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A Model of Stochastic Liquidity

Abstract

This paper proposes a dynamic multi-security model in which liquidity reflects stochastic

variation, persistence, and commonality of underlying information variance. Illiquidity, price-

change variance, and trading volume all increase in the size of information. Using high frequency

data, I perform structural estimation of the model by Bayesian Markov-Chain Monte-Carlo

simulation, with the conditional volatility of underlying information modeled as stochastic

volatility or realized volatility controlling for microstructure noise. I find that a Dow stock’s

liquidity decreases in the size of information about not only itself but also about other Dow

stocks, demonstrating a significant cross-sectional effect of information on liquidity.



Introduction

The unobservability of information has been attracting, rather than repelling, researchers’ in-

terest in understanding how it disseminates within and across markets. Information has been

long considered an important driving force behind the variation in measurable quantities in

stock markets, such as return volatility and trading volume.1 Recent research, however, has

extended its attention to the next dimension of variability: that of liquidity. The stochastic

nature of liquidity is now a presumption in many empirical studies, most prominently in the

literature on liquidity risk.2 In such applications, liquidity measures are typically constructed

exogenously without imposing equilibrium restrictions. Some other applications, however, call

for an econometric model that fully incorporates the mechanism through which prices and the

terms of trade are determined in real markets. This paper attempts to fill such a request by

explicitly modeling the dynamic relation between information and liquidity.

More specifically, this paper proposes a dynamic multi-security model in which liquidity

reflects stochastic variation, persistence, and commonality of underlying information variance.

Trading takes place over time in a centralized market a la Kyle (1985). Both informed traders

and noise traders submit orders that are absorbed by a competitive market maker. As in Ad-

mati and Pfleiderer (1988), pieces of information about terminal payoffs are gradually revealed

over time. Unlike these traditional models, however, the current model explicitly permits the

underlying information process to be heteroskedastic. Important special cases include GARCH

and stochastic volatility models, which are assumed to derive empirical implications and to

1This notion appears as early as Clark (1973). For subsequent work, see Tauchen and Pitts (1983), Karpoff
(1987), Lamoureux and Lastrapes (1990), Gallant, Rossi, and Tauchen (1992), Andersen (1996), and references
therein.

2Examination of liquidity-risk pricing includes work by Acharya and Pedersen (2005), Korajczyk and Sadka
(2008), Pastor and Stambaugh (2003), and Watanabe and Watanabe (2008). Liquidity variation is studied in
many other forms, such as unexpected illiquidity (Amihud (2002)), commonality in liquidity (Chordia, Roll,
and Subrahmanyam (2000), Hasbrouck and Seppi (2001), Huberman and Halka (2001)), and transmission of
liquidity shocks across markets (Chordia, Sarkar, and Subrahmanyam (2005)). Also see related work by Chordia,
Subrahmanyam, and Anshuman (2001), Domowitz, Hansch, and Wang (2005), and Goldreich, Hanke, and Nath
(2005).
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estimate the model. With persistence in the size of information, these models parsimoniously

incorporate the feature that news tends to come in waves (Longin (1997, p.845)). This setting

can be viewed as a variant of Longin (1997) to allow multi-security markets and imperfectly

informed traders, or as a variant of Caballe and Krishnan (1994) to allow multiple trading

sessions and possibly heteroskedastic information processes.

Using a multivariate GARCH information process, I first demonstrate that the conditional

price-change variance, trading volume, and illiquidity (measured by Kyle’s lambda) all become

time-varying. The larger the size of the past information shock, the higher are the conditional

price-change variance, expected trading volume, and illiquidity. Trading volume rises since a

large information shock, whether positive or negative, provides an opportunity for informed

traders to make a profit at the expense of noise traders. Prices become volatile due to a rise

in information-based trade. The effect on liquidity is a little ambiguous ex ante because of two

opposing effects. Given the persistence in information variance, the market maker will worsen

the terms of trade due to adverse selection (which I call the volatility effect). At the same time,

higher competition among more informed traders would allow him to improve the liquidity

because each of them will make less profit (the competition effect). A numerical example

shows that the former effect dominates the latter, decreasing liquidity as more information

is produced. I also demonstrate that these effects can occur cross-sectionally, in that the

generation of information about one firm increases another firm’s illiquidity, return variance,

and trading volume if there is flow of information from the former to the latter.

I provide empirical evidence consistent with the model’s predictions. The theory provides a

structural equation model that is amenable to Bayesian Markov-Chain Monte-Carlo (MCMC)

estimation. Using high frequency data, I construct hourly return and signed and unsigned

share turnover for 30 stocks in the Dow Jones Industrial Average (DJIA) Index. The conditional

volatility of the information process is modeled as either stochastic volatility or realized volatility
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controlling for microstructure noise and infrequent sampling. The latter approach employs

Zhang, Mykland, and Aı̈t-Sahalia’s (2005) two-scales realized variance, which is a bias-corrected

average of subsampled realized variances. In both approaches, the specification nests various

existing models of liquidity, such as Campbell, Grossman, and Wang (1993), Grossman and

Miller (1988), Llorente et al. (2002), and Pastor and Stambaugh (2003). In these models, risk

aversion and non-informational trade play a crucial role in forming market liquidity. Allowing

for such a possibility lets us evaluate the relevance of an alternative mechanism of liquidity

formation that clearly differs from our risk-neutral, asymmetric-information framework.

An advantage of the Bayesian MCMC framework is that it readily estimates unobservable

state variables along with model parameters. This allows us to back out the information shock

for each Dow stock, and therefore construct the “market” information shock as the average

of the other 29 stocks in the DJIA Index. Using the estimated series, I find that a stock’s

price impact parameter is positively associated with lagged squared information shocks of both

itself and the market for 28 out of the 30 Dow stocks. This provides evidence that a firm’s

illiquidity exacerbates in the size of information about not only itself, but also about other,

presumably relevant firms, demonstrating a significant cross-sectional effect of information on

liquidity. A caveat is that my result should be interpreted with caution as some of the model

restrictions are violated. However, it is the virtue of structural estimation to be able to strictly

impose theoretical restrictions on deep parameters, which are often ignored. The methodology

employed in the current article measures information shocks as accurately as possible given the

current state of the literature.

Kyle-Admati-Pfleiderer models with conditionally heteroskedastic information processes

were first developed by Foster and Viswanathan (1993, 1995). The idea appears in Longin

(1997) that the combination of GARCH information release and endogenous information ac-

quisition can parsimoniously introduce a threshold effect in conditional price-change volatility.
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Unlike these models, however, the current paper focuses on liquidity and its variation resulting

from the generation of information. In addition, it closely examines cross-sectional implications

that cannot be analyzed by these single-security models. In the informationally homoskedastic

paradigm, there do exist multiple-security Kyle models that allow for a cross-sectional analysis.

See, for example, Caballe and Krishnan (1994), Kumar and Seppi (1994), and Subrahmanyam

(1991).3 In these models, however, price-change variances, trading volume, and liquidity are all

deterministic because both the underlying information and noise-trading processes have deter-

ministic variances.4 On the empirical side, the current paper proposes a new class of stochastic

and realized volatility models in which the underlying information process affects the liquid-

ity of assets. I demonstrate that such models can be readily estimated in a Bayesian MCMC

framework.

The paper proceeds as follows. The next section sets out the model and solves for an

equilibrium. It also examines the relation between information shocks and conditional price-

change variance, trading volume, as well as liquidity. Section 2 provides the empirical evidence.

The final section delivers concluding remarks. The appendix contains proofs. A technical

appendix is available on the author’s web site.

1 A Theory of Stochastic Liquidity

This section introduces a variant of Kyle-Admati-Pfleiderer model in which pieces of infor-

mation about multiple securities are released with possible conditional heteroskedasticity and

persistence. The number of informed traders is endogenously determined. I also examine the

3For related models with multiple securities or markets, see Chan (1993), Chowdhry and Nanda (1991), and
Hagerty (1991).

4Outside the Kyle realm, Fernando (2003) investigates how liquidity shocks transmit across securities and
risk-averse investors. The liquidity shock in his model is introduced as a change in investors’ marginal valua-
tion of risky assets without new information about the fundamental value of securities. In contrast, liquidity
is endogenously determined in my model, depends critically on the asymmetric information between market
participants, and is itself the key subject of investigation.
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effects of information shocks on conditional variance, trading volume, and liquidity.

1.1 The Model

I modify Longin’s (1997) setting to allow for a multi-security economy with imperfect infor-

mation a la Caballe and Krishnan (1994). K risky assets are traded in a centralized market.

Trading takes place over T periods. At the end of periodT , the risky assets pay a vector of

terminal dividends,

D̃T = D0 +

T∑

t=1

δ̃t, δ̃t|Ft−1 ∼ N(0,Σt), (1)

whereD0 is aK vector of constants and Σt aK×K symmetric positive-definite matrix contained

in the public information set at time t− 1, Ft−1 ≡ {Σ1, ...,Σt, δ̃1, . . . , δ̃t−1}. As in Admati and

Pfleiderer (1988), the random vector δ̃t−1 is revealed to all market participants just prior to

trading at time t− 1 and therefore is in Ft−1. Once revealed, it is considered a vector of pieces

of public information about the terminal payoff. Specific formulation of Σt is not required for

derivation of an equilibrium. At present, we note that it includes the class of GARCH and

stochastic volatility models.

There are Nt informed traders at time t. Informed tradern receives a vector of noisy signals

about the terminal payoffs,

ỹt,n = δ̃t+1 + ζ̃t + ε̃t,n, (2)

where ζ̃t ∼ N(0,Γt) is the vector of common noise and ε̃t,n ∼ N(0,Φt) is the vector of idiosyn-

cratic noise, both of which are distributed independently, but possibly non-identically, over

time. That is, the error-variance matrices, Γt and Φt, can change over time as long as they are

deterministic and commonly known to all market participants at time t. These error-variance

matrices can be zero; for example, if Γt = Φt ≡ 0, traders acquire perfect private information,

ỹt,n = δ̃t+1. The specific forms of Γt and Φt are not required for the derivation of equilibrium.
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Across informed investors, the idiosyncratic noise, ε̃t,n, is distributed independently and iden-

tically. Nt is a measurable function of Ft in general and can change over time as long as it is

known to all market participants at time t. All informed traders are risk neutral and maximize

their expected terminal profit in each period. Specifically, informed tradern solves

max
xt,n

E[(D̃T − P̃t)
′xt,n|Ft,n], (3)

where P̃t is the K vector of prices, xt,n is the K vector of his demand in period t, Ft,n =

Ft ∩ {ỹt,n, w̃1, . . . , w̃t−1} ∀n is his information set at time t, and w̃t−1 is the net order flow

of the informed traders and noise traders in the previous trading session. Prior to trading

at time t, informed traders observe neither the contemporaneous net order flow, w̃t, nor the

current prices, P̃t, that will soon be announced by the market maker. Noise traders submit

a vector of exogenous random orders, z̃t ∼ N(0,Ψt), where Ψt is a K dimensional symmetric

positive-definite matrix and is a deterministic function of time.

A competitive market maker sets prices in this batch-trading market. After observing the

vector of net order flows, w̃t =
∑Nt

n=1 xt,n + z̃t, but not the individual trades separately. He

sets prices according to the market-efficiency condition that prices equal the expected value of

terminal payoffs given his information set,

P̃t = E[D̃T |Ft,m], (4)

where Ft,m = Ft ∩ {w̃1, . . . , w̃t}. As usual, this can be viewed as a competitive zero-profit

condition under risk neutrality. Clearly, the information sets of informed traders and the

market maker do not nest each other, creating information asymmetry.
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1.2 Equilibrium

Following the standard solution technique, we restrict our attention to a linear equilibrium.

We begin by assuming that the market maker uses a pricing rule in which prices are a linear

function of net order flow. Given the price function, we next solve the profit-maximization

problem of informed traders in Equation (3). Finally, the resulting demand is substituted into

the market-efficiency condition in Equation (4) to determine the coefficients in the original price

conjecture. The result is summarized in the following theorem:

Theorem 1 (Equilibrium) There exists a linear symmetric equilibrium in which the market

maker sets prices, P̃t, according to the following pricing rule and informed trader n submits the

following market order, xt,n:

P̃t = D̃t +Atw̃t, (5)

xt,n = Btỹt,n, (6)

where D̃t ≡
∑t

s=1 δ̃s is the cumulative payoffs revealed up to time t, w̃t = Bt

∑Nt

n=1 ỹt,n + z̃t is

the net order flow, and

At ≡
√
NtΨ

− 1

2

t M
1

2

t Ψ
− 1

2

t , Bt ≡ A−1
t J−1

t Σt,ξΣ
−1
t+1,

Mt ≡ Ψ
1

2

t J
−1
t Σt,ξJ

′−1
t Ψ

1

2

t , Σt,ξ ≡ Σt+1(Σt+1 + Γt + Φt)
−1Σt+1,

Jt ≡ 2I + (Nt − 1)Σt+1(Σt+1 + Γt + Φt)
−1(Σt+1 + Γt)Σ

−1
t+1.

Furthermore, this is the unique equilibrium in which At is symmetric.

Clearly, if Σt+1 and Ψt are symmetric positive definite (and Γt and Φt are symmetric positive

definite or zero matrices), so are Mt and At. Therefore, a stock’s price increases with its own
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order flow. The price sensitivity to the order flow is represented by the corresponding diagonal

element of At, a multivariate version of Kyle’s lambda. This is an inverse measure of liquidity.

TheBt matrix represents trade intensity; the larger theBt matrix, the larger trades the informed

traders will place based on their private signals, ỹt,n.

1.3 Information Acquisition

This subsection solves traders’ information-gathering problem. Assume that traders can acquire

the vector of private signals at a fixed cost of ct, a positive scalar known at time t. Let πt be

the expected total profit of all informed traders when there are Nt of them. As in Admati

and Pfleiderer (1988), since the market maker earns zero expected profit, the total profit of all

informed traders equals the losses of the noise traders.

Lemma 1 (Expected profit of informed traders) The expected total profit of all informed traders

is given by

πt =
√
Nttr(M

1

2

t ),

where tr(·) is the trace operator and Mt is defined in Theorem 1.

If Ψt, Σt+1, Γt, and Φt are diagonal, so is Mt and it is easy to see that πt is increasing in

the noise-trading variance of any stock. This is so because, as the noise trading increases and

gives informed traders more room for camouflage, they will trade more aggressively and thus

can make a larger profit. Clearly, the profit per informed trader, πt/Nt, decreases with Nt and

traders decide to become informed as long as the per-trader profit covers the cost of information

acquisition.

Corollary 1 (Number of informed traders) When traders can acquire information at a cost of
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ct, the number of informed traders is given by the maximum integer Nt such that

1√
Nt

tr(M
1

2

t ) ≥ ct. (7)

We assume that tr(M
1

2

t )/ct ≥ 1 ∀t so that there is always at least one informed trader. An

information shock, whether negative or positive, tends to increase Σt+1 and hence πt and Nt. If

the conditional variance of information pieces persists, so does the number of informed traders.

To facilitate exposition, define two types of firms, informationally active and passive. While

the prospect of the informationally active firm is affected by news about itself only, the prospect

of the informationally passive firm is affected by news about both itself and other firms. The

defining feature of the latter is that it receives a cross-sectional inflow of information, which

could be earnings announcement of other firms in the same industry; we will come back to

this point in Subsection 2.7. More specifically, the following numerical example is used for

illustrative purposes throughout the rest of the paper.

Example 1 (Two securities with asymmetrically dependent information variances) Suppose

two securities, A and P, are traded. The first security, A, is informationally active with au-

tonomous, persistent information variance. The second security, P, is informationally passive

and has less persistent information variance that depends on SecurityA’s. The information

and noise-trading processes of the two securities are mutually and cross-sectionally uncorre-

lated. Specific parameter values are

Σt =




σ2
t,A 0

0 σ2
t,P


 ,

σ2
t,A = .5 + .7σ2

t−1,A + .25δ̃2t−1,A,

σ2
t,P = 2 + .7σ2

t−1,P + .1δ̃2t−1,P + .1δ̃2t−1,A,

(8)

Ψt ≡




2 0

0 1


 , Γt = Φt ≡ 0, ct ≡ 0.1, ∀t. �
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Equation (8) implies that the unconditional information variances of Securities A and P are

10 and 15, respectively. It is set higher for Security P to capture the idea that its information is

less precise than Security A’s. δ̃2t−1,A may be considered a common squared shock that affects

the information variances of both securities, but SecurityP’s information variance contains an

additional squared noise, δ̃2t−1,P . Also, it has a smaller noise-trading variance. Security A may be

interpreted as a large blue-chip firm with massive trading volume whose news abundantly flows

through the media. In contrast, Security P can be thought of as a small, economically related

firm on its supply chain with relatively little analyst coverage. The assumed characteristics

of the two securities seem to gain some empirical support; for example, using a sequential

trade model, Easley, Kiefer, O’Hara, and Paperman (1996) find that high volume stocks tend

to have a higher probability of information events and higher arrival rates of both informed

and uninformed traders. The example assumes that Γt = Φt ≡ 0, i.e., traders acquire perfect

information. This is perfectly admissible and is made here to aid intuition. However, in our

empirical analysis, we will allow both Γt and Φt to be free parameters to be estimated.

Clearly, all covariance matrices are diagonal for any t and the two information processes are

stationary with finite positive variances. In all the numerical analyses and formulae to follow,

think of ourselves as an econometrician standing at time t − 1 with the public information set

Ft−1 (3 δ̃t−1). That is, all graphs and formulae for time t quantities represent expected values

conditional on Ft−1, denoted by Et−1[·]. However, for convenience, I follow the convention to

call time t “current” and time t− 1 the “past.”

Panel (a) of Figure 1 plots the number of informed traders against the past squared infor-

mation shocks of the two stocks. It is a nondecreasing step function of the two shocks due to

integer programming at time t − 1 similar to the time t problem in Corollary 1. The number

of informed traders is affected more by SecurityA’s squared shock than SecurityP’s, because

the former produces more information than the latter as represented by a larger coefficient on
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δ̃2t−1,A in the σ2
t,A equation in (8).

Panel (b) shows the expected number of informed traders at time t, Et−1[Nt]. Note that

there is no analytic expression for this conditional expectation, as the conditional distribution

of Nt given Ft−1 is unknown because of the integer programming in Corollary 1. It is therefore

computed by a Monte-Carlo simulation. In this and all other simulations to follow, 10,000

experiments are run on each grid with variance reduction methods known as the antithetic

variable technique and moment matching.5 The surface of Et−1[Nt] in the panel looks somewhat

like a “smoothed” version of Panel (a). This implies that the number of informed traders is

also persistent; the larger Nt−1, the larger is Nt on average. Because of this feature, like the

number of informed traders at t− 1, its expected value at time t is affected more by the past

squared shock to SecurityA than that to SecurityP.

1.4 Conditional Price-Change Variance

From Equation (5), the price-change vector can be written as

∆P̃t ≡ P̃t − P̃t−1 = δ̃t +Atw̃t −At−1w̃t−1. (9)

The following corollary computes the conditional price-change variance.

Corollary 2 (Price-change variance) The price-change variance conditional on the public in-

formation set at time t− 1, Ft−1, is given by

Ht ≡ V art−1(∆P̃t) = Et−1[ΣAw,t+1] + Σt − ΣAw,t, (10)

ΣAw,t+1 ≡ NtΣt+1[(Nt + 1)(Σt+1 + Γt) + 2Φt]
−1Σt+1.

5Specifically, the first and second moments of N(0, 1)-random draws are matched. Since the antithetic variable
technique automatically matches all odd moments, it follows that up to the third moments and all the higher
odd-order moments are matched.
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When Γt = Φt ≡ 0 for all t, ΣAw,t+1 = Nt

Nt+1Σt+1 and Equation (10) simplifies as

Ht = Et−1

[
Nt

Nt + 1
Σt+1

]
+

1

Nt−1 + 1
Σt. (11)

This is best understood if information is exogenously acquired, i.e., Nt is fixed at a constant,

N , for all t. Then, Ht would be a weighted average of (the expected value of) Σt+1 and Σt, with

the weights given by N/(N +1) and 1/(N +1), respectively. When information acquisition and

hence the number of informed traders are endogenized, the two “weights” no longer add up to

1 in general and change over time.

Figure 2 plots the conditional price-change variance of Securities A and P in Example 1.

Kroner and Ng (1998) call such plots the News Impact Surfaces (NIS). The figure indicates

that SecurityA’s conditional variance is almost solely determined by its own past squared

shock, while SecurityP’s conditional variance increases with both shocks.6 Thus, δ̃2t−1,A induces

commonality in the conditional price-change variances.

1.5 Trading Volume

Following Admati and Pfleiderer (1988) and Foster and Viswanathan (1995), define trading

volume as half the sum of absolute trades by the three groups of market participants:

Vt ≡
1

2

(∣∣∣∣∣

Nt∑

n=1

xt,n

∣∣∣∣∣+ |z̃t| + |w̃t|
)
, (12)

6Using the setting with Γt = Φt ≡ 0, Longin (1997) demonstrates the existence of a threshold effect in
conditional price-change variance. A similar effect obtains in our multi-security model. As we increase the past
squared shocks, both Et−1[Nt] and Nt−1 increase (Figure 1). Since Ht is increasing in Nt and decreasing in Nt−1

(see Equation (11)), there will be a discontinuous drop, or a kink, in the graph of Ht where Nt−1 increases by a
unit. The slope of the surface will be lower beyond each kink, roughly reflecting the concavity of the graph of
Et−1[Nt]. This effect, however, is small and not visible in Figure 2.
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where | · | denotes the elementwise absolute-value operator.7 Using equilibrium characterization

obtained in Theorem 1, we can easily compute this quantity as summarized in the following

corollary:

Corollary 3 (Expected trading volume) Expected trading volume at time t, conditional on the

public information set at time t− 1, Ft−1, is given by

Et−1[Vt] =
1√
2π

Et−1




√
diag(NtBt[Nt(Σt+1 + Γt) + Φt]B′

t) +
√
diag(Ψt)

+
√
diag(NtBt[Nt(Σt+1 + Γt) + Φt]B

′
t + Ψt)


 .

where
√· is the elementwise square-root operator and diag(·) gives a vector containing the

principal diagonals of the argument matrix. When Φt ≡ 0, this simplifies to

Et−1[Vt] =
1√
2π

Et−1[
√
Nt + 1 +

√
Nt + 1]diag(

√
Ψt). (13)

Equation (13) says that higher noise trading results in higher trading volume, since it allows

informed traders to camouflage their trades more easily. This is analogous to the univariate

results of Admati and Pfleiderer (1988) and Foster and Viswanathan (1995). More of our interest

is the effect of information. Trading volume is linked to information variance through Nt,

which increases in Mt and hence in Σt+1 (see Corollary 1). Thus, trading volume increases with

information variance since, with persistence in the size of information, a high profit opportunity

introduced by a large absolute information shock induces more traders to become informed,

thereby increasing Nt. This implies that even if the noise-trading variance is constant (as in

Example 1), the volume becomes time-varying in equilibrium. Since Nt is persistent as shown

7The three terms in the bracket represent orders from informed and noise traders and the order imbalance
absorbed by the market maker. The multiplier 1/2 corrects for double-counting of buys and sells. This definition
implies that trades among informed traders, which can occur when signals are heterogeneous (i.e., Φt 6= 0), are
crossed. If one counts such trades separately, the volume will be larger than the one defined here. A similar
remark is made by Admati and Pfleiderer (1988, p.24).
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earlier, so is volume, which is a well-known empirical regularity.

Figure 3 plots the expected trading volume of the informationally active (A) and passive (P)

securities, respectively, in Example 1. Like the expected number of informed traders at time t

in Panel (b) of Figure 1, the expected trading volume of both securities is determined almost

solely by SecurityA’s past squared shocks.

1.6 Illiquidity

The Kyle’s (1985) lambda matrix, At, is an illiquidity measure. A larger diagonal element of

At means that the corresponding price is more sensitive to order flow and hence that the stock

is more illiquid. When Γt = Φt ≡ 0 for all t and additionally both Σt+1 and Ψt are diagonal (as

in our example) or more generally they commute, expected illiquidity conditional on the public

information set at time t− 1, Ft−1, can be written as

Et−1[At] = Et−1

[ √
Nt

Nt + 1
Σ

1

2

t+1

]
Ψ

− 1

2

t . (14)

As Longin (1997) notes, when the size of information persists, a large absolute information

shock at time t − 1 has two opposing effects on illiquidity through the terms inside the square

bracket. The first effect increases illiquidity by raising the future information variance (Σt+1)

due to assumed persistence. The second effect decreases illiquidity via an increased number of

informed traders (Nt) because competition reduces their profits (see Lemma 1 and note that

M
1

2

t is proportional to 1/(Nt + 1) when Γt = Φt ≡ 0). Let us call these the volatility effect and

the competition effect, respectively. The overall effect of information depends on which one

dominates.

Figure 4 shows expected illiquidity of the two securities in Example 1. Both panels demon-

strate that a security’s expected illiquidity increases in its own past squared shock. It follows
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that, in the current setting, the volatility effect of a security’s own information shock dominates

its competition effect. In Panel (b), in addition, Security P’s expected illiquidity also increases

with the other security’s past squared shock. Thus, there is commonality in illiquidity that is

driven by the common information shock, δ̃t−1,A.8

2 Empirical Analysis

This section performs a structural estimation of the proposed model via a Bayesian MCMC

approach. The conditional volatility of the information process is modeled as either stochastic

volatility or realized volatility controlling for microstructure noise. Using the estimates, the

model’s implications are tested.

2.1 Methodology: A Stochastic Volatility-Liquidity Model

To estimate the model, I first rewrite the equations in Theorem 1 by empirically observable

quantities. The vector of price changes, ∆P̃t, and order flows, w̃t, are closely related to the

return and the signed share turnover which an econometrician observes with error. Equation

(9) suggests a regression of price changes on the last two order flows, which is characterized by

the following two conditional moments:

E[∆P̃t|w̃t, w̃t−1] = Atw̃t, (15)

V ar(∆P̃t|w̃t, w̃t−1) = Σt −Nt−1Σt[(Nt−1 + 1)(Σt + Γt−1) + 2Φt−1]
−1Σt ≡ Σδ|w,t. (16)

8Interestingly, Panel (a) of Figure 4 indicates that for very small δ̃t−1,A, Security A’s illiquidity decreases in
Security P’s lagged squared information shock. This is a cross-sectional competition effect; having information
about the passive stock induces traders to become informed, which increases competition, and yet the passive
security’s information shock does not affect the active security by construction (no cross-sectional volatility effect
from Security P to A).
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The first equation is a familiar price-impact regression. This relation easily follows by taking

the conditional expectation of Equation (9) and using the fact that E[δ̃t|w̃t−1] = At−1w̃t−1,

which is equivalent to the market efficiency condition in Equation (4).9 The second equation

says that the variance of the information shock, δ̃t, in the price change is reduced from Σt

because w̃t−1 contains information about it. It has the form of the conditional variance of a

multivariate normal distribution.

It is difficult to estimate a multivariate system for computational reasons. Therefore, we

focus on a univariate system for individual stocks. Alternatively, each univariate system can be

interpreted as an entry of a multivariate system with cross-sectionally independent shocks. To

fix notation, denote a generic entry of the following vectors and matrices by the lower case letters

as shown in parentheses: P̃ (p), w̃(w), Σ(σ2), Σδ|w(σ2
δ|w), Γ(γ), Φ(φ), Ψ(ψ), A(a), and B(b),

where we have ignored the time subscript. Then, the quote midpoint return for an individual

stock can be written as rt = (pt − pt−1)/pt−1.
10 Dividing Equation (15) by the lagged price, I

obtain E[rt|wt, wt−1] = atwt/pt−1. The right hand side of this equation is closely related to the

signed share turnover, which can be written as

stovt = wt/st−1 ∼ N(µstov , σ
2
stov,t), (17)

where st−1 is the number of shares outstanding at time t− 1 and we have assumed that stovt

is normally distributed with mean µstov and σ2
stov,t, which are to be estimated.11 Further

controlling for additional variables to be explained shortly, I arrive at the following regression

9To see this, equate the right hand side of Equations (4) and (5) and rearrange to get E[δ̃t+1|Ft,m] = Atw̃t,
and note that the relevant information in Ft,m is w̃t.

10Since the shocks are normally distributed, prices can be zero or negative, making the division by lagged price
potentially problematic in theory. I abstract from this issue in the empirical analysis.

11pt and st here are adjusted for stock splits. Specifically, if p∗t and s∗t are the unadjusted price and the
unadjusted number of shares outstanding, respectively, pt = p∗t (s

∗

t/s
∗

0) and st = s∗0.
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equation:

rt = β0 + β1atstovt + β2stovt−1 + β3rt−1 + β4tovt−1rt−1 + et, (18)

at ≡ atst−1/pt−1, (19)

where et is a Gaussian white noise with variance σ2
e,t, whose logarithm is assumed to follow an

AR(1) process:

lnσ2
e,t = α0 + α2(ln σ

2
e,t−1 − α0) + ηt. (20)

Here, the ηt shock to the log variance of the residual return, distributed normally with mean zero

and variance α2
1, is a measure of information generation (see, e.g., Andersen (1996)).12 Dividing

Equation (16) by the lagged squared price gives the residual return variance, σ2
e,t. Rearrang-

ing that relation, we can connect the measurable residual-return variance to the unobservable

conditional price-change variance, σ2
δ|w,t

, and hence to σ2
t :

σ2
δ|w,t = σ2

t − Nt−1(σ
2
t )

2

(Nt−1 + 1)(σ2
t + γt−1) + 2φt−1

= p2
t−1σ

2
e,t. (21)

Observe that the first equality of Equation (21), after rearranging, yields a quadratic equation

for σ2
t . Solving,

σ2
t =

1

2
(f1,t−1 +

√
f2
1,t−1 + 4f2,t−1) > 0, (22)

f1,t−1 ≡ (Nt−1 + 1)(σ2
δ|w,t − γt−1) − 2φt−1, (23)

f2,t−1 ≡ [(Nt−1 + 1)γt−1 + 2φt−1]σ
2
δ|w,t > 0. (24)

From Equation (17), the variance of stovt, σ
2
stov,t, can be translated into the order-flow variance

12The ηt shocks should not be confused with information shocks, δt, which can be readily backed out using
estimated unobservable state variables in the Bayesian MCMC framework. See the discussion preceding Equation
(28). An alternative GARCH specification would restrict ηt ≡ δt.
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via σ2
w,t = σ2

stov,ts
2
t−1, where σ2

w,t is a generic diagonal entry of Σw,t ≡ V art(w̃t) in Equa-

tion (A29) of the appendix. When all matrices are scalars, it is straightforward to confirm

that the expression simplifies to Σw,t =
[

Nt−1(σ2
t +γt−1)+φt−1

σ2
t +γt−1+φt−1

+ 1
]
ψt−1. Equating the simplified

expression to σ2
stov,ts

2
t−1 and solving for the noise trading variance, we obtain

ψt−1 = σ2
stov,ts

2
t−1

σ2
t + γt−1 + φt−1

(Nt−1 + 1)(σ2
t + γt−1) + 2φt−1

. (25)

The number of informed traders is determined by solving the traders’ information acquisition

problem. Substituting the expression for Mt in Theorem 1 into Equation (7), stepping back

one period, and rearranging gives a cubic inequality for Nt−1:

Nt−1

[
(Nt−1 + 1)(σ2

t + γt−1) + 2φt−1

σ2
t

]2

≤ ψt−1(σ
2
t + γt−1 + φt−1)

c2t−1

. (26)

Given draws of other parameters, we can solve this inequality for Nt−1 at each node in each

iteration of the Bayesian MCMC procedure. Following the standard practice, we look for real-

numbered (rather than natural-numbered) Nt−1 assuming that the inequality is binding.13 We

next model the cost of acquiring one-period-ahead information as a truncated linear function

of the residual return variance,

ct−1 = max(h0 + h1σ
2
e,t, 0.1). (27)

The truncation ensures that the cost is positive. As we will see, the truncation point is low

enough not to bind for most stocks. Finally, a scalar counterpart of the equations in Theorem 1

interconnects the parameters. I estimate the system restricting the variances of the two signal

noises and the signed share turnover to be constant over time, i.e., γt−1 ≡ γ, φt−1 ≡ φ, and

13This cubic equation is very accurately solved; the difference between both sides of the equation is minimized
to the order of 10−8 or smaller in relative magnitude to either side.
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σ2
stov,t ≡ σ2

stov, to improve their identifiability.14

The above system of equations constitutes a stochastic volatility model in which innova-

tions to the conditional residual return variance also affect the price-impact coefficient, at (an

illiquidity measure). To see this, first note that a positive ηt shock increases the information

variance, σ2
t , by Equations (20) and (21). This, in turn, affects at and hence at via a scalar

counterpart of equations in Theorem 1 (this effect is depicted in Figure 4). This provides the

model’s namesake, a stochastic volatility-liquidity model.

2.2 Testable Hypotheses

We are now ready to state testable hypotheses. Equation (15) imposes very tight restrictions

on the slope coefficients in Equation (18), as summarized in the following statistical hypothesis:

Hypothesis 1 (Slope coefficients in the mean equation) β1 = 1 and β2 = β3 = β4 = 0.

The specification in Equation (18) is designed to examine alternative hypotheses. A po-

tentially important feature of capital markets absent from our model is the risk aversion of

agents. The specification controls for proxies of factors that affect liquidity under risk aversion,

most likely inventory risk and supply pressure accommodated by risk-averse market makers and

investors. The existing literature suggests the following sings for the coefficients in Equation

(18):

β2 < 0: This coefficient is similar to the return-reversal measure of Pastor and Stambaugh

(2003, the gamma coefficient in their Equation (1)), who base their theoretical foundation on

Campbell, Grossman, and Wang (1993).15 A generalized implication of Campbell, Grossman,

14While the two signal noises are strictly exogenous processes, signed share turnover is not. Restricting its
variance and hence the variance of wt/st−1 (see Equation (17)) to be constant imposes a restriction on a free
parameter, ψt−1, through Equation (25).

15Note that Pastor and Stambaugh (2003) use volume signed by return in excess of the market as a measure
of order flow. Their objective is to examine the pricing of liquidity risk using series long enough to bear asset
pricing implications. We do not have to use such a proxy for order flow because signed share turnover is available
at the intraday frequency.
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and Wang’s (1993) model (explained further in the next paragraph) is that price pressure

caused by non-informational trades will be mitigated in subsequent periods, making the slope

coefficient on the lagged signed share turnover negative.

β3 < 0: Grossman and Miller (1988, Section I.C) predict a negative correlation between

successive price changes. In their model of inventory risk, risk-averse market makers willing

to offset the liquidity trades of “outside customers” command a price discount, which will

subsequently be reversed when counter-trades arrive.16 A counterpart of β2 and β3 also appears

in Hasbrouck (1991), who finds that intraday price changes are related to previous price changes

and signed trades in a VAR framework.

β4 T 0: Campbell, Grossman, and Wang (1993) present and test a model in which risk-averse

market makers accommodate buying or selling pressure from liquidity traders. They show that

the price concession required by such market makers will be reversed in later periods, leading

to a negative return autocorrelation similar to Grossman and Miller (1988). They additionally

show that the return autocorrelation decreases (becomes more negative) with volume, which

measures the level of liquidity trades that the market makers are accommodating. This implies

that β4 < 0. However, Llorente et al. (2002) remark another possibility: when trades derive

from long-lived asymmetric information, return autocorrelation will rise and can become even

positive as information gets impounded into prices gradually. Hence, while returns generated

by hedging trades tend to reverse themselves (β4 < 0), returns generated by speculative trades

continue themselves (β4 > 0). Thus, the sign of β4 is ambiguous ex ante and is an empirical

question.

In all these models, risk aversion plays a key role in forming liquidity. This clearly represents

a different mechanism from our risk-neutral framework, in which liquidity is formed through the

16A negative serial price-change covariance is also consistent with Roll’s (1984) bid-ask spread measure. How-
ever, Grossman and Miller’s (1988) model would be more relevant to the interpretation of our β3 coefficient
because we use returns computed from quote-midpoints rather than transaction prices.
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process of capitalizing information asymmetry into price. Thus, including the control variables

allows us to not only examine robustness, but also explore the reason why the null hypothesis

is rejected, when it is indeed rejected.

Next, Equation (27) allows us to examine whether the value of private information varies

over time. Recall that σ2
e,t+1 is positively related to the information shock variance, σ2

t+1, via

Equation (21) at time t + 1. Consider the value of private signals in Equation (2) when the

variance of δ̃t+1 (Σt+1) rises. Fixing the noise variances, the private signals should become more

valuable as they become more informative and the signal-to-noise ratio rises. Said differently, the

cost of information acquisition rises during periods of volatile fundamentals in which forecasting

terminal payoffs is difficult. This is summarized this in the following empirical hypothesis:

Hypothesis 2 The value of private information rises during times of volatile fundamentals: h1 >

0.

An advantage of the Bayesian MCMC framework is that it readily estimates unobservable

state variables along with model parameters. This allows us to back out an individual stock’s

information shock, δt, via Equation (9). Thus, for a given stock, we can further construct the

market information shock, δt,M , as the equally weighted average of the information shocks of

the other 29 stocks in DJIA. Then, to examine the effect of information shocks on liquidity,

I regress the stock’s estimated price impact parameter, at, on the lagged squared individual

shock and the market information shock:

at = g0 + g1δ
2
t−1 + g2δ

2
t−1,M + εt. (28)

Note that at is closely related to the Kyle’s lambda parameter, at, via Equation (19). As

indicated in Figure 4, if the individual stock in question is an informationally active stock,

its price impact parameter is almost solely determined by its own past squared information
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shock (g1 > 0 and g2 ≈ 0). If the individual stock is an informationally passive stock, its price

impact parameter is affected by both its own past squared information shock and the market’s

past squared information shock (g1 > 0 and g2 > 0). This leads to the following hypothesis,

reflecting the lack of prior knowledge about whether the Dow stocks are informationally active

or passive:

Hypothesis 3 Information generation decreases liquidity: g1 > 0 and g2 ≥ 0.

2.3 Data

I estimate the model using the 30 Dow stocks because information generation and liquidity are

most accurately measured for actively traded stocks. For all the 30 stocks in the DJIA index as

of September 2004, I extract from the TAQ dataset quotes and trades in years 2002 and 2003,

the latest available at the time of analysis. Here, I limit the sample period to 2002 and later to

allow enough time after the decimalization of NYSE and NASDAQ. I divide each trading day

into an opening 30 minute interval (9:30a.m.-10:00a.m.) and six consecutive hourly intervals

(10:00a.m.-4:00p.m.). Intraday return, rt, is computed using the last quote midpoint in each

interval. Discarding the opening 30 minute interval to avoid the undue effect of overnight events,

this produces six hourly returns per day. The duration of one hour is chosen to capture the

intraday interaction between market makers and traders. I calculate signed and unsigned share

turnover following Breen, Hodrick, and Korajczyk (2002). Trades and quotes are matched

and then signed by the Lee and Ready (1991) algorithm. Signed share turnover, stovt, for

period t is buyer-initiated share volume less seller-initiated share volume, normalized by the

number of shares outstanding (SHROUT ) in CRSP. Since SHROUT is recorded in units of

thousands, stovt = 1 means that 0.1% of the shares outstanding are bought in net. Unsigned

share turnover, tovt, is the sum of the buyer- and seller-initiated share trades with the same
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standardization.17

To save space, I provide brief summary statistics of the constructed series here without a

table. Over the 30 Dow stocks, the mean hourly return is 26 bp and the mean signed share

turnover is 0.047, which implies that more shares are bought than sold in the sample period.

This is consistent with the fact that there are on average more buy orders (556) than sell orders

(527) per stock each hour. The mean unsigned share turnover is 0.49, meaning that 0.049% of

each stock’s outstanding shares are traded hourly.

2.4 Estimation

A general feature of a stochastic volatility model, including our stochastic volatility-liquidity

model, is that innovations to the conditional variance are independent of innovations to return,

making maximum likelihood estimation difficult, if not impossible, unless one makes some

approximations to the true unknown likelihood function (see, e.g., Aı̈t-Sahalia and Kimmel

(2007)). Fortunately, a Bayesian MCMC method allows us to estimate such a model. I draw

10, 000 samples at each node and discard the initial 5, 000 samples for the system to arrive at

a steady state. Using the next 5, 000 samples, I compute the mean and the 95% confidence

interval of each parameter, including the unobservable state variables such as σ2
e,t at each time.

Table 1 shows the prior distributions of parameters used in the Bayesian MCMC estimation.

I choose relatively informative priors for parameters specifying conditional variances of return

and signed share turnover, which are known to be estimated quite accurately. The relatively

informative priors for α2
1 and α2 follow Kim, Shephard, and Chib (1998, Equations (4) and

(5)). The prior distribution for α2
1, the “variance of log variance,” is inverse-gamma, which is

the conjugate prior for the normal variance and has a positive support. I set α2 = 2α∗
2 − 1,

17Following the standard practice, I calculate rt, stovt, and tovt without adjusting the raw variables for stock
splits as in Footnote 11. These quantities are correctly computed as they are standardized and the opening
overnight periods are excluded from my sample.
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where α∗
2 has a beta distribution shown in the table caption. Since its support is α∗

2 ∈ [0, 1],

the prior of α2 ∈ [−1, 1]. For other parameters, I use diffuse prior distributions containing the

nulls in Hypotheses 1 and 2 to make those hypotheses rejectable.18

2.5 Result

Table 2 shows selected parameter estimates (means of the posterior distributions) for the 30

Dow stocks along with the 2.5 and 97.5 percentiles in parentheses. The first column shows the

mean log variance parameter, α0. The average of annualized volatility,
√

252 × 6.5 exp(α0),

over the 30 stocks is 0.19 (not shown), which is in the right ballpark. The next column shows

the volatility of log variance, α1, whose 2.5 percentile is well above zero for all stocks, indicating

active information production. As expected, the persistence parameter, α2, is slightly below 1,

implying slow decay of information shocks. Panel A of Figure 5 shows the posterior mean of

residual return variance (σ2
e,t) along with the 95% confidence interval for a representative stock,

IBM. I chose IBM because it is used in many existing studies including Foster and Viswanathan

(1995), which facilitates comparison. The panel depicts a very persistent series, consistent with

α2 being close to 1. The tight confidence interval relative to other panels in the figure suggests

that this unobservable state variable is well identified. Importantly, the conditional residual

return variance changes substantially over time, representing active information generation as

implied by the reliably positive α1 estimate.

The next two columns of Table 2 show the estimated coefficients on the current and lagged

signed share turnovers. The estimated β1 is positive for all stocks, but only five of them have

a 95% confidence interval that brackets the theoretical value of 1. This suggests that for most

stocks, the current order flow plays a somewhat larger or smaller role than the model implies.

18The Bayesian MCMC estimation is performed using WinBUGS (Bayesian inference Using Gibbs Sampling),
a freely available software package. The code is modified from Yu and Meyer’s (2006) programs for various
multivariate stochastic volatility models. The zero-profit condition in Equation (26) is solved using Robert
Campbell’s numerical methods library written in Component Pascal. The WinBUGS code and the Component
Pascal routine are linked by Dave Lunn’s WinBUGS Development Interface.
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Also, the estimated β2 is negative for all stocks, and significantly so for 28 out of the 30 stocks.

As discussed above, this result is more consistent with risk-averse investors requiring price

discount to accommodate noninformational trades (Campbell, Grossman, and Wang (1993) and

Pastor and Stambaugh (2003)), rather than competitive market makers capitalizing information

into prices as in our model. Next, β3 is not significantly different from zero for 20 out of 30

stocks. Although this is consistent with our model’s implications, the other ten stocks have a

significantly negative estimate, as predicted by Grossman and Miller (1988, Section I.C). The

last coefficient in the mean equation, β4, is not significantly different from zero for any stock;

this is signified by the fact that the 95% confidence intervals shown are essentially those of

the prior distribution for all stocks. To summarize, the null in Hypothesis 1 is rejected for all

parameters but β4. Since the model is rejected, care is required for the interpretation of the

results to follow.

While the first set of hypotheses is rejected, we do have some support for the second (Hy-

pothesis 2). The last column in the first panel of Table 2 shows that the estimates of h1 are

significantly positive for 19 stocks, insignificant for five stocks, and significantly negative for

only six stocks. Thus, for 63% of the stocks the cost of information acquisition rises during

times of volatile fundamentals.

The second panel of Table 2 reports the estimates of additional parameters of interest.

For a quantity with a time subscript, the table shows the time-series average of the posterior

mean along with the time-series averages of the 2.5 and 97.5 percentiles in parentheses. The

average trading cost, ct, and the average number of informed traders, Nt, in the first two

columns tell an intriguing story. For example, the estimates for IBM imply that there are on

average 28 informed traders who each acquires private signals worth $820 and makes just the

same amount of profit per hour. Unlike some existing estimates, the estimates here do not

seem implausible; for example, using a 1988 data, Foster and Viswanathan (1995) estimate the
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number of informed traders and the cost of private information for IBM to be 2, 404 (Table

4) and 0.28 cents per half hour (Table 2), respectively. They note that “[t]hese numbers

are, however, not entirely plausible given our existing knowledge of the markets.” (p.390) My

estimates imply that fewer traders acquire more accurate and expensive information about

IBM than Foster and Viswanathan’s (1995) do. A caveat, however, is that my table also shows

several stocks with hundreds of informed traders who acquire information as inexpensive as $10

or less.

Panel B of Figure 5 shows the estimated time series of ct for IBM. Since estimated h1 for

IBM is positive in Table 2, ct is a positive, and by construction linear, function of σ2
e,t+1, whose

lag is shown in Panel A (consider Equation (27) at time t). Again, the higher the residual

return variance and hence the information variance, the higher is the signal-to-noise ratio (see

Equation (2)), and the more accurate and expensive is the private signal. The number of

informed traders, Nt, in Panel C moves in the opposite direction from ct, because these two

quantities are negatively related via Equation (26); as the cost of private information becomes

higher, the fewer traders will acquire it. The confidence interval in the panel suggests that our

working assumption that Nt ≥ 1 is not significantly violated for IBM at any point in the sample

period. Moreover, the assumption appears to have held for most stocks; back in Table 2, the

average 2.5 percentile for Nt is significantly larger than 1 for 26 out of the 30 stocks (87%). For

the remaining four stocks, the 95% confidence interval still contains 1.

The relative magnitude of estimated σ2
t+1, γ, and φ in Table 2 implies that the signal-to-

noise ratio of private signals varies across stocks. For some stocks, γ and φ are very close

to zero (note that γ = 0 and/or φ = 0 is perfectly admissible). In some cases, however, the

relatively large size of their confidence intervals indicates that these parameters may not have

been reliably estimated. Nevertheless, it is illuminating to examine the correlation between

the private signals of two informed traders. From Equation (2), this correlation is given by
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(σ2
t+1 + γ)/(σ2

t+1 + γ + φ). According to the table, the correlation estimated at average σ2
t+1

(Corr) ranges between 0.17 and 0.99 across the 30 stocks with an (unreported) cross-sectional

average of 0.71. Thus, private signals appear highly correlated across traders for an average

stock, suggesting the possibility that traders acquire private information from same sources.

Like Foster and Viswanathan (1995), we find that the noise trading variance, ψt, is a large

number. Informed traders take advantage of this as their total profit is proportional to M
1

2

t and

hence to ψ
1

2

t (Lemma 1). This shows up as large estimates of the informed-trading intensity

parameter, bt. Finally, the price impact parameter, at, is reliably positive; along with positive

estimates of β1 in Equation (18), this implies that the order flow tends to move the price in

the same direction. The estimated time series of at for IBM is shown in Panel D of Figure

5. We see that price impact increases as the conditional residual return variance in Panel A

increases. Again, a high residual return variance, or a high information variance, represents a

profit opportunity for informed traders and increases the price impact.

2.6 Addressing Microstructure Noise: A Semi-parametric Approach using

Realized Volatility

While the stochastic volatility model presented above is a natural approach to estimating unob-

servable information shocks, it may be doomed to microstructure noise at an intraday frequency.

Although our returns are calculated from quote midpoints and hence are much less prone to

bid-ask bounce than transaction-price returns are, microstructure noise could arise from various

other sources. In addition, infrequent sampling can cause a serious measurement problem if the

true price-generating process is close to being continuous. To save space, I refer the reader to a

thorough discussion on these points by Zhang, Mykland, and Äıt-Sahalia (2005). In particular,

Aı̈t-Sahalia and Yu (2008) find that microstructure noise is positively correlated with volatility

and illiquidity including price impact measures. Importantly to my purpose, this implies that
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the strong relation I will later find between information variance and (il)liquidity may partly

be driven by microstructure noise. To address this issue, I employ Zhang, Mykland, and Aı̈t-

Sahalia’s (2005) two-scales realized variance measure that explicitly controls for microstructure

noise and infrequent sampling. Very briefly, this is a bias-corrected average of subsampled re-

alized variances based on log price differences.19 Assuming that the realized variance measure,

denoted by σ2
Re,t, represents the residual return variance, I substitute it for σ2

e,t in Equation

(20),

lnσ2
Re,t = α0 + α2(ln σ

2
Re,t−1 − α0) + ηt, (29)

and re-estimate the whole system. Here, the information shock ηt is computed as the residual

from an autoregressive (AR) model for σ2
Re,k. I call this system a realized volatility-liquidity

model.20

Table 3, comparable to Table 2, presents the selected parameter estimates of the real-

ized volatility-liquidity model. Generally, the estimates are remarkably similar to those of the

stochastic volatility-liquidity model except for α1 and α2. For example, the estimates for our

representative stock, IBM, are as follows, with the corresponding estimates from the stochastic

volatility-liquidity model in parentheses: α0 = −10.8 (−11.2), α1 = 0.67 (0.09), α2 = 0.56

(0.99), β1 = 0.17 (0.19), β2 = −6.2 (−6.8), β3 = 0.003 (0.017), β4 = 0.042 (0.050), and h1 = 3.8

(3.8). The first column of the table allows us to calculate the mean annualized volatility,

√
252 × 6.5 exp(α0). Its average across the 30 stocks is 0.216 (not shown), which is close to the

value estimated from the stochastic volatility-liquidity model in the preceding subsection. The

next two columns show the estimates of α1 and α2. We find that, in general, α1 is larger and

α2 is smaller than those from the stochastic volatility-liquidity model. This perhaps reflects the

“unfiltered” nature of realized volatility, as opposed to volatility estimated as an unobservable

19This is their “first-best approach.” I implement it by subsampling every twentieth observations.
20We note that, in the realized volatility-liquidity model, σ2

Re,t is no longer an unobservable state variable to
be estimated.
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state variable in the stochastic volatility framework.

The estimated beta parameters are generally in line with those of the stochastic volatility-

liquidity model. While β1 is positive for all stocks, its 95% confidence interval contains the null

of 1 for only two stocks. β2 is significantly negative for 26 out of the 30 stocks. However, β3 is

now more consistent with our model’s implication. The estimates are not significantly different

from zero for all but four stocks, which have significantly negative estimates. Again, β4 is not

significantly different from zero for all stocks, since the prior confidence interval shows up as the

almost common posterior interval. The distribution of estimated h1 is also similar to Table 2.

17 out of 30 stocks (57%) have a significantly positive h1, suggesting that the value of private

information rises during times of volatile fundamentals. It is also noted, however, that nine

stocks (30%) now have a significantly negative h1.

The second panel of Table 3 shows additional quantities of the realized volatility-liquidity

model corresponding to that of Table 2. Again, for many stocks, the estimates are quite similar

to those from the stochastic volatility-liquidity model. For example, the estimates for IBM are

as follows, with the corresponding estimates from the stochastic volatility-liquidity model in

Table 2 in parentheses: ct = 990 (820), Nt = 23.4 (27.5), σ2
t+1 = 3.67 (3.20), γ = 0.00 (0.00),

φ = 0.04 (0.04), ψt = 2.3 × 109 (2.1 × 109), at = 167.1 (156.5), and bt = 6.6 (6.6). The pair of

estimated ct and Nt tells us that on average 23 traders acquire private signals at a cost of $990

per hour. This is comfortably close to the estimates in the preceding subsection, which gives us

confidence about the reliability of the IBM estimates. From the second column of the table, we

find that the average number of informed traders is significantly greater than 1 for 27 out of 30

stocks (90%), validating our working assumption that Nt ≥ 1. The average of estimated σ2
t+1 is

again reliably positive. Moreover, while φ continues to be mostly insignificant, for many stocks

the common noise variance, γ, now appears to be bounded fairly above zero. Perhaps for this

reason, the implied correlation between two private signals averages at 0.77 (calculated using
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the values in the table), which is higher than that of the stochastic volatility-liquidity model

by 0.06. The remaining two parameters, at and bt, exhibit some departure from the estimates

of the stochastic volatility-liquidity model for several stocks.

2.7 Cross-sectional Information Flow and Liquidity

Finally, I examine the cross-sectional implication of the model. Table 4 presents the result of the

regression in Equation (28) for both the stochastic volatility-liquidity model and the realized

volatility-liquidity model. We see that g1 and g2 are strongly positive for all but a couple of

stocks for both models, meaning that liquidity of a Dow stock typically decreases in the size

of information about itself but also about other Dow stocks. Moreover, g2 is larger than g1 for

most stocks. This result suggests the existence of a substantial information spillover, producing

a significant cross-sectional effect of information on liquidity.

What is the source of such strong cross-sectional information flows? The accounting liter-

ature has long been aware that an earnings announcement by one firm provides information

about other firms in the same industry; see Thomas and Zhang (2008) and references cited

therein. Moreover, news can be produced much more broadly and frequently than accounting

information, for example, in the form of industry or macroeconomic news through newswires.

Also, being an average, the cross-sectional information flow may be less noisy than the in-

dividual information flow. The more frequent production and less noisiness of cross-sectional

information flow will tend to make g2 larger than g1.

3 Conclusion

This paper examines the dynamic cross-sectional effect of information on liquidity, trading

volume, and conditional return variance. In a centralized market similar to Kyle (1985) and

Admati and Pfleiderer (1988), trading of multiple securities takes place over time. Unlike these
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traditional models, however, information is gradually revealed over time with possible condi-

tional heteroskedasticity and persistence in size. With persistence, a higher level of information

generation results in higher volume, volatility, and illiquidity in subsequent periods. Using

high frequency data for the 30 Dow stocks, I perform a structural estimation of the model by

Bayesian MCMC simulation. The conditional volatility of the information process is modeled

as either stochastic volatility or realized volatility controlling for microstructure noise (Zhang,

Mykland, and Aı̈t-Sahalia (2005)). I provide evidence that a Dow stock’s illiquidity exacerbates

in the size of information about not only itself, but also about other Dow stocks, demonstrating

a significant cross-sectional effect of information on liquidity.

An important question left unanswered in our risk-neutral framework is the equilibrium

relation between liquidity risk and expected return under asymmetric, heteroskedastic infor-

mation. A theoretical investigation into this issue has been limited perhaps due to the lack

of analytic solutions in a fully dynamic setting. A workaround may be to introduce investor

myopia or bounded-rationality (Kyle and Xiong (2001), and Llorente et al. (2002)) or even

irrationality (Baker and Stein (2004)).

Finally, I note that there is an alternative empirical specification based on a GARCH model,

a natural counterpart to our stochastic and realized volatility models. Such a model may prove

useful in linking the recent microstructure literature and the more traditional, early literature

on volatility and information spillover developed in a GARCH framework (Conrad, Gultekin,

and Kaul (1991), Fleming, Kirby, and Ostdiek (1998), Hamao, Masulis, and Ng (1990), Kroner

and Ng (1998), Lin, Engle, and Ito (1994)). This direction is left for future research.
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A Appendix

A.1 Proof of Theorem 1

Let the vectors of prices and the demand of informed trader n be

P̃t = A0t +A1tw̃t, (A1)

xt,n = B0t +B1tξ̃t,n, (A2)

respectively, where A0t and B0t are K × 1 vectors and A1t and B1t are K ×K matrices to be

determined. Here, using the relevant information ỹt,n ∈ Ft,n,

ξ̃t,n ≡ E[δ̃t+1|Ft,n] = Covt(δ̃t+1, ỹ
′
t,n)V ar−1

t (ỹt,n)ỹt,n = Σt+1(Σt+1 + Γt + Φt)
−1ỹt,n, (A3)

where subscript t denotes conditioning on the public information set, Ft. We first solve the

optimization problem of an informed trader given the market maker’s linear pricing rule, and

then verify that the prices are consistent with the market efficiency condition. The net order

flow is

w̃t = xt,n +
∑

i6=n

xt,i + z̃t. (A4)

Substituting this into the price function in Equation (A1), we may write the profit maximization

problem in Equation (3) as

max
xt,n

E[{D̃T −A0t −A1t(xt,n +
∑

i6=n

xt,i + z̃t)}′xt,n|Ft,n].
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Noting that informed traders do not observe prices by assumption and that z̃t, δ̃s /∈ Ft,n,

∀s > t+ 1 and assuming the symmetry of A1t, we obtain the first order condition

0 = D̃t + ξ̃t,n −A0t −A1t(2xt,n +
∑

i6=n

E[xt,i|Ft,n]). (A5)

The second order condition for maximization is met if A1t is positive definite. Here, from (A2),

E[xt,i|Ft,n] = B0t +B1tE[ξ̃t,i|Ft,n], (A6)

where E[ξ̃t,i|Ft,n] is informed trader n’s estimate of another informed trader i’s estimate of δ̃t+1.

To compute this, first derive the prior moments from Equation (A3),

Σt,ξ ≡ V art(ξ̃t,n) = Σt+1(Σt+1 + Γt + Φt)
−1Σt+1, (A7)

Σt,c ≡ Covt(ξ̃t,i, ξ̃
′
t,n) = Σt+1(Σt+1 + Γt + Φt)

−1(Σt+1 + Γt)(Σt+1 + Γt + Φt)
−1Σt+1, (A8)

for any i 6= n. Then, since the prior mean Et[ξ̃t,i] = 0,

E[ξ̃t,i|Ft,n] = Σt,cΣ
−1
t,ξ ξ̃t,n. (A9)

Substituting this for E[ξ̃t,i|Ft,n] in Equation (A6) and using the conjectured demand function

in Equation (A2), we can rewrite the first-order condition in Equation (A5) as

0 = D̃t + ξ̃t,n −A0t − 2A1t(B0t +B1tξ̃t,n) − (Nt − 1)A1t[B0t +B1tΣt,cΣ
−1
t,ξ ξ̃t,n]. (A10)

33



For this equation to hold for any realization of ξ̃t,n, its coefficient must be zero:

0 = I − 2A1tB1t − (Nt − 1)A1tB1tΣt,cΣ
−1
t,ξ , or

A1tB1t = J−1
t , with Jt ≡ 2I + (Nt − 1)Σt,cΣ

−1
t,ξ . (A11)

Substituting Equations (A7) and (A8) for Σt,ξ and Σt,c, respectively, produces the expression

for Jt in Theorem 1. The constant term in Equation (A10) must also be zero, which, after

rearranging, produces

A0t = D̃t − (Nt + 1)A1tB0t. (A12)

We next solve the market maker’s problem. Recall that Ft,m = Ft ∩{w̃1, . . . , w̃t}. Since the

prior mean Et[w̃t] = NtB0t, we can rewrite the market efficiency condition in Equation (4) as

P̃t = D̃t + E[δ̃t+1|Ft,m] = D̃t + Covt(δ̃t+1, w̃
′
t)V ar

−1
t (w̃t)(w̃t −NtB0t). (A13)

Here, from Equations (A4) and (A2),

Covt(δ̃t+1, w̃
′
t) =

Nt∑

i=1

Covt(δ̃t+1, ξ̃
′
t,i)B

′
1t = NtΣt,ξB

′
1t, (A14)

where we have used Equations (A3) and (A7) in the second equality. Also,

V art(w̃t) = B1tV art(

Nt∑

n=1

ξ̃t,n)B′
1t + Ψt = NtB1t{Σt,ξ + (Nt − 1)Σt,c}B′

1t + Ψt ≡ Σw,t. (A15)
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So, Equation (A13) becomes

P̃t = D̃t +NtΣt,ξB
′
1t[NtB1t{Σt,ξ + (Nt − 1)Σt,c}B′

1t + Ψt]
−1(w̃t −NtB0t)

= D̃t + [B1t{I + (Nt − 1)Σt,cΣ
−1
t,ξ } +N−1

t ΨtB
′−1
1t Σ−1

t,ξ ]−1(w̃t −NtB0t),

assuming nonsingularity of B1t. Comparing with the price conjecture in Equation (A1), we

have

A1t = [B1t{I + (Nt − 1)Σt,cΣ
−1
t,ξ } +N−1

t ΨtB
′−1
1t Σ−1

t,ξ ]−1, or

A1tB1t = [Jt − I +N−1
t B−1

1t ΨtB
′−1
1t Σ−1

t,ξ ]−1, and (A16)

A0t = D̃t −NtA1tB0t, (A17)

where we have eliminated (Nt − 1)Σt,cΣ
−1
t,ξ from the first equation using Equation (A11).

We will solve four equations (A11), (A12), (A16), and (A17) for four unknowns, A0t, A1t,

B0t, and B1t. First, we immediately have A1tB0t = 0 from (A12) and (A17). Again assuming

the nonsingularity of A1t, we find that B0t = 0 and that A0t = D̃t.

Next, equating Equations (A11) and (A16) and canceling Jt,

B−1
1t ΨtB

′−1
1t = NtΣt,ξ. (A18)

We shall replace B1t in this equation with the (assumed) symmetric matrix A1t. From (A11),

we have

B1t = A−1
1t J

−1
t . (A19)

So, equation (A18) becomes

A1tΨtA1t = NtJ
−1
t Σt,ξJ

′−1
t . (A20)
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Since Ψt is symmetric positive definite, there exists a unique symmetric positive definite matrix

Ψ
1

2

t such that (Ψ
1

2

t )2 ≡ Ψ
1

2

t Ψ
1

2

t = Ψt. Now pre- and post-multiply Ψ
1

2

t to both sides of the above

equation to write

(Ψ
1

2

t A1tΨ
1

2

t )2 = NtΨ
1

2

t J
−1
t Σt,ξJ

′−1
t Ψ

1

2

t ≡ NtMt, (A21)

which gives the expression for Mt in Theorem 1. Since Mt is clearly symmetric positive definite,

there exists a unique symmetric positive-definite matrix M
1

2

t such that (M
1

2

t )2 = Mt. Take the

square root of both sides of Equation (A21) and retain the positive sign for A1t to be positive

definite. Solving for A1t yields the expression for At in Theorem 1 (i.e., A1t = At). Then, using

Equations (A19) and (A3) in Equation (A2),

xt,n = B1tξ̃t,n = A−1
1t J

−1
t Σt+1(Σt+1 + Γt + Φt)

−1ỹt,n = A−1
1t J

−1
t Σt,ξΣ

−1
t+1ỹt,n, (A22)

where we have used Equation (A7). The coefficient on ỹt,n gives the expression for Bt in

Theorem 1. Clearly, A1t = At is indeed symmetric positive definite as has been assumed. Since

all coefficients are unique, so is the equilibrium in which At is symmetric. �

A.2 Proof of Lemma 1

The expected losses of noise traders are given by

πt = Et[(P̃t − D̃T )′z̃t] = Et[w̃
′
tAtz̃t] = Et[z̃

′
tAtz̃t],

where we have substituted for P̃t from Theorem 1 and retained only relevant terms. Here,

z̃′tAtz̃t = tr(z̃′tAtz̃t) = tr(Atz̃tz̃
′
t) by the property of the trace operator. Noting that At ∈ Ft,

we have

πt = tr(AtEt[z̃tz̃
′
t]) = tr(AtΨt) =

√
Nttr(Ψ

− 1

2

t M
1

2

t Ψ
1

2

t ),
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where we have substituted the expression for At in Theorem 1. The two Ψt terms can circulate

and cancel out, which proves Lemma 1. �

A.3 Proof of Corollary 2

Noting the independence of terms in Equation (9) except between δ̃t and w̃t−1,

Ht ≡ V art−1(∆P̃t) = V art−1(Atw̃t) + V art−1(δ̃t −At−1w̃t−1). (A23)

Here, since At ∈ Ft and Et−1[w̃t] = Et[w̃t] = 0, using the law of iterated expectations,

V art−1(Atw̃t) = Et−1[Atw̃tw̃
′
tAt] = Et−1[AtEt(w̃tw̃

′
t)At] = Et−1[AtV art(w̃t)At]. (A24)

But equating the coefficients on w̃t in Equations (A13) and (5) and rearranging, we have

V art(w̃t) = A−1
t Covt(δ̃t+1, w̃

′
t) = NtA

−1
t Σt,ξB

′
1t = NtA

−1
t Σt,ξJ

′−1
t A−1

t , (A25)

where we have used Equations (A14) and (A19) in the second and third equalities, respectively.

We conclude that

V art−1(Atw̃t) = Et−1[NtΣt,ξJ
′−1
t ]. (A26)

Note that this is symmetric since

NtΣt,ξJ
′−1
t = Nt(J

′
tΣ

−1
t,ξ )−1 = Nt[2Σ

−1
t,ξ + (Nt − 1)Σ−1

t,ξ Σt,cΣ
−1
t,ξ ]−1 by (A11)

= Nt[2Σ
−1
t,ξ + (Nt − 1)Σ−1

t+1(Σt+1 + Γt)Σ
−1
t+1]

−1 by (A7) and (A8)

= NtΣt+1[(Nt + 1)(Σt+1 + Γt) + 2Φt]
−1Σt+1 ≡ ΣAw,t+1 by (A7) (A27)

37



is. Following a similar procedure, compute the second variance in the rightmost side of Equation

(A23) as

V art−1(δ̃t −At−1w̃t−1) = Σt −Covt−1(δ̃t, w̃
′
t−1)At−1 − [Covt−1(δ̃t, w̃

′
t−1)At−1]

′ + V art−1(At−1w̃t−1)

= Σt − ΣAw,t. (A28)

where we have used the fact that each of the last three terms in the first line resolves to

Nt−1Σt−1,ξJ
′−1
t−1 = ΣAw,t. To see this, write the first covariance term as Covt−1(δ̃t, w̃

′
t−1)At−1 =

Nt−1Σt−1,ξJ
′−1
t−1 = ΣAw,t, which obtains by pre- and post-multiplying At to Equation (A25) and

going back one period. Further, this is symmetric as Equation (A27) at time t−1 shows. Thus,

the second covariance term equals the first. Finally, the last variance term can be written as

V art−1(At−1w̃t−1) = Nt−1Σt−1,ξJ
′−1
t−1 = ΣAw,t, which clearly results from lagging the time in

the parentheses of Equations (A24) and (A26). Substituting Equations (A26) and (A28) back

into Equation (A23) and using Equation (A27), we obtain Equation (10) in the corollary. �

A.4 Proof of Corollary 3

We first state the following lemma that is necessary in computing the volume:

Lemma 2 If ũ ∼ MVN(0,Σ), then E|ũ| =
√

2
π
diag(Σ), where

√· is the elementwise square

root operator and diag(·) returns a vector containing the diagonal elements of the argument

matrix.

The proof is by direct computation. Now, compute the variance of the net order flow as

Σw,t = V art(w̃t) = V art

(
Bt

Nt∑

n=1

ỹt,n

)
+ V art(z̃t) = NtBt[Nt(Σt+1 + Γt) + Φt]B

′
t + Ψt. (A29)

By the law of iterated expectations, the expected trading volume can be written as
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Et−1[Vt] =
1

2
Et−1

[
Et

∣∣∣∣∣

Nt∑

n=1

xt,n

∣∣∣∣∣+ Et|z̃t| + Et|w̃t|
]
.

Noting that the first term in Equation (A29) is the variance of all the informed traders’ orders

and applying the above lemma, we obtain the first expression in the corollary.

Next, compute the variance of a single informed trader’s order. From Equation (6) and the

results in Theorem 1, given the public information set Ft 3 {Bt, Nt, Σt+1} at time t,

V art(xt,n) = Bt(Σt+1 + Γt + Φt)B
′
t

= A−1
t J−1

t Σt,ξΣ
−1
t+1(Σt+1 + Γt + Φt)Σ

−1
t+1︸ ︷︷ ︸

Σ−1

t,ξ

Σt,ξJ
′−1
t A−1

t

= A−1
t J−1

t Σt,ξJ
′−1
t A−1

t =
1

Nt
Ψt, (A30)

by Equation (A20) (recall that A1t = At). When Φt = 0, the right hand side of the first line

implies that Equation (A29) simplifies to Σw,t = (Nt + 1)Ψt. This proves Equation (13) in the

corollary. �
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Table 1: Prior distributions of parameters used in the Bayesian MCMC estimation

α0 α2
1 α2 β0 β1

Distribution N(−10, 10) IG(2.5, 0.05) See caption N(0, 0.01) N(1, 1)
Mean -10 0.033 0.86 0 1
Stdev 3.2 0.047 0.11 0.1 1

β2 β3 β4 10−6h0 10−7h1

Distribution N(0, 100) N(0, 1) N(0, 1) N(1, 1)I(10−6 , ) N(0, 10)
Mean 0 0 0 1.3 0
Stdev 10 1 1 0.79 3.2

γ φ µSTOV 106σ2
STOV

Distribution N(0, 1)I(0, ) N(0, 1)I(0, ) N(0, 0.1) IG(2.25, 0.0625)
Mean 0.8 0.8 0 0.05
Stdev 0.60 0.60 0.32 0.10

This table shows the prior distributions of parameters used in the Bayesian MCMC

estimation. ‘Stdev’ is the standard deviation. N() is the normal distribution. IG() is

the inverse-gamma distribution. I(b, ) represents truncation below at b. γ and φ are

truncated below at zero, which is perfectly admissible for these variance parameters.

α2 is set equal to 2α∗
2 − 1, where α∗

2 ∼ beta(20, 1.5). To avoid numerical overflow or

loss of precision, draws of h0 are given by 106 times draws from the truncated nor-

mal distribution shown in the column labeled “10−6h0.” h1 and σ2
STOV are drawn in

a similar manner.
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Table 2: Selected parameter estimates of the stochastic volatility-liquidity model

Ticker α0 α1 α2 β1 β2 β3 β4 h1

MSFT -10.4 (-10.6, -10.2) 0.16 (0.13, 0.21) 0.97 (0.94, 0.98) 2.51 (1.23, 4.09) -0.4 (-0.9, 0.0) -0.012 (-0.05, 0.02) 0.057 (-1.9, 2.0) 0.3 (-6.3, 6.4)
HON -10.2 (-10.4, -9.9) 0.16 (0.13, 0.20) 0.97 (0.96, 0.99) 0.22 (0.12, 0.34) -1.9 (-3.4, -0.4) -0.022 (-0.06, 0.01) 0.066 (-1.9, 2.1) 2.3 (0.4, 6.0)
KO -11.2 (-11.4, -10.9) 0.12 (0.10, 0.14) 0.98 (0.97, 0.99) 0.31 (0.21, 0.44) -6.1 (-8.5, -3.7) -0.074 (-0.11, -0.04) 0.013 (-2.0, 2.0) 4.9 (1.9, 9.5)
DD -10.9 (-11.1, -10.7) 0.13 (0.10, 0.16) 0.97 (0.96, 0.99) 2.70 (1.81, 3.85) -1.8 (-3.4, 0.0) -0.028 (-0.06, 0.01) -0.029 (-2.0, 1.9) -3.6 (-8.2, -0.5)
XOM -11.5 (-11.9, -11.1) 0.16 (0.13, 0.20) 0.98 (0.97, 0.99) 0.21 (0.12, 0.29) -13.3 (-16.3, -10.2) -0.037 (-0.07, 0.00) 0.013 (-2.0, 2.0) 4.5 (0.9, 10.4)
GE -11.0 (-11.1, -10.9) 0.28 (0.22, 0.34) 0.87 (0.81, 0.92) 4.19 (3.09, 5.49) -10.1 (-12.9, -7.2) -0.079 (-0.11, -0.05) 0.013 (-1.9, 2.0) -4.2 (-8.7, -0.9)
GM -10.6 (-10.9, -10.3) 0.19 (0.14, 0.23) 0.97 (0.96, 0.99) 0.18 (0.11, 0.24) -2.2 (-2.9, -1.5) 0.002 (-0.04, 0.04) 0.159 (-1.8, 2.1) 4.7 (1.2, 9.3)
IBM -11.2 (-11.7, -10.8) 0.09 (0.08, 0.11) 0.99 (0.99, 1.00) 0.19 (0.13, 0.27) -6.8 (-8.3, -5.4) 0.017 (-0.02, 0.05) 0.050 (-1.9, 2.0) 3.8 (1.2, 9.3)
MO -11.6 (-11.7, -11.5) 0.74 (0.65, 0.82) 0.57 (0.47, 0.68) 0.63 (0.39, 0.93) -1.5 (-2.6, -0.3) -0.041 (-0.07, -0.01) -0.167 (-2.1, 1.8) -2.0 (-4.9, 0.3)
UTX -10.8 (-11.2, -10.4) 0.14 (0.09, 0.18) 0.98 (0.97, 0.99) 0.21 (0.14, 0.28) -2.9 (-4.2, -1.6) -0.007 (-0.05, 0.03) 0.024 (-1.8, 1.9) 4.8 (1.7, 9.1)
PG -11.6 (-11.9, -11.3) 0.14 (0.12, 0.17) 0.98 (0.97, 0.99) 0.16 (0.11, 0.21) -2.8 (-4.6, -1.0) -0.090 (-0.13, -0.05) 0.022 (-1.9, 2.0) 4.2 (1.6, 8.4)
CAT -10.7 (-10.9, -10.4) 0.13 (0.10, 0.16) 0.98 (0.96, 0.99) 1.81 (0.67, 3.66) -2.0 (-2.7, -1.3) -0.007 (-0.04, 0.03) -0.168 (-2.1, 1.8) 3.4 (-2.0, 8.4)
BA -10.5 (-10.7, -10.4) 0.26 (0.23, 0.31) 0.93 (0.90, 0.95) 0.33 (0.16, 0.51) -4.2 (-5.6, -2.7) -0.035 (-0.07, 0.00) 0.016 (-1.9, 2.0) 2.9 (0.5, 7.0)
PFE -11.0 (-11.2, -10.8) 0.19 (0.14, 0.27) 0.96 (0.93, 0.98) 0.20 (0.10, 0.35) -7.4 (-9.7, -5.2) -0.040 (-0.08, 0.00) 0.013 (-1.9, 2.0) 2.2 (0.3, 6.3)
JNJ -11.3 (-11.5, -11.2) 0.20 (0.16, 0.24) 0.95 (0.92, 0.97) 2.70 (1.29, 4.27) -3.1 (-5.0, -1.1) -0.083 (-0.12, -0.05) 0.037 (-2.0, 2.0) 3.1 (-6.1, 7.8)
MMM -11.3 (-11.6, -11.1) 0.12 (0.10, 0.15) 0.98 (0.97, 0.99) 0.14 (0.08, 0.24) -2.4 (-3.5, -1.3) -0.006 (-0.04, 0.03) -0.030 (-2.0, 1.9) 2.3 (0.4, 8.5)
MRK -10.9 (-11.2, -10.7) 0.16 (0.13, 0.19) 0.97 (0.96, 0.99) 1.02 (0.20, 2.60) -4.7 (-6.7, -2.7) -0.033 (-0.07, 0.00) 0.053 (-1.9, 2.1) 5.6 (2.5, 10.1)
AA -10.4 (-10.6, -10.2) 0.15 (0.12, 0.18) 0.97 (0.95, 0.98) 1.02 (0.33, 2.68) -1.6 (-2.8, -0.3) -0.034 (-0.07, 0.00) 0.043 (-1.9, 2.1) -0.1 (-5.0, 5.3)
DIS -10.3 (-10.6, -10.1) 0.23 (0.17, 0.30) 0.96 (0.93, 0.98) 0.26 (0.09, 0.45) -4.7 (-6.3, -3.1) -0.039 (-0.07, 0.00) 0.037 (-1.9, 2.0) 2.6 (0.1, 7.4)
HPQ -9.9 (-10.2, -9.6) 0.15 (0.13, 0.17) 0.98 (0.97, 0.99) 2.47 (1.28, 3.84) -4.3 (-6.1, -2.6) -0.055 (-0.09, -0.02) -0.019 (-2.0, 1.9) 4.2 (1.9, 8.1)
MCD -10.8 (-10.9, -10.7) 0.39 (0.34, 0.46) 0.80 (0.73, 0.86) 3.25 (2.35, 4.57) -1.2 (-2.2, -0.1) -0.063 (-0.10, -0.03) 0.059 (-1.9, 2.0) -5.0 (-10.7, -1.4)
JPM -10.5 (-11.0, -10.1) 0.10 (0.08, 0.12) 0.99 (0.99, 1.00) 2.88 (1.87, 4.23) -6.6 (-8.6, -4.7) 0.006 (-0.03, 0.04) -0.064 (-2.1, 1.9) 5.1 (2.0, 9.3)
WMT -11.2 (-11.5, -11.0) 0.15 (0.13, 0.17) 0.98 (0.97, 0.99) 0.14 (0.09, 0.22) -8.1 (-10.4, -5.9) -0.078 (-0.11, -0.05) 0.025 (-2.0, 2.0) 0.6 (0.2, 2.0)
AXP -10.6 (-10.9, -10.2) 0.14 (0.12, 0.16) 0.99 (0.98, 0.99) 0.34 (0.21, 0.52) -5.5 (-7.4, -3.6) -0.003 (-0.04, 0.03) 0.027 (-1.9, 2.0) 3.8 (1.0, 7.9)
INTC -9.8 (-9.9, -9.7) 0.31 (0.24, 0.38) 0.91 (0.88, 0.94) 1.76 (0.41, 3.28) -1.5 (-2.6, -0.5) 0.008 (-0.03, 0.04) -0.026 (-2.0, 1.9) -4.8 (-7.9, -2.0)
VZ -10.6 (-10.9, -10.3) 0.19 (0.15, 0.24) 0.98 (0.96, 0.99) 0.21 (0.15, 0.28) -5.8 (-8.4, -3.1) -0.026 (-0.06, 0.01) 0.010 (-1.9, 2.0) 4.5 (1.7, 9.3)
SBC -10.3 (-10.5, -10.1) 0.15 (0.14, 0.18) 0.97 (0.96, 0.98) 2.93 (2.11, 4.06) -5.4 (-8.2, -2.6) -0.034 (-0.07, 0.00) 0.018 (-2.0, 2.0) -3.8 (-8.4, -0.5)
HD -10.6 (-10.7, -10.5) 0.23 (0.18, 0.27) 0.93 (0.90, 0.96) 3.57 (2.54, 4.66) -3.4 (-4.4, -2.3) -0.052 (-0.09, -0.02) -0.038 (-2.0, 1.9) -6.9 (-11.3, -3.4)
AIG -10.8 (-11.1, -10.5) 0.16 (0.12, 0.22) 0.98 (0.96, 0.99) 0.24 (0.18, 0.33) -3.8 (-6.6, -0.9) -0.028 (-0.06, 0.01) 0.040 (-2.0, 2.0) 4.1 (1.7, 8.7)
C -10.8 (-11.2, -10.5) 0.18 (0.15, 0.25) 0.98 (0.96, 0.99) 0.25 (0.19, 0.31) -5.3 (-8.1, -2.4) -0.070 (-0.11, -0.03) 0.037 (-1.9, 2.0) 7.8 (3.5, 12.7)
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Table 2: Continued

Ticker ct × 10−3 Nt σ2
t+1 γ φ Corr ψt × 10−9 at bt × 10−3

MSFT 203.70 (44.46, 604.17) 0.5 (0.1, 1.9) 0.12 (0.06, 0.26) 0.09 (0.00, 0.39) 0.23 (0.03, 0.61) 0.47 1017.4 (728.9, 1401.4) 7.8 (2.4, 20.1) 4601.2 (1028.3, 13568.5)
HON 1.77 (0.26, 5.26) 7.6 (2.2, 19.7) 0.34 (0.10, 0.88) 0.00 (0.00, 0.00) 0.01 (0.00, 0.03) 0.97 2.5 (0.8, 5.0) 105.3 (53.5, 185.3) 57.3 (8.6, 175.8)
KO 1.24 (0.37, 3.45) 8.4 (3.2, 16.1) 0.29 (0.11, 0.58) 0.00 (0.00, 0.01) 0.02 (0.00, 0.06) 0.91 2.8 (1.4, 5.5) 162.5 (95.7, 247.3) 48.3 (15.0, 136.4)
DD 0.00 (0.00, 0.02) 256.9 (121.0, 441.3) 0.04 (0.02, 0.07) 0.97 (0.46, 1.83) 0.70 (0.02, 2.13) 0.59 0.1 (0.1, 0.8) 10.2 (5.2, 18.3) 1.0 (0.3, 6.2)
XOM 0.83 (0.14, 2.19) 21.1 (8.7, 49.1) 0.35 (0.13, 0.85) 0.00 (0.00, 0.00) 0.00 (0.00, 0.02) 0.98 5.5 (2.0, 10.1) 328.3 (200.5, 544.3) 41.2 (8.1, 96.7)
GE 0.00 (0.00, 0.02) 817.6 (288.1, 1549.1) 0.02 (0.01, 0.04) 0.30 (0.18, 0.47) 0.82 (0.03, 2.30) 0.28 4.0 (0.9, 23.8) 17.3 (7.5, 34.5) 4.2 (0.8, 27.6)
GM 1.82 (0.43, 4.52) 10.9 (5.4, 24.3) 0.68 (0.29, 1.59) 0.00 (0.00, 0.00) 0.01 (0.00, 0.03) 0.98 3.3 (1.4, 5.5) 50.2 (32.4, 80.5) 30.3 (7.8, 61.2)
IBM 0.82 (0.23, 2.13) 27.5 (11.9, 51.2) 3.20 (1.32, 6.32) 0.00 (0.00, 0.01) 0.04 (0.00, 0.15) 0.99 2.1 (1.0, 4.0) 156.5 (100.7, 226.9) 6.6 (2.0, 16.2)
MO 7.42 (2.28, 17.56) 2.9 (0.7, 7.5) 0.13 (0.01, 0.56) 0.00 (0.00, 0.00) 0.00 (0.00, 0.01) 0.97 25.5 (10.1, 46.4) 44.3 (11.0, 114.9) 805.6 (76.7, 3222.9)
UTX 1.62 (0.48, 3.61) 7.7 (4.0, 15.0) 0.98 (0.46, 1.92) 0.00 (0.00, 0.01) 0.03 (0.00, 0.09) 0.97 0.7 (0.4, 1.1) 83.0 (56.1, 122.2) 11.8 (4.0, 22.8)
PG 0.54 (0.17, 1.26) 16.4 (8.5, 29.3) 1.29 (0.59, 2.51) 0.00 (0.00, 0.01) 0.03 (0.00, 0.10) 0.97 0.6 (0.3, 0.9) 166.6 (111.9, 239.8) 6.2 (2.3, 13.0)
CAT 13.50 (0.59, 87.89) 1.7 (0.0, 6.2) 0.09 (0.05, 0.19) 0.13 (0.00, 0.71) 0.34 (0.00, 1.58) 0.39 3.7 (2.0, 6.4) 9.2 (2.7, 22.8) 242.4 (19.6, 1466.8)
BA 3.29 (0.43, 8.89) 4.1 (1.3, 13.8) 0.25 (0.06, 0.76) 0.00 (0.00, 0.01) 0.00 (0.00, 0.01) 0.98 3.5 (1.0, 6.5) 69.8 (32.1, 140.9) 113.2 (13.4, 344.1)
PFE 0.50 (0.05, 1.63) 47.3 (13.9, 113.6) 0.72 (0.11, 2.52) 0.00 (0.00, 0.01) 0.12 (0.02, 0.31) 0.80 11.2 (2.3, 28.6) 266.3 (100.3, 572.6) 32.4 (3.7, 92.9)
JNJ 0.63 (0.00, 1.59) 92.1 (2.8, 669.0) 0.05 (0.02, 0.10) 0.28 (0.01, 0.79) 0.82 (0.04, 2.00) 0.29 14.3 (0.2, 24.2) 17.9 (7.1, 41.3) 43.4 (0.5, 98.1)
MMM 0.40 (0.06, 1.56) 29.4 (7.7, 66.9) 6.58 (1.78, 15.82) 0.00 (0.00, 0.02) 0.17 (0.00, 0.73) 0.97 0.2 (0.1, 0.5) 120.0 (62.1, 197.3) 1.6 (0.3, 5.7)
MRK 1.49 (0.58, 3.57) 8.1 (3.1, 16.6) 0.31 (0.04, 0.96) 0.03 (0.00, 0.18) 0.52 (0.00, 1.61) 0.37 8.1 (2.3, 14.9) 90.3 (12.3, 212.2) 42.3 (15.2, 89.9)
AA 22.77 (1.96, 91.33) 0.8 (0.0, 3.9) 0.05 (0.02, 0.15) 0.00 (0.00, 0.01) 0.00 (0.00, 0.01) 0.94 11.8 (4.3, 17.7) 26.2 (6.7, 68.1) 1252.7 (126.0, 4822.2)
DIS 2.29 (0.07, 8.30) 10.5 (1.7, 56.8) 0.16 (0.03, 0.78) 0.00 (0.00, 0.00) 0.01 (0.00, 0.04) 0.94 11.5 (1.4, 26.9) 122.8 (48.1, 319.7) 218.9 (7.3, 830.6)
HPQ 2.89 (1.01, 6.54) 3.0 (1.0, 7.6) 0.04 (0.02, 0.08) 0.13 (0.03, 0.36) 0.64 (0.21, 1.36) 0.21 34.5 (27.9, 40.4) 13.6 (5.7, 29.2) 158.5 (71.1, 295.6)
MCD 0.04 (0.00, 0.27) 493.9 (55.4, 1124.6) 0.01 (0.00, 0.03) 0.22 (0.12, 0.38) 1.09 (0.10, 2.56) 0.17 4.9 (0.3, 20.3) 6.9 (1.7, 17.0) 25.8 (0.5, 164.3)
JPM 2.42 (0.84, 4.97) 3.4 (1.6, 7.8) 0.04 (0.02, 0.06) 0.15 (0.03, 0.35) 0.75 (0.25, 1.57) 0.20 36.0 (30.2, 41.3) 10.2 (5.4, 17.5) 138.4 (61.0, 237.5)
WMT 0.12 (0.03, 0.39) 79.5 (28.6, 151.7) 2.89 (0.86, 6.36) 0.01 (0.00, 0.01) 0.09 (0.01, 0.26) 0.96 1.1 (0.5, 2.4) 507.3 (277.3, 788.5) 3.2 (0.8, 10.4)
AXP 3.46 (0.76, 10.54) 4.5 (1.4, 10.6) 0.24 (0.09, 0.56) 0.00 (0.00, 0.01) 0.01 (0.00, 0.04) 0.96 4.2 (1.8, 8.4) 104.4 (55.8, 172.8) 95.4 (20.6, 303.1)
INTC 16.92 (8.47, 29.05) 21.4 (5.3, 66.4) 2.82 (0.08, 11.30) 0.16 (0.00, 0.32) 0.50 (0.05, 1.24) 0.31 1033.4 (515.7, 1364.1) 21.8 (2.7, 87.0) 1663.4 (499.6, 4042.6)
VZ 1.84 (0.54, 4.60) 10.4 (5.2, 18.6) 0.48 (0.21, 0.96) 0.00 (0.00, 0.00) 0.01 (0.00, 0.02) 0.98 4.1 (2.2, 6.9) 221.7 (146.5, 324.3) 37.2 (14.2, 77.3)
SBC 0.00 (0.00, 0.01) 488.2 (242.1, 869.1) 0.03 (0.02, 0.06) 0.50 (0.27, 0.91) 0.72 (0.03, 2.18) 0.42 0.6 (0.2, 2.6) 21.2 (10.5, 39.0) 1.7 (0.5, 9.0)
HD 0.01 (0.00, 0.05) 731.1 (296.7, 1265.2) 0.04 (0.02, 0.07) 0.59 (0.31, 1.02) 1.90 (0.71, 3.32) 0.25 1.9 (0.4, 10.6) 10.1 (4.3, 20.2) 2.8 (0.4, 18.6)
AIG 1.45 (0.45, 3.58) 13.6 (6.6, 23.9) 1.22 (0.48, 2.50) 0.01 (0.00, 0.02) 0.06 (0.00, 0.17) 0.94 2.9 (1.6, 5.1) 221.5 (133.3, 332.2) 17.7 (6.5, 41.2)
C 2.77 (0.88, 6.07) 14.0 (8.4, 23.8) 0.55 (0.28, 1.01) 0.00 (0.00, 0.00) 0.00 (0.00, 0.01) 0.99 14.5 (8.3, 21.6) 206.1 (148.4, 287.9) 52.7 (23.4, 86.5)

This table shows the estimates of selected parameters and quantities of the stochastic volatility-liquidity model. The model is described by the mean return equation in (18) with the price

impact coefficient (19), conditional variance in (20), conditional information variance in (21)-(24), noise trading variance in (25), and the cost of private information in (27). The zero-profit

condition (26) is numerically solved with equality at each node in each iteration. The variances of the two signal noises and the signed share turnover are restricted as γt−1 ≡ γ, φt−1 ≡ φ, and

σ2
stov,t ≡ σ2

stov. bt is computed as a generic entry of Bt using the relations in Theorem 1. For parameters without a time subscript, the mean of the Bayesian MCMC sampling distribution is

shown along with the 2.5 and 97.5 percentiles in parentheses. For quantities with a time subscript, the time-series average of the sampling mean is shown along with the time-series averages of

the sampling 2.5 and 97.5 percentiles in parentheses. Corr is the correlation between the private signals of two informed traders, calculated as (σ2
t+1 + γ)/(σ2

t+1 + γ + φ) at mean parameter

estimates.
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Table 3: Selected parameter estimates of the realized volatility-liquidity model

Ticker α0 α1 α2 β1 β2 β3 β4 h1

MSFT -10.4 (-10.5, -10.4) 0.49 (0.48, 0.50) 0.76 (0.74, 0.79) 2.00 (0.42, 3.75) -0.2 (-0.9, 0.5) -0.017 (-0.05, 0.01) 0.058 (-1.9, 2.0) 0.5 (-5.3, 6.5)
HON -10.1 (-10.1, -10.0) 0.75 (0.73, 0.77) 0.57 (0.55, 0.60) 0.35 (0.17, 0.57) -1.4 (-3.0, 0.3) -0.008 (-0.05, 0.03) 0.040 (-1.9, 2.0) 3.6 (0.5, 8.3)
KO -10.9 (-11.0, -10.9) 0.66 (0.65, 0.68) 0.59 (0.57, 0.61) 3.18 (2.56, 3.89) -5.3 (-8.3, -2.3) -0.049 (-0.09, -0.01) 0.007 (-1.9, 1.9) -3.9 (-8.2, -0.7)
DD -10.7 (-10.7, -10.6) 0.69 (0.68, 0.71) 0.62 (0.60, 0.64) 2.37 (1.70, 3.08) -2.4 (-4.2, -0.5) -0.013 (-0.05, 0.03) -0.018 (-2.0, 1.9) -3.6 (-8.0, -0.5)
XOM -11.0 (-11.1, -10.9) 0.69 (0.68, 0.71) 0.71 (0.69, 0.73) 0.19 (0.15, 0.22) -13.6 (-17.9, -9.4) -0.007 (-0.05, 0.04) 0.010 (-2.0, 2.0) 11.6 (7.1, 16.4)
GE -10.5 (-10.6, -10.5) 0.71 (0.69, 0.73) 0.56 (0.54, 0.58) 3.74 (3.01, 4.56) -10.8 (-14.7, -6.9) -0.031 (-0.07, 0.01) 0.006 (-2.0, 2.0) -3.8 (-8.5, -0.5)
GM -10.5 (-10.5, -10.4) 0.82 (0.80, 0.84) 0.61 (0.59, 0.63) 0.15 (0.10, 0.22) -1.9 (-2.4, -1.3) 0.021 (-0.01, 0.06) 0.071 (-1.9, 2.0) 3.4 (1.0, 8.0)
IBM -10.8 (-10.9, -10.8) 0.67 (0.65, 0.69) 0.56 (0.54, 0.58) 0.17 (0.11, 0.23) -6.2 (-8.1, -4.4) 0.003 (-0.04, 0.04) 0.042 (-2.0, 2.0) 3.8 (1.2, 8.9)
MO -10.9 (-11.0, -10.9) 0.77 (0.75, 0.79) 0.54 (0.52, 0.56) 2.91 (2.13, 3.81) -0.3 (-1.9, 1.3) -0.019 (-0.06, 0.02) -0.210 (-2.2, 1.8) 4.2 (0.7, 8.9)
UTX -10.6 (-10.6, -10.5) 0.75 (0.73, 0.77) 0.59 (0.57, 0.62) 0.24 (0.09, 0.37) -3.7 (-5.1, -2.4) 0.018 (-0.02, 0.06) -0.009 (-1.9, 1.9) 3.2 (0.2, 7.8)
PG -11.4 (-11.4, -11.3) 0.68 (0.67, 0.70) 0.60 (0.58, 0.62) 0.13 (0.09, 0.18) -5.0 (-7.1, -2.9) -0.065 (-0.11, -0.02) -0.016 (-2.0, 1.9) 4.0 (1.2, 7.9)
CAT -10.5 (-10.6, -10.5) 0.73 (0.71, 0.74) 0.47 (0.45, 0.49) 0.19 (0.15, 0.24) -3.0 (-3.8, -2.1) 0.025 (-0.01, 0.06) -0.141 (-2.1, 1.8) -1.3 (-2.3, -0.6)
BA -10.2 (-10.2, -10.1) 0.75 (0.73, 0.77) 0.46 (0.44, 0.48) 2.40 (1.90, 2.93) -3.3 (-5.0, -1.6) -0.017 (-0.06, 0.02) 0.010 (-1.9, 2.0) -3.9 (-8.4, -0.6)
PFE -10.6 (-10.7, -10.6) 0.66 (0.65, 0.68) 0.61 (0.59, 0.63) 2.82 (1.91, 3.81) -6.3 (-9.3, -3.3) -0.011 (-0.05, 0.03) 0.012 (-2.0, 2.0) 5.2 (-2.6, 9.8)
JNJ -10.9 (-11.0, -10.9) 0.74 (0.73, 0.76) 0.60 (0.58, 0.62) 0.20 (0.14, 0.26) -4.7 (-7.2, -2.2) -0.053 (-0.09, -0.01) 0.027 (-1.9, 2.0) 4.8 (1.6, 9.7)
MMM -11.1 (-11.2, -11.1) 1.20 (1.17, 1.23) 0.36 (0.33, 0.38) 0.44 (0.31, 0.60) -2.9 (-4.1, -1.7) -0.011 (-0.05, 0.03) -0.083 (-2.1, 1.9) 6.5 (3.4, 9.8)
MRK -10.8 (-10.8, -10.7) 0.78 (0.76, 0.80) 0.57 (0.55, 0.59) 0.22 (0.13, 0.31) -4.9 (-7.2, -2.5) -0.014 (-0.05, 0.03) 0.013 (-1.9, 1.9) 4.3 (0.9, 8.9)
AA -10.3 (-10.3, -10.2) 0.80 (0.78, 0.82) 0.48 (0.45, 0.50) 2.58 (1.79, 3.51) -1.8 (-3.2, -0.4) -0.009 (-0.05, 0.03) 0.060 (-1.9, 2.0) -3.3 (-8.1, -0.4)
DIS -10.1 (-10.1, -10.0) 0.73 (0.72, 0.75) 0.61 (0.59, 0.63) 2.91 (2.03, 4.05) -6.5 (-8.5, -4.6) -0.011 (-0.05, 0.03) 0.003 (-1.9, 1.9) -3.8 (-8.4, 0.4)
HPQ -9.8 (-9.8, -9.7) 1.16 (1.13, 1.19) 0.41 (0.38, 0.43) 4.86 (3.96, 5.75) -3.2 (-5.2, -1.2) -0.026 (-0.06, 0.01) 0.012 (-2.0, 2.0) 13.1 (11.2, 15.5)
MCD -10.4 (-10.4, -10.4) 0.75 (0.73, 0.77) 0.45 (0.43, 0.47) 3.15 (2.31, 4.12) -2.2 (-3.5, -0.9) -0.020 (-0.06, 0.02) 0.029 (-1.9, 2.0) -3.9 (-8.9, -0.7)
JPM -10.1 (-10.2, -10.0) 0.72 (0.70, 0.74) 0.64 (0.62, 0.66) 0.24 (0.18, 0.31) -6.8 (-8.9, -4.8) 0.008 (-0.03, 0.05) -0.011 (-2.0, 2.0) 5.5 (2.6, 10.0)
WMT -10.8 (-10.9, -10.8) 0.76 (0.74, 0.78) 0.53 (0.51, 0.54) 0.25 (0.17, 0.33) -8.3 (-11.7, -4.7) -0.062 (-0.10, -0.02) 0.012 (-2.0, 1.9) 5.1 (1.9, 10.1)
AXP -10.4 (-10.4, -10.3) 0.75 (0.73, 0.77) 0.61 (0.59, 0.63) 2.54 (1.69, 3.67) -6.8 (-8.9, -4.7) 0.025 (-0.01, 0.06) 0.008 (-2.0, 1.9) -1.4 (-7.9, 6.0)
INTC -9.7 (-9.7, -9.7) 0.50 (0.49, 0.52) 0.75 (0.75, 0.76) 1.38 (0.59, 2.21) -1.0 (-2.1, 0.0) 0.017 (-0.01, 0.05) 0.003 (-2.0, 2.0) -0.7 (-0.7, -0.7)
VZ -10.3 (-10.4, -10.3) 0.72 (0.71, 0.74) 0.65 (0.63, 0.68) 0.21 (0.12, 0.34) -6.7 (-9.8, -3.6) -0.007 (-0.05, 0.03) 0.020 (-1.8, 2.0) 3.5 (0.6, 7.8)
SBC -10.1 (-10.2, -10.1) 0.76 (0.74, 0.78) 0.61 (0.60, 0.63) 3.00 (2.17, 4.01) -5.2 (-8.3, -2.0) -0.035 (-0.08, 0.00) 0.012 (-1.9, 2.0) -3.7 (-8.5, -0.6)
HD -10.3 (-10.3, -10.2) 0.73 (0.71, 0.75) 0.52 (0.50, 0.54) 0.37 (0.28, 0.48) -2.7 (-4.6, -0.8) -0.033 (-0.07, 0.01) 0.019 (-1.9, 2.0) 6.5 (2.9, 10.1)
AIG -10.6 (-10.6, -10.5) 0.75 (0.73, 0.77) 0.65 (0.63, 0.67) 0.17 (0.10, 0.24) -4.5 (-7.6, -1.2) -0.022 (-0.06, 0.02) 0.012 (-1.9, 2.0) 3.5 (0.8, 8.1)
C -10.5 (-10.6, -10.4) 0.66 (0.65, 0.68) 0.76 (0.74, 0.78) 0.22 (0.17, 0.25) -4.7 (-8.1, -1.3) -0.043 (-0.09, 0.00) 0.032 (-1.9, 1.9) 12.6 (6.7, 18.0)
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Table 3: Continued

Ticker ct × 10−3 Nt σ2
t+1 γ φ Corr ψt × 10−9 at bt × 10−3

MSFT 192.03 (16.30, 590.52) 0.8 (0.1, 5.3) 0.26 (0.09, 0.24) 0.08 (0.00, 0.40) 0.39 (0.10, 1.28) 0.31 963.7 (619.7, 1247.7) 6.1 (2.3, 20.5) 5031.3 (499.6, 14529.8)
HON 7.58 (1.11, 20.07) 2.2 (0.5, 6.9) 0.14 (0.07, 0.33) 0.00 (0.00, 0.02) 0.01 (0.00, 0.02) 0.94 6.1 (2.2, 10.2) 55.6 (30.8, 104.6) 260.1 (41.1, 657.1)
KO 0.00 (0.00, 0.02) 244.8 (177.1, 325.9) 0.05 (0.05, 0.05) 2.07 (1.36, 2.96) 0.72 (0.02, 2.07) 0.75 0.3 (0.1, 1.0) 12.5 (10.2, 15.2) 1.2 (0.4, 4.8)
DD 0.00 (0.00, 0.02) 236.8 (161.8, 347.6) 0.05 (0.05, 0.05) 1.48 (0.80, 2.34) 0.72 (0.03, 2.10) 0.68 0.1 (0.1, 0.5) 10.0 (7.5, 13.4) 1.0 (0.3, 4.4)
XOM 3.07 (1.87, 4.37) 7.2 (5.3, 10.0) 0.23 (0.18, 0.31) 0.00 (0.00, 0.00) 0.00 (0.00, 0.01) 0.99 12.0 (8.8, 15.1) 268.4 (230.9, 319.0) 96.3 (57.6, 141.0)
GE 0.00 (0.00, 0.02) 427.3 (313.8, 573.4) 0.03 (0.03, 0.03) 1.82 (1.20, 2.65) 0.73 (0.03, 2.10) 0.72 3.1 (1.2, 10.4) 11.5 (9.3, 14.0) 3.7 (1.0, 13.0)
GM 1.14 (0.35, 2.72) 13.6 (5.9, 25.7) 0.76 (0.37, 1.38) 0.00 (0.00, 0.00) 0.01 (0.00, 0.05) 0.97 2.8 (1.3, 5.0) 54.0 (36.3, 76.1) 45.7 (8.0, 154.1)
IBM 0.99 (0.32, 2.34) 23.4 (11.1, 44.4) 3.67 (1.82, 6.79) 0.00 (0.00, 0.01) 0.04 (0.00, 0.15) 0.99 2.3 (1.1, 4.2) 167.1 (116.5, 233.9) 6.6 (2.1, 15.8)
MO 0.96 (0.17, 2.00) 2.7 (1.3, 6.5) 0.04 (0.04, 0.04) 1.86 (1.00, 2.94) 0.39 (0.01, 1.40) 0.83 25.6 (13.3, 35.0) 4.1 (3.2, 5.5) 74.6 (26.2, 124.1)
UTX 1.57 (0.11, 4.38) 8.4 (2.4, 35.9) 0.92 (0.37, 3.80) 0.02 (0.00, 0.05) 0.10 (0.00, 0.39) 0.87 0.8 (0.2, 1.6) 74.5 (42.9, 171.8) 17.1 (1.3, 45.9)
PG 0.66 (0.20, 1.34) 14.6 (7.5, 29.3) 1.41 (0.75, 2.72) 0.01 (0.00, 0.02) 0.08 (0.00, 0.27) 0.93 0.7 (0.3, 1.1) 173.4 (123.1, 251.3) 6.8 (2.0, 14.1)
CAT 1.28 (0.64, 2.33) 6.8 (4.0, 10.5) 0.64 (0.40, 0.97) 0.00 (0.00, 0.01) 0.01 (0.00, 0.03) 0.98 1.0 (0.6, 1.4) 55.1 (42.3, 69.6) 19.9 (9.8, 35.7)
BA 0.00 (0.00, 0.03) 225.0 (167.7, 290.6) 0.06 (0.06, 0.06) 2.60 (1.71, 3.70) 0.75 (0.03, 2.11) 0.78 0.2 (0.1, 0.7) 6.6 (5.4, 8.0) 1.0 (0.3, 4.3)
PFE 1.72 (0.00, 3.16) 17.3 (1.5, 376.1) 0.04 (0.04, 0.04) 1.14 (0.47, 2.18) 1.11 (0.12, 2.43) 0.51 76.0 (1.6, 96.3) 9.6 (7.0, 13.8) 119.9 (1.9, 192.1)
JNJ 1.30 (0.45, 2.68) 13.6 (7.0, 26.1) 0.71 (0.40, 1.30) 0.01 (0.00, 0.01) 0.08 (0.00, 0.22) 0.85 4.8 (2.4, 8.0) 180.5 (130.4, 255.0) 28.0 (9.4, 58.3)
MMM 1.25 (0.60, 2.06) 7.8 (4.7, 12.9) 0.87 (0.57, 1.35) 0.03 (0.00, 0.09) 1.01 (0.47, 1.59) 0.44 0.8 (0.5, 1.1) 36.2 (25.5, 49.8) 6729.0 (4.1, 22635.8)
MRK 2.52 (0.49, 5.95) 7.6 (3.1, 19.7) 0.54 (0.28, 1.28) 0.01 (0.00, 0.01) 0.02 (0.00, 0.08) 0.94 4.7 (1.7, 8.2) 150.1 (102.6, 247.8) 54.9 (10.7, 128.3)
AA 0.05 (0.00, 0.29) 197.3 (63.0, 366.4) 0.03 (0.03, 0.03) 1.20 (0.59, 2.12) 0.64 (0.02, 2.09) 0.66 1.1 (0.1, 4.5) 6.1 (4.3, 8.6) 8.3 (0.4, 39.7)
DIS 0.02 (0.00, 0.29) 292.7 (4.1, 491.1) 0.02 (0.02, 0.02) 0.91 (0.44, 1.65) 0.70 (0.02, 2.08) 0.57 1.5 (0.3, 16.9) 8.3 (5.8, 11.5) 5.9 (0.7, 71.7)
HPQ 7.87 (6.68, 9.46) 0.3 (0.2, 0.4) 0.04 (0.04, 0.04) 1.00 (0.75, 1.34) 0.88 (0.71, 1.06) 0.54 48.8 (45.1, 53.3) 3.2 (2.8, 3.9) 30961.9 (294.9, 82843.8)
MCD 0.00 (0.00, 0.02) 222.9 (146.7, 333.0) 0.02 (0.02, 0.02) 1.19 (0.63, 1.96) 0.68 (0.02, 2.00) 0.64 0.8 (0.3, 2.7) 3.7 (2.8, 5.0) 2.8 (0.8, 10.9)
JPM 3.05 (1.40, 5.58) 8.3 (4.8, 13.4) 0.36 (0.23, 0.55) 0.00 (0.00, 0.00) 0.00 (0.00, 0.02) 0.98 10.7 (6.6, 15.9) 121.1 (93.3, 155.5) 77.0 (35.2, 141.5)
WMT 1.33 (0.52, 2.69) 14.8 (7.7, 26.3) 0.59 (0.33, 1.07) 0.00 (0.00, 0.02) 0.22 (0.03, 0.44) 0.67 6.5 (3.4, 10.3) 216.8 (156.3, 309.0) 28.4 (10.6, 57.4)
AXP 0.45 (0.00, 2.54) 182.2 (1.1, 391.5) 0.06 (0.05, 0.06) 1.44 (0.46, 2.57) 0.59 (0.01, 2.03) 0.71 2.7 (0.1, 9.4) 11.0 (7.4, 15.8) 20.6 (0.3, 96.3)
INTC 16.32 (16.03, 16.64) 2.1 (1.2, 4.3) 0.75 (0.21, 2.75) 0.51 (0.12, 1.03) 0.08 (0.00, 0.37) 0.86 1176.6 (909.1, 1373.6) 8.7 (4.8, 18.2) 1567.8 (1373.8, 1856.1)
VZ 3.47 (0.49, 10.77) 7.0 (1.9, 19.8) 0.43 (0.17, 1.08) 0.00 (0.00, 0.01) 0.01 (0.00, 0.06) 0.95 6.7 (2.1, 13.9) 198.3 (114.1, 343.5) 88.4 (12.2, 279.8)
SBC 0.00 (0.00, 0.02) 340.5 (238.4, 488.9) 0.04 (0.04, 0.04) 1.37 (0.74, 2.30) 0.69 (0.03, 2.03) 0.67 0.7 (0.3, 2.6) 16.0 (11.8, 21.5) 2.5 (0.6, 10.1)
HD 2.48 (1.11, 3.90) 8.6 (5.3, 16.1) 0.21 (0.15, 0.33) 0.00 (0.00, 0.00) 0.18 (0.12, 0.29) 0.39 25.4 (18.4, 31.7) 61.8 (47.8, 82.3) 118.0 (53.9, 183.3)
AIG 1.42 (0.32, 3.32) 16.8 (6.9, 36.4) 1.90 (0.87, 3.93) 0.01 (0.00, 0.02) 0.05 (0.00, 0.19) 0.96 2.5 (1.0, 4.6) 278.0 (184.1, 420.9) 13.3 (3.0, 31.4)
C 5.76 (3.11, 8.34) 8.1 (5.9, 12.2) 0.50 (0.38, 0.72) 0.00 (0.00, 0.00) 0.00 (0.00, 0.01) 0.99 22.3 (15.2, 28.6) 193.3 (165.3, 237.7) 86.0 (46.4, 125.8)

This table shows the estimates of selected parameters and quantities of the realized volatility-liquidity model. The model is described by the mean return equation in (18) with the price impact

coefficient (19), conditional variance in (29), conditional information variance in (21)-(24), noise trading variance in (25), and the cost of private information in (27). Following Zhang, Mykland,

and At-Sahalia (2005), the realized variance, σ2
Re,t, is computed as the bias-corrected average of subsampled realized variances based on log price differences, as described in Subsection 2.6.

The zero-profit condition (26) is numerically solved with equality at each node in each iteration. The variances of the two signal noises and the signed share turnover are restricted as γt−1 ≡ γ,

φt−1 ≡ φ, and σ2
stov,t ≡ σ2

stov. bt is computed as a generic entry of Bt using the relations in Theorem 1. For parameters without a time subscript, the mean of the Bayesian MCMC sampling

distribution is shown along with the 2.5 and 97.5 percentiles in parentheses. For quantities with a time subscript, the time-series average of the sampling mean is shown along with the time-

series averages of the sampling 2.5 and 97.5 percentiles in parentheses. Corr is the correlation between the private signals of two informed traders, calculated as (σ2
t+1 + γ)/(σ2

t+1 + γ + φ) at

mean parameter estimates.
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Table 4: Price impact regression

Stochastic vol-liq model Realized vol-liq model
Ticker g1 g2 g1 g2
MSFT 5.2 ***(11.9) 14.6 ***(6.6) 5.5 ***(10.9) 24.3 ***(8.1)
HON 66.9 ***(15.1) 114.4 ***(12.1) 24.2 ***(11.6) 92.2 ***(13.0)
KO 86.0 ***(12.8) 242.8 ***(14.0) 2.2 ***(5.5) 48.9 ***(19.2)
DD 12.7 ***(12.8) 26.6 ***(12.5) 6.4 ***(7.3) 33.5 ***(15.8)
XOM 20.0 ***(7.4) 645.4 ***(18.4) 6.7 ***(2.7) 375.9 ***(18.0)
GE 12.0 ***(8.7) 30.7 ***(12.3) 5.0 ***(6.9) 36.7 ***(16.7)
GM 16.1 ***(15.3) 64.6 ***(14.5) 10.9 ***(10.0) 58.2 ***(13.1)
IBM 9.8 ***(8.3) 155.2 ***(12.8) 4.0 ***(5.2) 128.5 ***(12.6)
MO 5.3 ***(3.4) 64.2 ***(8.3) 1.4 ***(9.8) 12.4 ***(14.9)
UTX 9.6 ***(12.6) 91.4 ***(14.0) 8.5 ***(9.3) 104.7 ***(12.1)
PG 43.2 ***(15.9) 172.1 ***(11.5) 23.9 ***(7.7) 167.0 ***(10.9)
CAT 2.8 ***(6.4) 20.0 ***(14.1) 6.2 ***(3.9) 89.5 ***(13.6)
BA 39.9 ***(14.3) 119.7 ***(14.6) 0.8 ***(8.2) 18.0 ***(18.6)
PFE 116.5 ***(8.1) 383.1 ***(12.5) 1.4 ***(3.4) 23.6 ***(14.4)
JNJ 9.9 ***(11.8) 36.2 ***(10.9) 12.0 ***(3.7) 310.0 ***(15.6)
MMM 7.6 ***(14.1) 121.4 ***(13.0) 1.4 ***(6.4) 34.8 ***(8.5)
MRK 34.4 ***(11.3) 156.9 ***(13.1) 19.3 ***(6.5) 285.3 ***(16.1)
AA 31.9 ***(10.8) 56.9 ***(14.3) 3.8 ***(5.0) 14.8 ***(14.1)
DIS 268.3 ***(12.7) 178.3 ***(11.8) 9.7 ***(4.7) 20.7 ***(12.9)
HPQ 13.4 ***(10.8) 30.0 ***(12.7) 1.3 ***(5.5) -0.5 (-1.0)
MCD 22.2 ***(15.1) 14.8 ***(12.4) 4.9 ***(9.7) 7.6 ***(13.7)
JPM 9.9 ***(13.0) 19.2 ***(11.0) 43.2 ***(11.9) 102.3 ***(11.5)
WMT 262.2 ***(15.3) 701.1 ***(11.9) 24.4 ***(5.2) 377.5 ***(15.2)
AXP 57.2 ***(10.1) 176.1 ***(12.5) 1.6 **(2.2) 37.9 ***(16.1)
INTC 22.6 (0.8) 14.4 (0.2) 3.2 (0.2) 8.4 (0.2)
VZ 71.1 ***(13.3) 283.6 ***(14.3) 58.3 ***(7.7) 326.2 ***(13.7)
SBC 28.6 ***(14.2) 48.9 ***(11.9) 4.4 ***(4.0) 63.6 ***(17.3)
HD 7.8 ***(9.7) 27.0 ***(13.7) 25.8 ***(6.8) 81.9 ***(6.6)
AIG 19.6 ***(9.4) 408.2 ***(16.7) 8.7 ***(6.1) 447.8 ***(16.5)
C 15.3 ***(15.6) 331.9 ***(19.9) 10.8 ***(7.1) 228.5 ***(15.3)

This table shows the estimated slope coefficients of the price impact regression, at = g0 +g1δ
2
t−1 +

g2δ
2
t−1,M +εt, for both the stochastic and realized volatility-liquidity (“vol-liq”) models. t-statistics

are shown in parentheses. *, **, and *** represent significance at 10, 5, and 1%, respectively.
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Figure 1: The number of informed traders. This figure plots the number of informed
traders at time t−1 (PanelA) and the expected number of informed traders at time t (PanelB)
against the time t − 1 squared shocks to the informationally active and passive securities in
Example 1.
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Figure 2: News impact surfaces. This figure plots the conditional variances of the informa-
tionally active (ht,A, Panel A) and passive (ht,P , Panel B) securities in Example 1 against their
squared shocks at time t− 1. ht,A and ht,P are the diagonal elements of Ht in Equation (11).
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Figure 3: Expected trading volume. This figure plots the expected trading volume of
the informationally active (Et−1[vt,A], Panel A) and passive (Et−1[vt,P ], Panel B) securities in
Example 1 against their squared shocks at time t−1. Et−1[vt,A] and Et−1[vt,P ] are the elements
of Et−1[Vt] in Equation (13).
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Figure 4: Expected illiquidity. This figure plots expected the illiquidity of the informationally
active (Et−1[at,A], Panel A) and passive (Et−1[at,P ], Panel B) securities in Example 1 against
their squared shocks at time t−1. Et−1[at,A] and Et−1[at,P ] are the diagonal elements of Et−1[At]
in Equation (14).
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Figure 5: Estimates for IBM. This figure plots selected parameter estimates of the stochastic
volatility-liquidity model for IBM from the Bayesian MCMC procedure. The means of the
following quantities are plotted along with the 95% confidence intervals in dashed lines: Panel
A: the residual return variance, σ2

e,t; Panel B: the cost of private information, ct; Panel C: the
number of informed traders, Nt; Panel D: the price impact coefficient, at (shown as a∗t in the
vertical label). The horizontal axis represents time at the hourly frequency. Only the dates of
several periods are shown in the mmddyy format.
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