES is increased (by increasing A + B) the spread in short rates
becomes much higher. This is intuitive since the change in the nondurable consumption to capital
ratio is higher when individuals have higher IES. However, increasing the IES in the present model
also means that the instantaneous risk aversion of agents decreases, and hence the level of interest
rates rises (from its already overly ambitious level). Hence a separation of IES from risk aversion
would maintain a more reasonable level of interest rates, while at the same time achieving a larger
spread between short rates in different states of the world.

Notice, on the other hand, that the spread of the term structure in the present model can be
made quite reasonable given the variation in short rates. Then the depreciation rate of the durable
is fairly high, the term structure in the present model is rather steep (as can be seen Figure 4).
Of course, the low and high points of the term structure must lie between the extreme short rates
possible in the model. Since these are quite low, the level of term spread in the model is also low.
However, the relative size of the term spread (relative to max(r) — min(r)) can be quite substantial.

Additionally two important sources of variation in actual nominal interest rates have been
ignored, namely inflation and changes in the production opportunity set. Since durable investment
is related to expectations of future investment opportunities in the production technology (e.g.
durable investment is more likely to happen when Jg, and hence production prospects, are low)
we may expect that a model which took this into account would produce effects similar to those
discussed in this paper, but of a larger magnitude — that is, variation in short rates would be higher.

These observations suggest that the present model should not be thought of as providing an
appropriate econometric specification for interest rate and consumption data. Rather the model
points out a potentially important effect which durable investment has on risk aversion, and there-
fore on interest rates. Despite the model’s inability to match certain moments of the data, the
effect which it suggests is likely to be quite robust. Hence the model may point out an important
economic interaction, while being unable to succesfully account for all relevant moments of the

actual data.
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Table 1: Summary of correlation signs.

\ | IES High | IES Low |

Corr(D,ND) - +
Corr(D, S) — +
Corr(ND, S) + +

6 Empirical Results

The focus of the empirical tests is on the implications of condition (54). Assuming that this
condition holds, we will have that nondurable consumption as a fraction of nondurable capital
should decrease as durable investment becomes imminent. The restrictions which this places on

consumption and interest rates are

e Durable investment and the nondurable consumption to nondurable capital ratio ought to be

negatively correlated.
e Durable investment should be negatively related to the term spread.

e The ratio of nondurable consumption to nondurable capital should be positively related to

the term spread.

On the other hand, if the IES condition in (54) does not hold, the restrictions implied by the model

are

e Durable investment and the nondurable consumption to nondurable capital ratio ought to be

positively correlated.
e Durable investment should be positively related to the term spread.

e The ratio of nondurable consumption to nondurable capital should be positively related to

the term spread.

Note that while the two durable correlations change signs in the two cases, the correlation of
nondurable consumption with the term spread is always positive. Table 1 summarizes these impli-
cations.

As has already been mentioned, the reason that the term spread, rather than the level of the
short rate, is the quantity of interest is because interest rate levels are affected by changes in the
production opportunity set. However, to the degree that such changes are persistent, this effect
will get cancelled out when looking at differences in rates.

Before tests of these implications are carried out, several remaining empirical issues need to be
addressed. The first of these is how the consumption to capital stock ratios can be measured. The
problem with these ratios is that consumption is measured as a flow (e.g. the consumption in a

given quarter), whereas the durable stock is measured at a particulat point in time. In turns out
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that it is easier to use a flow measure which is itself related to the capital stock. In the model, the

instantaneous output (or GNP) of the economy is given by'!
dY = K(pdt + odB).

The ratio of instantaneous nondurable consumption to output is therefore

cdt c/K dt
ND/GNP = —= ————.
/ dY  pdt+ odB

The ratio of instantaneous durable investment to output is

D/GNP = a® _ Constant x dl
dY pdt + odB
This follows from equation (82) in the Appendix.'? Note also that dl is nonzero only at those times
when invsetment into the durable good takes place. Hence the ratio of nondurable consumption to
GNP provides a (noisy) measure of ¢/K, and the ratio of durable investment to GNP provides a
measure of the proximity of the economy to the investment point, and furthermore this last measure
does not depend on the current level of the stock of productive capital. Since data on nondurable
and durable consumption, and on GNP, are of the flow variety, these ratios are observable (albeit
not instantaneously, but at a quarterly frequency).

A critical aspect of the empirical analysis is knowledge of the direction of the IES condition
in (54). This, of course, is not directly observable. However, the correlation of ND/GNP and
D/GNP provides a noisy signal of the direction of the IES condition. If the IES is sufficiently
large, then Corr(D, ND) should be negative; otherwise the correlation should be positive. In fact,
a test of the implications of Table 1 is to check whether sgn(Corr(D, ND)) = sgn(Corr(D, S)), and
whether sgn(Corr(N D, S)) = 1. Figure 1 is supportive of the first implications, as are more formal
tests (presented below).

A caveat is in order about the interpretation of the statistical tests. The fact that Corr(D, ND)
may switch signs implies that certain parameter values, which the model assumed to be constant,
are in fact changing over time. As long as the time variation in these parameters is sufficiently slow,
then the results of the model may not be materially impacted over the medium term. However
during actual transition times from one sign regime to another, the model has little to say about
the data because the time variation in the parameters may be extremely important even over the
short term. This suggests that a better test of the implications of the model would use cross
sectional international data. Since different countries may be in different parameter regimes, the
implications of the model could be tested without assuming that parameter values are changing
over time. Unfortunately, international data are hard to obtain, hence the tests in this model use

time series data from the U.S.

1 This follows from the usual accounting identity that output is equal to investment plus consumption, which in
the model translates to dY = dK + cdt + d® = K (udt + 0dB).

12The process I(t) is the maximum distance through time ¢ by which the ratio log(K/z) would have exceeded the
investment point w” if no durable investment had been allowed. Details are given in the Appendix.
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6.1 Data Description

Quarterly data on U.S. durables, nondurables, and output are readily available. I use the standard
NIPA (National Income and Product Accounts) data set available from the U.S. Department of
Commerce. Durable consumption should include all investment which will (1) result in future
service flow for investors, and (2) will not result in future revenue streams (as could be obtained
from renting out a room in one’s house). I therefore define durable investment as the sum of
personal consumption expenditures on durable goods and gross private domestic investment into
residential real estate. Nondurable consumption consists of consumer expenditures on nondurables
and services. All time series are converted into real terms using the NIPA chain-type quantity
indexes, with 1996 as the base line year. Seskin and Parker (1998) provide details of how these
indexes are constructed and used.

The ratio D/GN P(t) is real durable investment in quarter ¢ as defined above over that quarter’s
real GNP. The series ND/GN P(t) is similarly defined.

Monthly data on government interest rates are obtained from Ibbotson Associates. Long term
bond returns and yields are from the U.S. Intermediate Term government bond series, and the short
term returns and yields are from the U.S. 30 day treasury series. The term spread SPREAD(t) in
a given month is the difference between the long and the short yield.

The data used in the analysis are at a quarterly frequency. Such data are available in the
NIPA data set starting from 1947. The interest rate data in a given quarter is the average over
the quarter’s 3 months. Furthermore, all analysis is performed with detrended values of the three
variables D/GNP, ND/GNP, and SPREAD. The detrending is intended to reduce spurious
correlations which may be due to long term trends in these variables.

Correlations between the three variables D/GNP, ND/GNP, and SPREAD are computed
in rolling windows. The results in the paper are inseunsitive to window sizes of 12-20 quarters.
The time series of Corr(ND,S) and Corr(D,S) is computed within each window between con-
temporaneous values of the variables. On the other hand, Corr(ND, D) is computed within each
window between D/GNP and a value of ND/GN P which is lagged by one quarter. The reason
for this timing convention is that actual durables investment is associated with certain fixed costs
(not modelled) which induces even more lumpiness in durables purchases than is allowed for in the
model. Hence durables purchases may discontinuously decrease the nondurable stock and hence
affect the contemporaneous ratio of ¢/K (which cannot happen in the model since investment is a
continuous process). However, since ND/GN P is persistent in reality and in the model, a measure
of Corr(ND, D) which is insensitive to fixed costs can be construcuted by using lagged values of
ND.

Before proceeding with the analysis, a note on the distinction between nominal and real interest
rates is in order. The majority of empirical literature (Harvey (1988) is an exception) on interest
rates and the business cycle examines the relationship between nominal interest rates (e.g. the
nominal term spread) and real economic activity (e.g. real GNP). The general finding is that there
is a relationship between real output and both contemporaneous and lagged measures of nominal

interest rates. Since nominal rates contain real rates as well as expectations about future inflation,
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the observed relationship may be attributable to either source. There has been some work (e.g.
Plosser and Rouwenhorst (1994)) which suggests that the empirical findings are attributable to the
information which nominal rates contain about real interest rates, and not about future inflation.
To the extent that the correlations which exist between consumption measures and nominal interest
rates are attributable to correlations between consumption and real rates, the effects in this paper

are applicable.

6.2 Data Analysis

Figure 5 shows a time series of the quarterly values of D/GNP, ND/GNP, and SPREAD from
1947-1999. Keep in mind that the two consumption ratios are in real terms, and the term spread
is in nominal terms. The durables to GNP ratio is seen to be strongly procyclical, indicating
that durables investment as a share of GNP is high in economic peaks, which is what may have
been expected from the analysis in this paper: since durables investment is irreversible, it occurs
after periods of high economic growth. The nondurables share of GNP, on the other hand, is
countercyclical. This is a result of consumption smoothing by investors, and is consistent with a
countercyclical (on average) ratio of ¢/K. Finally, the term spread is seen to be countercyclical on
average, which is consistent with past empirical work (e.g. an almost identical graph appears in
Fama and French (1989)).

Hence in the postwar U.S. economy, on average, the durables to GNP is procyclical, and non-
durables to GNP and the term spread are countercyclical. The two latter implications are consistent
with the the model as long as the IES condition in (54) holds (i.e. IES is sufficiently high). However,
the test of the mechanism proposed in this paper is to see whether the signs of the correlations
between these three variables follow the two regimes outlined in Table 1.

Figure 1 provides a preliminary answer to this question. As can be seen, the signs of Corr(D, S)
and of Corr(N D, D) do have a similar time series pattern. Hence to the degree that Corr(N D, D)
proxies for the direction of the IES condition in (54), the signs of durable investment and the term
spread do seem to behave in accordance with Table 1.

To perform more rigorous tests of the implications of Table 1, consider the following regression
SPREAD(t) = fo+ f1ND/GNP(t) + €(t).

As can be seen from Table 2, 51 is positive and significant. This is consistent with the implication
of the model that the nondurable consumption to capital ratio should be unconditionally positively

correlated with the term spread. On the other hand, consider the following regression
SPREAD(t) = o + /1 D/GNP(t) + €(t).

The explanatory power of the regression is far lower, and the coefficient is not significant. This is
again consistent with the implication of the model that the correlation of durables investment with
the term spread depends on the sign of the IES condition in (54).

To allow for the possibility that the sign of Corr(D,S) may indeed be a time varying function
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Figure 5: The figures show the durable consumption to GNP ratio, the nondurable consumption to

GNP ratio, and the term spread. The consumption and GNP data are in real terms. The dashed

vertical lines are NBER business cycle peaks, and the solid vertical lines are the troughs.
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of the model parameters, consider the following regression
SPREAD(t) = po + p1D/GNP(t) + p2D/GNP(t) - 1{Corr(ND, D) > 0] + €(t).

Hence the sign of the effect which durables investment has on the term spread is allowed to depend
on whether the IES condition holds (/1) or whether it does not hold (81 + 32). As can be seen from
Table 2, the ability to condition on the current economic regime, vastly improves the explanatory
power of the regression. Furthermore, both 8, and ; become significant. The fact that £; is
significantly negative suggests that durable investment is associated with a negative term spread
when the IES is sufficiently high. And the fact that £, + o is significantly positive suggests that
the opposite correlation applies when the IES is sufficiently low. This directly confirms the model’s
implications.

As a robustness check, we perform the same conditioning for the ND/GN P regression, that is
SPREAD(t) = o+ /1 ND/GNP(t) + foND/GNP(t) - 1[Corr(ND, D) > 0] + €(t).

As can be seen from Table 2, the explanatory power of the regression and the estimate of f; do
not change, whereas [ is insignificantly different from zero. This result supports the idea that the
correlation of the term spread with nondurable consumption has the same sign regardless of the

TES regime.

7 Conclusion

This paper has argued that consumption of durable and nondurable goods is an important deter-
minant of interest rates in the economy. By solving a general equilibrium production economy,
the paper was able to identify an important economic interaction between durable investment, risk
aversion, and interest rates. The main channel for this effect is the irreversibility of durable in-
vestment, which causes agents to adjust their nondurable consumption patterns as investment into
the durable good seems imminent. Depending on the intertemporal elasticity of substitution, this
change in nondurable consumption may increase or decrease the implied risk aversion of investors
by changing their sensitivity to shocks in the production technology.

An empirical investigation using U.S. interest rate and consumption data seems to support the
implication of the model that the correlation of durable investment with the term spread depends
on the magnitude of the intertemporal elasticity of substitution in the economy.

The theoretical and empirical results of this paper suggest that durable consumption is an
important ingredient of any asset pricing model which will ultimately succeed in describing the
joint behavior of asset prices and consumption in the economy. However, the present model suffers
from the “equity premium puzzle,” in that it is unable to produce a level and a degree of variation
in the short rate which are consistent with the data. Two promising avenues of research which may
overcome this problem are (1) a model of nondurable and durable consumption using recursive
preferences so as to separate the effects of risk aversion and intertemporal substitution, and (2) a

model which allows a time varying investment opportunity set. As is usually the case the issue of
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Table 2: Regressions use quarterly data from 1951-1999. All regressions are run using values of
the regressors lagged by one quarter as instruments. The Corr(ND, D) variable is computed in
16 quarter windows, and corresponds to the 16 quarter window ending in and including quarter t.
T-statistics are computed using Newey-West standard errors, and are reported in parentheses.

SPREAD(t) = By + BiND/GNP(t) + €(t)

p1 R?
0.5842 0.3249
(6.4402)

SPREAD(t) = o + BLND/GNP(t) + f2ND/GN P(t) - 1[Corr(N D, D) > 0] + €(t)

p1 B2 R?
0.5583 0.1094 0.3270

(5.4002)  (0.3296)

SPREAD(t) = By + f1D/GNP(t) + €(t)

p1 R?
-0.1526 0.0175
(-1.3743)

SPREAD(t) = fo + fLD/GNP(t) + B D/GNP(t) - 1[Corr(ND, D) > 0] + €(t)

p1 B2 R?
-0.5440 1.0290 0.2016

(-4.1408)  (6.3957)

33



how investor heterogeneity affects the results is an interesting, though difficult, question.
Finally a validation of the empirical results of this model using international data would provide

further evidence in support of the robustness of the economic mechanism proposed in this paper.
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8 Appendix

8.1 Choice of Parameter Values

Dunn and Singleton (1986) estimate a model with a representative consumer with the same prefer-
ence assumptions as those made in this paper. While in their model the assumption about service
flows from durable and nondurable consumption are different than those made in this paper, their
parameter estimates are nevertheless a good starting point.

I use the results given in Table 2 of the Dunn and Singleton paper. Note that the parameter
v in this paper is 1 — ypg, where ypg is the gamma parameter in the Dunn and Singleton paper.
A representative 95 percent confidence interval for v is 2 4+ 2, and for § the confidence interval is
0.9 = 0.2. Dunn and Singleton’s point estimate for the time preference parameter p is negative,
though positive values are within the 95 percent confidence interval. They find that exp(—p/12) =
1.003 £ 0.006. The high end of this confidence interval is p = 0.036. Finally, their interval for
the monthly depreciation coefficient for the durable stock is 0.995 4= 0.04. Roughly this translates
to a range for 6 given by [0,0.55] (negative values are not allowed). The point estimate 0.995 =
exp(—0/12) translates to § = 0.06. Other authors report a much higher value of §. For example,
Ogaki and Reinhart (1998) use a value of 6 of around 0.2 (bottom of page 1084).

Using point estimates, the IES condition in (54) holds

1> ‘) o 05 > 0.06 x 0.9
v 05+ p ' 0.06 x 0.9+ p

as long as p > 0.054. This is outside the confidence interval for p found by Dunn and Singleton.
However since their point estimate for p is negative the validity of their results with regard to p
are not clear. Clearly there are values of the parameters inside the confidence intervals which will
allow the IES condition to hold (for example, choose v = 1.6, § = 0.9, § = 0.1 and p = 0.07).

I calibrate the production technology to match the mean and volatility of the SP500 index
from 1947-1999. Over this time period, the real annual return on SP500 has averaged 0.10392
with a volatility of 0.16811 (data obtained from Ibbotson Associates). Monthly log returns on the
production technology are exp((u — 0.502)/12 + B), with B ~ N(0,0?/12), implying estimates for
p and o of 0.0970 and 0.1428 respectively.

8.2 Lemmas 4 and 5

Lemma 4 establishes sufficient conditions for a given function to dominate the value function of an
agent. Lemma 5 establishes sufficient conditions for an optimal control, and for a given function
to be equal to the value function. These lemmas will be used in the proof of Theorem 1.

Lemma 4 Assume that there exists a function j(K, z,t) which is continuously differentiable in all
its arguments and twice continuously differentiable with respect to the first argument, and which
satisifies the following growth condition

|J(K, 2,t)] < D [1 + (\/KQ + z2)D2] , (58)

for some time dependent constants Dy and Ds. Let us further assume that J satisfies the differential
inequality

max[DJ + J; + e Plu(c, z),J, — Jgk] =0 (59)
where

Df(K,z,t)] = (K —¢)fx + %UQKQfKK —0zf,.
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For a policy {c,®} to be admissible, we require that the following regularity conditions be satisfied

c(t)
E [(t)*"]

Ds(14+ VK? 4 22), (60)

<
< Da, (61)

for a constant D3 and a time dependent constant Dy. Furthermore, {c, ®} must satisfy the following
integrability condition

o
E, [/ e_pt‘u<c(s),z(s)) ‘ds] < o0. (62)
t
Also J satisfies the following boundary condition for all admissible policies
lim E, [j(K(T),z(T),T)] —0. (63)
T—o0
Furthermore, the following regularity condition holds for all T
T . 2
/ (UK(S)JK(S)> ds < oo a.e. (64)
¢

Then we will have that

IA
<

E, [/00 e_”tu(c(s),z(s))ds] < J(K(t),z(t),1) (K(t),2(t),t). (65)
t

Proof. Let J(-) be the candidate value function. Set some arbitrary time 7' > t. From the
generalized Ito’s lemma and the dynamics of K (¢) and z(¢) given in (2-3) we can write

T
| e tatets) tspds + ) =
T . T .
/ ePlu(e(s), 2(s))ds + J(t) + / D.J(s) + Ju(s)]ds
t t
T R T
+ /t (0K (s)Jx (s)1dB; + /t [17(5) — Jrc(5)]dDs. (66)

where the differential operator D[] is given above. Since J satisfies (59) and given that d®(t) > 0
we see that (66) implies

T R R T R
/t e Pu(c(s), z(s))ds + J(T) < J(t) +/t [0K (s)Tx (s)]dBs. (67)

Let us define the stopping time 7, as

Tn = inf{s > ¢: /tT (aK(s)jK(s)>2d5 =n}.

From condition (64), we know that 7, — T a.s. when n — co. Also we know that

/t "o K (5)Jx ()] B
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is a martingale (see Lemma V.5.1 in Fleming and Rishel (1975)). Taking expectations in (67) we
therefore can write

~

E, [ /t " e Pue(s), 2(s))ds + j(Tn)] < J(t).

Using condition (62), we can apply Lebesgue dominated convergence to show that

B | [ ertu(e(s), 2(s))ds| — By Te_ptu(c(s),z(s))ds.
J == |

Using the fact that J has polynomial growth (condition (58)), and the regularity conditions on ¢
and ® in (60,61), we can use an argument very similar to the one in Fleming and Rishel (1975)
Theorem V.5.1 to conclude that

E [j(m)] S E, [j(T)] .
Hence we conclude that

E; [/tT e Plu(c(s), z(s))ds + j(T)] < J(t).

Taking the limit as 7' — oo, and using boundary condition (63) and the consumption condition in
(62), we conclude from Lebesgue dominated convergence that

E, [ /t ” e_ptu(c(s),z(s))ds] < J(t),

which confirms the original claim. Q.E.D.

Lemma 5 Assume that a function J satisfies all of the conditions of Lemma 4. Assume that there
are controls c*(t) and ®*(t) such that the following conditions hold:

D*J(t) + Ji(t) + e Plu(c*(t), 2* (1)) = O, (68)

[0 e = o (69

where D* is the Ito operator under the consumption process c*. Then we will have

In other words J will be equal to the value function. Furthermore, ¢*(t) and ®*(t) will be the optimal
controls.

Proof. The proof proceeds exactly as in the case for Lemma 4. The exception is that in light of
conditions (68-69) we can replace the inequality in (67) with an equality. The remaining arguments

are identical to Lemma 4. From (65) we see that J = J. Q.E.D.
In order to prove Theorem 1 we will verify that the smooth-pasting and super-contact boundary

conditions imply that the conditions in Lemmas 4 and 5 are satisfied. This will show that the control
policy proposed in the paper is indeed optimal.
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8.3 Proof of Theorem 1

The idea of this proof is to show that a function J , given by the solution to an appropriately defined
free boundary problem, satisfies the conditions of Lemma 4. Then Lemmas 4 and 5 can be invoked

to verify that J is equal to the value functions, and that the associated controls are optimal.

Theorem 5 Assume that a function h(w) satisfies

_A_
—(0(A+ B)+ p)h+ (04 p)h' — (A-1) (A}Zw) T sa*(h' = h") =0 (70)
subject to the boundary conditions that
(e +1)h'(w*) — (A+ B)h(w*) = 0 (71)
(A+ B)eY + 1R (w*) — (¥ + DA (w*) = 0 (72)
Jmoe) = {0 weiZonie ®)
where w* s a free boundary which satisfies
e > Be; (—1+ A+ B)ea+ (—1+ A)cs (74)
—2B((—2+2A+ B)ey + ¢ — Acy)es + (1 + A+ B)eg + (-1 + A)c3)2]
where
aa = 0(A+B)+p
o = (A+B)(0—p)+2p
g = =20+ (A+B)2u— (1 —A—B)o?)
where the parameters are assumed to be such that ¢35 < 0. Furthermore, we assume that
sgn [(4 + B)h(w) — (1 + ¢ )W ()] = —sgul4] (75)
when w < w*, and that there exist finite constants ¢y, cs such that
B (w) e™ % € [eq, cs). (76)
Let us define a function g(-) as follows
h(w) if w<wt
9(w) = { (11:;“*)A+Bh(w*) if w>w* (77)
Then the value function for the agent’s problem in (6) is given by
70,200 = e 27 Ly @
A+ B
where
K(t
w(t) = log z((t))
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Furthermore the optimal control will be to maintain the ratio log(K/z) below w* at all times, with
the control ®(t) € X1 being exerted only when log(K/z) = w*.

Proof. The proof will proceed in three steps. First we want to show that when w > w* we will
have that

DJ(t) + Ji(t) + e Pru(c*(t),2*(t)) < 0
J,—Jg = 0
Secondly we want to show than when w < w* we have that
DJ(t) + Ji(t) + e Pru(c*(t),2*(t)) = 0
J,—Jg < 0

Once this has been established we can invoke Lemma 4. Finally (thirdly) we will state the form of
the control policy which will satisfy Lemma 5.

Part 1. Using the boundary conditions (71-72) and the ODE in (70) we can show that when
w = w* the value of h(w*) is given by

4 —1+A
W) = s e (A aer) | (a2 ar ) (79)
When w > w* we want to show that for all z(t)
sup DJ(t) + Jy(t) + e Pru(c*(t), 2(t)) <0 (80)

<(t)

Using the definition of ¢g(-) we see that when w > w* the left hand side of the above equation is
given by (A + B) ! times

A+4+B

A
1 A+ B 71+ (14 e¥ | 1#4 1
T (—9¢1 — 2V We) —92(—14+A) [ 1= - *) 14
(1+ew)2( c1—2e%c +e*e3) —2(—1+ )<A+Aew) <1+ew*> h(w*) =1+

Using the definition of h(w*) above we can rewrite this as

1

B
14+e¥Y )\ —1+4 1 x 2%
m ) ( (—201 —2e¥ c)+e “ 03)

2
(—2c1 — 2e¥cy + €™e3) — (W (1+e)?

It is clear that this is equal to 0 when w = w*. We would like to show that the derivative of the
above expression with respect to w is negative when w > w* and A > 0, and is positive when

w > w* and A < 0. That would confirm (80). Dividing both sides by (11:"76;) ~1* differentiating

with respect to w, and collecting terms we find that we need for the following to hold
_2(—2 + 2A + B)Cl — 2(1 — A)CQ + (—CQ(—2 =+ 2A =+ 2B) + 2(1 — A)Cg)ew + Bcg(ew)Z S 0

Since ¢3 < 0 by assumption, this is a concave function in €* if B > 0, and is a convex function in
e if B < 0. Solving for the roots, we see that the larger root is given by (74). Hence if e satisfies
the condition in (74), this expression will be negative for all ¥ > ¢*” when B > 0, and positive for
all ¢ > ¢¥” when B < 0.
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Given the definition of g(-) it is easy to check that whenever K and z are such that w > w* we
have that

2+ K >A+B h(w*)

J(K’z’t):<1+ew* A+B7

which is the value function if the agent chooses to invest enough nondurable into the durable to
immediately drive K/z down to e¥”. From this it is clear that J, = Jx.

Part 2. When w > w* it is clear that from the definition of A(-) the Bellman type condition
that

DJ(t) + Ji(t) + e Plu(c*(t), 2*(t)) =0

is satisfied. Also condition (75) ensures that J, < Jg whenever w < w*. This follows from the
definition of J(K, z, t).

Note first that condition (76) implies that for a > b we have

X [eq, c5]. (81)

From the form of J(-) in (78), the dynamics of K and z, and conditions (76,81) it is straightforward
to check that the polynomial condition (58), the regularity conditions (60,61), the consumption
condition in (62), the transversality condition in (63) and the integrability condition in (64) all
hold for the candidate policy. Therefore, using Parts 1 and 2 of the Theorem, we see that the
function J as defined in (78) dominates the value function of the problem (by Lemma 4), and the
candidate controls are indeed optimal (by Lemma 5).

Part 3. In order to satisfy Lemma 5 we see that is it sufficient to maintain log(K/z) below w*
at all times, and to make sure that ¢(¢) is chosen in compliance with (70). That is the condition
Uc(c, z) = Jg (K, z,t) must hold. Furthermore, to satisfy (69) the control d® can be non-zero only
when w = w*, at which point it should be just large enough so as to maintain continuity of ®(¢).

Let us define K (¢) and 2(t) as the unregulated nondurable and durable good processes which would
result if d®(t) = 0 for all ¢. Let us define a regulation process {(t) as follows

5 +
I(t) = sslg) [log (I;((SS))) — w*] .

It is easy to verify that [(t) € XT. We will define the regulated process w(t) as follows

K(t) K(1)
1 —= | = —I(t).
= (S) g(é(t) g
Keeping in mind the dynamics of K and z given in (2-3), and applying Ito’s lemma to both sides
of this equation we have

d llog (fé?) — l(t)] = (9 +p—to?— %) dt + odB(t) — di(t),
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(note that ¢/K is a function of w which only needs to be defined inside the no-investment region
[—o0,w*)) and

dlog <%) = (9 +p— g0 — 16((8)) dt + odB(t) — <$ + ﬁ) do(t).

From this we conclude that Zg)(;gf(g) d®(t) = di(t). Since di(t) # 0 only when K (t)/z(t) = ¢ we
get that the optimal durable investment policy is

t
(1) = H% /0 K (s)di(s) (82)
QED.

8.4 Proof of Theorem 2

The interest rate and the differential equation in (27) follows from the standard Cox, Ingersoll, and
Ross arguments. Given the price of a unit of durable in (26) we need to show that the amount of
durable good held by the trader in an economy with irreversible investment is indeed optimal. The
nondurable and durable processes can be written as

th = /,LKdt + O'KdBt - Ctdt - Std@t + StdEt (83)
dZt = —0ztdt + d@t - dEt (84)

where ®; and Z; are elements of X*. In other words, transferring nondurable into durable is
accomplished via the process d®; and transferring durable into nondurable is accomplished via the
process dZ;. Both of these are positive by virtue of the fact that ®; and Z; are elements of X. A
unit of durable can be transferred into S; units of nondurable, and vice versa whenever an agent
chooses to do so.

We will repeat the arguments in Lemma 4. Applying the generalized Ito’s lemma to the value
function, we have

T ~
/t e Pule(s), 2(s))ds + J(T) =
T R T . .
/t e tu(c(s), z(s))ds + J(t) + /t [DJ(s) + Js(s)]ds
T A T A
+/t [OK(S)JK(S)]dBS—I-/t [J2(s) — S(s)JK(s)]|dPs

T ~ ~
+ / = (s) + S(s) I ()]s (85)
t

Arguments similar to the proofs of Lemmas 4 and 5 show that sufficient conditions for optimality
of the controls are that

DJ*(t) + Ji(t) + e Plu(c* (t),2* (1)) = 0

/t L0 - SO IWldan = 0

T
/t [J.(t) — S(t)Jr (t)]dE(t) = 0
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We see that when

J.()
JK (1)

S(t) =

the last two conditions are satisfied for any choice of ®(¢),=(t) € XT. In particular, we can choose
E(t) = 0 and ®(¢t) = ®*(¢) (i.e. the optimal policy in Lemma 5 which applies to the case of
irreversible investment). Q.E.D.

The intuition behind the proof is that when w(t) < w*, the marginal product of a unit of durable
is lower than the marginal product of a unit of the nondurable (i.e. J, < Jg). Hence it would be
desirable to transfer a unit of durable into a unit of the nondurable. However if agents could only
obtain S(t) = J,(t)/Jk(t) < 1 units of nondurable for a unit of durable, they become indifferent
between whether or not they do the transfer. Hence they would be happy to follow their exact
policy in the case of irreversibility.

8.5 Proof of Theorem 3

The proof is available from the author upon request. Also see Hindy and Huang (1993). The
present model with A = 0 corresponds exactly to their model. Hence their solution is directly
applicable.

8.6 Proof of Theorem 4

The derivation of the lower bound was presented in the text. To find the upper bound, we observe
that the value function of the constrained problem in (6) is dominated by the solution of the
analogous determinstic constrained problem (i.e. with o = 0). The proof for this claim is similar
to the arguments used in Lemma 4 and Lemma 5. The main argument is that if a sufficiently nice
solution to the deterministic problem exists, then it will satisfy the following differential inequality:
max[J; + (uK — ¢)Jxg — 0zJ,,J, — Jg] = 0. Using this and the fact that the deterministic value
function is concave in K and in z, and in particular the fact that Jxx is negative, leads to the
desired result. In a similar setting to the one in this paper, Shreve and Soner (1994) provide a
proof that the value function is concave in Proposition 3.1, and that the deterministic value function
dominates the stochastic one in Theorem 12.2.

An upper bound for the deterministic problem is computed as follows. Note that the dynamics
of the capital stocks are given by

dK = pKdt— cdt—do,
dz = —0zdt+do,

where ¢ > 0 and d® > 0. Given the current values of K(t) > 0 and z(t) > 0, we can solve for z(s)
at a time s > ¢ to find

2(s) = 2()e 00 4 (B(s) — B(1)) — 0 / (@) — B(t))e

We therefore conclude that

2(s) < z(t) e~ 0(s—1) + K (t) eh(s—t) - (z(t) + K(t)) eh(s—t)

Hence for any choice of ¢(s) it must be the case that

B A
< (z(t) + K(t)) e HBt % e(p“B)S%.

psc(8)2(s)”
A+ B

And in particular this holds for the ¢*(s) which was optimal in the deterministic constrained
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problem. Hence a bound for the value function is given by
B 0 c* (S)A
(Z(t) + K(t)) e_ﬂBt /t e_(p_#B)smdS.

By choosing among consumption processes feasible in the original problem we can show that

o] A K A
—(p—uB)s C(S) — o~ (p—uB)t 1-A (t)
Scl(lg)/t ¢ A+Bd8 ¢ ¢ A+ B’

where C = (A —1)/(An + Bu — p). Hence an upper bound for the deterministic, and hence the
stochastic, constrained problem is given by

B KA
A+ B’

Tnigh(K, z,1) = e PO A (z n K)
Simple algebraic manipulation leads to the result in (47). Q.E.D.

8.7 Perturbation Analysis
Empirically Plausible Values of A and B

As has been discussed in Section 8.1, an empirically plausible range for § is around 0.9 £ 0.2. A
plausible range for vy is 24+ 2. Hence the assumption that B = (1 —0)(1 —) is small seems justified.

The Perturbation Analysis

We will perturb the economy around B = 0, using the standard only nondurable consumption
economy as the base case. The value function of the representative agent’s problem is described by
equation (12), reproduced here for convenience

A

C(O(A+ B)+)g + (04 m)g — (A—1) ( g )“ 1o —g") =0

Ae¥

subject to the following three boundary conditions

(e +1)g' (") = (A + B)g(w")
(A+B)e” +1)g'(w*) = (¢ +1)g"(w") =
lim g(w) = 0

w——0C

Since the equation is of second order in the independent variable, one of these boundary conditions
determines the no-investment region (—oo,w*]. We will obtain a closed form approximation to the
equation by expanding around the solution for the case of no consumption flow from the durable

(i.e. B =0). Let us define Q = K;/z = ¢“(®). Then we can write

% = BQ, + B*Q, + B3Q3 + O(BY) (86)
gw(®) = go(w(t)) + Bai(w(t)) + Bg2(w(t)) + O(B?) (87)

The no-trade region goes to (—oo,+0o0) as B — 0. We plug the expansion for the boundary of
the no-investment region w* and for g(-) into the differential equation and the boundary conditions
given above. The non-linear term in the above equation is handled by a Taylor series expansion
around B = 0, which linearizes this term for powers of B above 0 (despite this fact, the Oth order
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system has a well know solution (see Merton (1990)). That is

A A 1
gl A-1 gl A-1 Befw gl A-1
<Aew) = (Agw) AT (A—gw (@) +...

We collect terms of the same order in B. The solution to the Oth order system is given by

gow(t)) = Gy 'er®4
A—-1
Ap—p+ 3(A—1)A0?

Co =

We note that all three boundary conditions of the Oth order system are satisfied by this solution.
The 1st order system has a solution given by

g1(w)
Cnn

Ci2

k1

1

011 eAw + 012 eklAw
2—A

Gy * Aw*(1—ky)
A(/ﬂ — 1)(1 — A+ Ak‘l)

—0+ 42 + L1+ A)o? + \/2(A0 +p)o? + (—0+ 4=£ + L(1+ A)0?)?
Ao?

k1 —1
1-A+ Ak

(88)
(89)

(90)

(91)

(92)

The equation for k1 has two solutions. One of them is dropped in order to satisfy the boundary
condition for g(—oo) given in (14).
The 2nd order system is given by

Ca3

Cos

2

0216Aw + 02267Aw+2Ak1w + 023(4)6Ak1w + 0246Ak1w
B (A —2)0*C3~4
(A — 1)(—200,0 + A20002 + A(—2 4+ 2CHp — 0002))
C&fAe—QA(kl—l)w* k% y
—2 + 2900 + 200# - C002 - AC002 + 3AC0]€102
1
(A—1)A2(1 — A+ Ak )2(ky — 1)
2003—A67A(k171)w*
T (A=1)A(ky — 1)(=2 4 20C, + 2Cop — Coo? + 2ACok102)
1
A0 —A+ AR)2k —1) ©
[012(1 + 2A(k‘1 — 1) — A2(l€1 — 1)3)+
(1— A+ Aky) {Cue‘*“““—”“’* — 24Ce A=V (1 4 24(ky — 1)) (k1 — 1)
—Co3(1+ A(kr —1)(2+ (1 + A(ky — 1))w"))}]
064—16A(k;172)w* (kl _ 1)
(1+ Ak — A)?

(2A0226AW* (14 Aky — A)) (k1 — 1) + A" (Cos (1 + Ak — A) — 012k1)>
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Higher order approximations can also be computed, although the algebraic difficulty of doing
so is readily apparent. The approximation presented here was derived with the use of symbolic
computation software.

8.8 Proof of Lemma 1

From S(w(t)) given in (21) and the dynamics of w(t) in (15), we can write the dynamics of S(w(t))
as follows

dS, = ps((®)d + os((0)dB, + s (w(0)d, (99)
ps(0) = 5o {20 O)g (@0)Es w(0)
02l ((1)*(—1 + 24 +2B)g/(w(1)) — (A+ B)g"(w(1)))
HA+ B)glw)((6'(@(1)) — o (1)) +¢" (@) — ¢ (@(0)g® wt))] }
os(w(t) = ﬁ Es(w()
o) = HE oot
where Es(w(t) = (4+ B~ 1)g(@(t))> + (A+ Blo(w(®)(g () ~ o" (w(1)

Using the smooth-pasting and super-contact conditions in (10) and (13), we can show that £g(w*) =
0. Since d®; = 0 whenever w(t) # w* and ¢g(w*) = 0, we see that dS; has no singular component.
Also og(w*) = 0. Q.E.D.

8.9 Proof of Lemma 2

The consumption to nondurables ratio is given in (48). The expansion for the g(-) function is given
in (87). The functions go(:), g1(:), and g2(-) are given in Section 8.7. We plug in the form of g(-)
from (87) into (48) and do a Taylor series expansion around B = 0. The result in (49) follows. For
convenience, k; is given by

—0+ 48+ (1 + A)0? + /240 + p)o? + (<0 + 45 + L(1 + A)o2)?

ki =
1 AO’2

The derivative of k; with respect to p has the same sign as

\/2(A0 +p)o?+ (—0+ 4L + 2(1+ A)o2)2 + (=0 + L=L + L (1 + A)o?) + 02(1 — A)

(1—A)Ao?
k1 14 AR
1-A A (1-A)A

[Case of A > 0]. Conditions (51) and (52) insure that for p equal to its minimum value of ppn
mn (51) we have k; = 1. We can then verify that the derivative of k; with respect to p is positive.
Hence for A > 0, we have that k; > 1.

[Case of A < 0 and A0+ p > 0]. First we observe that ki(p = —A6) = 0 because —0+ 4=£ + 1 (1+

A)o? < 0 when p = — A6 (this is easy to check by using condition (52)). If p > — A6, then it is
easy to see that k; < 0.
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[Case of A <0 and AO + p < 0]. Consider the situation where —A60 > p > pyin. Using conditions
(51), (52), and (53) we can check that k1(p = pmin) = 1. The sign of the derivative is therefore
negative, and hence as p approaches — A6, k1 decreases monotonically towards 0.

Hence we conclude that for A < 0, we have k; < 1. Also we see that for p € [ppin, —A0),

0 < k; < 1. It remains to be shown that the interval [pp,in, —A6)] is nonempty when A < 0. Using
conditions (52) and (53) it is easy to check that p,, < —A460. Q.E.D.

8.10 Proof of Lemma 3

Recall from Theorem 2 that the implied relative risk aversion was given by

Y(ws) = —(JkxK)/ Ik =1 = g"(w(t)) /g (w(?)).
The second equality follows from the fact that J(K,z,t) = e f:gg(log(K/z)). Plugging the

form for g(-) developed in Section 8.7 into the above equation and doing a Taylor expansion around
B =0, we obtain the result in (57). Q.E.D.
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