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Abstract

This article proposes a rational model to demonstrate that firm-specific risks can be

priced in the equilibrium and can generate asset pricing anomalies such as momentum. In

general, business risks at both the market level and firm level can affect a firm’s investment

decisions, and a firm usually has certain ability to forecast firm-level risks, such as demand

changes or technology innovations. When a firm dynamically adjusts its business according

to forecasted firm-level risks, investors face a beta risk (which proxies for firm-level risks) in

addition to the market risk. These two risks jointly create a nonlinear risk premium, which

simultaneously explains momentum and the Fama and French (1993) three-factor model. In

other words, momentum profits and the size (value) premium in this model reflect reasonable

rewards to compensate investors for the two risks. Empirically, the estimated risk premium

contributes a large portion (in many cases a leading portion) of stock momentum profits and

helps identify stocks likely to generate more momentum profits. Market-to-book, size, or two

proxies of mispricing do not absorb the latter effect.

JEL Classification: G12



The phenomenon of momentum has perplexed financial economists, generating both excite-

ment and controversy. On the one hand, since Jegadeesh and Titman (1993) first documented

that a variety of strategies that buy past winners and sell past losers can produce significant

profits, researchers have shown that the phenomenon is both robust for the “out-of-sample”

U.S. data after 1993 (Jegadeesh and Titman (2001)), and pervasive in other parts of the world

(Rouwenhorst (1998, 1999); Griffin, Ji, and Martin (2002)). On the other hand, according to

traditional asset pricing theories, the momentum phenomenon should not exist. Recently, many

behavioral, as well as rational, hypotheses have emerged to explain the source of momentum

returns. But beyond the stylized empirical facts, the only consensus seems to be that traditional

asset pricing models fail to explain momentum.1 After ten years of research, momentum still

remains one of the greatest challenges to rational asset pricing theories.

To investigate the potential economic source of momentum, this article explores the possi-

bility that firm-level risks can affect a firm’s investment decisions and, consequently, affect asset

prices and lead to asset pricing anomalies. It contributes to the literature by demonstrating that

a rational economy can have size, book-to-market, and several momentum-related phenomena

because of the asset pricng impact of firm-level risks. Traditional asset pricing models focus

on market-wide risks, assume a static variance-covariance matrix for asset returns, and, conse-

quently, predict that a firm’s risk exposure, or beta, is static and that the expected risk premium

is linear in beta. If a firm’s investment opportunity set changes over time, however, the firm’s

beta may be dynamic (see, for example, Berk, Green, and Naik (1999)), because a rational firm

wants to explore good business opportunities whenever possible. Furthermore, since a firm is

likely to have some information about or influence on its own business environment, anticipated

fluctuations therein can easily alter the firm’s investment policy and its systematic risk expo-

sure. For example, a car manufacturer can survey its customers, anticipate increased demand

and a higher profit margin for sports utility vehicles (SUVs) and start to expand the production

line. It will then realize more earnings by selling more SUVs. Meanwhile, since SUV sales are

more vulnerable to fluctuations in oil prices (an example of market-wide risk) than other models,

expanding SUV production may introduce more oil risk to the firm’s earnings.

1For example, Grundy and Martin (2001) show that residuals from a conditional version of the Capital Asset

Pricing Model (CAPM) and the Fama and French (1993) three-factor model demonstrate pronounced momentum

profits. Griffin, Ji, and Martin (2002) argue that macro and business cycle factors fail to explain momentum.

Section 4 further surveys the literature.
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In general, to determine which project it should invest and how large the investment scale

should be, a firm needs to forecast the future cash flows generated by per dollar investment and

risks that can affect future cash flows. The SUV example reminds us of one important property

that traditional models ignore: all risks are not the same from a firm’s perspective. Some risks,

especially flucturations related to (though not restricted to) firm-level investment opportunities,

such as demand changes or technology innovations, can be fairly forecasted by a firm’s research

branch. Others, such as market-wide risks or systematic risks, remain unpredictable or out of

the control of a typical firm. Consequently, investment risks at the market level and the firm

level can affect a firm’s investment policy in different manners. A forecasted superior investment

opportunity (or a forecasted positive shock of the firm-level risk) can generate more expected

future earnings and induces a firm to invest more. Meanwhile, since a firm cannot predict or

hedge out systematic risks, more investments are essentially a larger bet on systematic risks and

will create more earnings variations. A rational firm needs to balance these benefits and costs

in making investment decisions. But as the SUV example illustrates, even when a firm does

not react dynamically to unpredictable systematic risks, its systematic risk exposure, or “beta,”

nevertheless varies when the firm adjusts its business in response to predictable risks. This

observation suggests that static asset pricing models or models that focus only on unpredictable

systematic risks may fail to fully describe the economic role of the production sector.

Ancitipating firms to ultimately distribute their earnings as dividends, investors now need

to hedge against both market-wide and firm-level risks that affect future dividends. In practice,

investors usually cannot forecast firm-level investment risks. But they can use beta dynam-

ics to proxy for the latter. Consequently, investors’ asset-allocation decisions depend on their

inferences about beta, as well as those about the systematic risk.2 This twofold uncertainty

creates nonlinear dividend risks for investors. Generalizing Whittle (1990) and assuming that

asset prices are determined such that investors are willing to hold all stocks issued by firms, this

article demonstrates that the investors’ stochastic control problem leads to two new components

in the risk premium, in addition to the traditional CAPM element. These two components are

related to the mean and variance of predicted beta dynamics, even when investors hold diver-

sified portfolios. In other words, the model proposes that, when investors fully recognize the

economic role of individual firms, asset prices should reflect the influence from corporate policies

or factors affecting firms’ decision-making process.

The new risk premium components rationalize momentum and the Fama and French (1993)

2In general beta dynamics reflect expected changes in the firm’s business opportunity set and will be partly

determined by firm investment policies.
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model simultaneously. In the current model, momentum arises because firm-level business op-

portunities, as well as the corresponding corporate investments, are likely to persevere in a short

period of time (SUV demands can last for a while; new technologies replace old ones gradually).

Size (value) premium exists because investors discount stock prices for firms with bad firm-level

investment opportunities. Both anomalies reflect reasonable rewards to compensate rational in-

vestors for nonlinear risks, a feature that linear asset pricing models fail to capture.3 Using the

terminology of the Taylor approximation, traditional asset pricing models consider first-order

effects of the cash flows generated by the production sector of the economy. Although first-order

terms can explain a large part of the time series and cross-sectional return variation, there can

always exist higher-order effects or anomalies related to ignored corporate activities. In light

of this theory, the article provides a coherent explanation for several well-known asset pricing

anomalies, not just momentum. Furthermore, the equilibrium price system in this model already

reflects all public information. Therefore, the existence of momentum or other anomalies does

not necessarily mean a failure of the efficient market hypothesis. It is the linear pricing formula

that fails in this model.

Besides momentum and the size (value) effect, a list of interesting phenomena can intu-

itively exist in this model, including industry momentum (Moskowitz and Grinblatt (1999)),

Fama-French portfolio momentum (Lewellen (2002)), earnings momentum (Chan, Jegadeesh,

and Lakonishok (1996)), positive relationships between market-to-book ratio and earnings (Fama

and French (1995)), between market-to-book and investment (Xing (2002)), between market-to-

book and momentum profitability (Daniel and Titman (1999); Sagi and Seasholes (2001)), and

an inverted U-shape relationship between momentum and size (Hong, Lim, and Stein (2000)).

The model also explains why momentum portfolios work better for a holding horizon between

3 and 12 months, why momentum profits are driven mostly by loser stocks (Hong, Lim, and

Stein (2000)), and why momentum returns are more significant during the expanding period of a

3Priced firm-level risks create a conditional and cross-sectional dispersion for expected asset returns. This

dispersion will last for a while, following the autocorrelation of firm investments, and lead to momentum. In a

traditional asset pricing world, on the other hand, firm-level investment autocorrelations should be diversified away

and will not lead to momentum. For the size (value) premium, investors do not like firms with bad investment

opportunities and will push down the market price for these firms in order to guarantee a higher expected future

return. As a result, smaller-size or low market-to-book firms are associated with higher future return mechanically.

The link between firm-specific beta risks and firm characteristics explains the Daniel and Titman (1999) finding

that the firm-specific component of characteristics can affect asset return. Upon these intuitions, the key difference

between this model and the literature (Fama and French (1992, 1993), Conrad and Kaul (1998), Moskowitz and

Grinblatt (1999), to name a few) is that asset pricing anomalies can exist because of priced firm-level risks, instead

of market-level risks.
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business cycle (Chordia and Shivakumar (2002)) or following a positive market return (Looper,

Gutierrez and Hameed (2004)). This empirical evidence demonstrates the explanatory power of

this model.

Since there may always be missing risk factors and behavioral effects, perhaps the most

interesting empirical question is what fraction of momentum this simple model explains. The

model can be estimated via an extended Kalman filter. For the New York (NYSE) and American

Stock Exchange (AMEX) stocks, the risk-adjusted momentum profits based on this model usually

drop to less than 40% of the raw return momentum profits during the period from 1965 to

1999 for a set of weighted relative strength strategies (WRSS). To further reveal the economic

source of momentum, I decompose the WRSS momentum profits into four components. The

decomposition clearly shows that a leading portion of the profitability is related to firm-level

risks. The risk premium due to firm-level risks usually contributes more than half of the total

momentum profits, whereas the traditional CAPM component explains a much smaller part

(around 10% or less). The estimates for the S&P 500 index stocks attribute a similar fraction

of stock momentum profits to risks. The remaining WRSS momentum is economically small,

usually less than 4% a year before costs. The risk-adjusted momentum for winner-minus-loser

(WML) strategies is more profitable, indicating that empirically the model less successfully

explains the profits from strategies based upon the most extreme firms. Still the risk contribution

to momentum is significant (up to 40%).

To further demonstrate that the model provides real explanatory power to momentum so that

the decomposition is not an artifact of overfitting the data, I focus on a unique prediction of the

model that firms with more dynamic behavior are likely to generate more momentum profits. In-

sample tests confirm the hypothesis (sorting stocks into ex-post risk-premium-dynamics quartiles

can create quartile-momentum-return differences up to 7% a year for WRSS strategies and 10%

a year for WML strategies) and show that this effect is not absorbed by market-to-book, size,

or two measures of mispricing. Out-of-sample firm-dynamic quartiles can still create significant

momentum spreads between stock quartiles up to 5% a year for WRSS strategies and 7% a year

for WML strategies. These tests also provide direct evidence that momentum can be associated

with estimated firm-level risks. Overall, the empirical results strongly suggest that this model

captures important and perhaps fundamental features of the asset return process.

In the rational-momentum literature, Berk, Green, and Naik (1999) first model the time-

varying betas of a firm with the concept of a growth option, showing that their model can lead

to momentum. More recently, Johnson (2002) shows that stochastic dividend growth rates lead

to autocorrelation for firm returns. Sagi and Seasholes (2001) argue that momentum may be tied
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to the dynamics of firm-specific factors, especially through the measure of convexity. Although

this article shares with these studies the intuition that firm behavior should be correlated with

economic fundamentals and that characteristics or nonlinearity may be important in explaining

momentum profits, it differs in several important respects.

First, since no model is likely to explain all momentum profits, the ultimate success of a

model, rational or behavioral, should be judged by what scope of empirical phenomena and

what fraction of momentum profits the model explains. The model proposed here is coherent

for several CAPM anomalies, including momentum, and can explain a number of documented

momentum phenomena in the literature. Furthermore, this study not only adopts a general

equilibrium setup and offers a closed-form solution for the return process, but also provides an

empirical method to directly test the model and estimate the percentage of momentum related

to risks. This model also has the advantage of being easily tested by standard asset return

data and expanded to bring more corporate fundamentals into the asset pricing framework. The

empirical tests conducted here directly confirm the explanatory power of the model. As for the

economic intuition, unlike other studies, the result here is largely driven by a firm’s willingness

and ability to achieve economies of scale. Finally, and perhaps most interestingly, this article

demonstrates that, based on some general assumptions regarding the decision-making process

of a firm, firm-specific risks can be priced and can lead to asset pricing anomalies. It therefore

proposes a new economic insight.

The remaining paper proceeds as follows. Section 1 explains the model and solves for the

equilibrium asset prices. Section 2 reveals the source of momentum profits. Section 3 empirically

investigates the source of momentum profits. Section 4 surveys related literature. Section 5

concludes. The Appendix contains all proofs and some simulation results.

1 The Model

1.1 The Firms

There are I firms in the economy. A typical firm (firm i) lives forever and has one public

share of stock outstanding. It has one unit of a fixed-scale project that will pay out a constant

cash flow Di
0 at each period.4 It can also invest in a risky project at the beginning of each

period. At the end of the same period, the risky project will produce some cash flow, which

is affected by different risks. As mentioned, a firm is likely to have different perceptions upon

different investment risks. For example, the firm-level business environment (which can include

4A firm can, for example, hold some cash. This assumption avoids negative prices in the equilibrium.
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firm-specific information such as customer demands and technology innovations) affects the

profitability of any risky projects. But in reality a successful firm usually has some ability

to forecast and even exploit possible changes in its firm-level business environment. A firm

can, for instance, survey the market (or conduct research), predict the preferences of customers

(or develop a promising new technology), change its business lines accordingly, and sell more

favorable products in the future. Fluctuations in the firm-level business environment therefore

illustrate an example of risks foreseeable from a firm’s point of view. To emphasize the firm’s

role in shaping its own firm-level business environment, firm-level risks will also be referred to

as firm-level investment opportunities. Meanwhile, as pointed out by traditional asset pricing

models, there are also market-wide or systematic risks that are unpredictable or totally beyond

the firm’s control. These risks also affect future cash flows. Hence, without loss of generality,

assume the cash flow generated by one unit of any risky project will be affected by two risks: a

business environment risk, F i
t , that is perfectly predictable to the firm (but not to investors and

econometricians−therefore it is called a latent risk), and a market-wide systematic risk, Xt,which

is totally unpredictable to the firm. Assume that Xt ∼ i.i.d. N(0, σ2
x) and that the realization

of Xt is observed by the firm and all investors. Analytically, one unit of a risky project costs ki

to invest and will produce a cash flow Y i
t at the end of the period:

Y i
t = Y i

0 + Xt + liF i
t , (1)

where Y i
0 is the unconditional expected payoff and li is the project’s exposure to the foreseeable

risk. Equation (1) can also be regarded as a first-order Taylor approximation of real production

function, so all cash flow risk loadings are constants.5 The exposure to the market risk has been

normalized to one. Since it is forecasted by the firm, the latent risk is approximated by an AR(1)

process.

F i
t = ΓiF i

t−1 + εi
F,t. (2)

The AR(1) assumption seems to be a natural approximation of the ebb and flow of real-world

business environments. For example, if consumers currently prefer SUVs to other car models,

substantial earnings from SUV sales may last for a while, but not forever. For another example,

a firm adopting a new technology gains a short-term competitive advantage. But competition

makes it unlikely for the firm to stay at the innovation frontier forever. Original technology

5This decomposition simplifies potential risks and the decision-making process of a real firm, and omits labor

costs and forecasting errors. But the intuition is rich enough for the purpose of this paper. Predicted risks can also

be easily expanded to contain market-wide components (the business cycle, for example), industry components,

or other predictable systematic risks. For simplicity, this paper focuses on the asset pricing impact of predicted

firm-level risks.
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repeatedly ages and costs the firm money to upgrade.6 For simplicity, assume 0 < Γi < 1,

F i
0 = 0, and εi

F,t follows an i.i.d. normal distribution N(0, σ2
F,i). To maintain tractability,

assume that ki = k, Y i
0 = Y0, Γi = Γ, and σ2

F,i = σ2
F are the same for every firm. In other words,

all latent factors are independent, and all the firms are i.i.d. at time zero (ex-ante). Assume

that σx, Γ, and σF are publicly known to the firm and investors. Finally, in the economy there

is also a risk-free good (bond), which can be sold long or short elastically at will.7 The risk-free

rate equals r.

The remaining part of this subsection examines the decision making process of a typical firm.

For simplicity, the index i will be suppressed when there is no confusion. At the beginning of

period t+1, a firm forecasts perfectly the next period’s business environment Ft+1 (or ǫF,t+1) and

determines mt+1, the units of risky project it will invest in at t+1. It then borrows money from

the bond market to finance the risky project. At the end of the t+1 period, it will pay back the

borrowings and pass all the remaining cash flow to the investors as dividends. At the beginning

of the next period t + 2, the firm repeats this behavior. The firm maximizes the risk- or cost-

adjusted earnings period by period, because, for example, management compensation is linked

to earnings. For simplicity, assume both the firm and the investor have negative exponential

utility functions (later I will show that a risk-neutral firm with a quadratic cost function leads

to similar results).8 The firm has a risk aversion parameter γF and solves the following problem:

Max
mt+1

Et[−e−γF Zt+1] (3)

s.t. Zt+1 = D0 + (Y0 + Xt+1 + lFt+1)mt+1 − (1 + r)kmt+1,

where Zt+1 is the net cash flow by the end of the period t+1. The second equation simply states

6According to traditional financial theories, idiosyncratic latent risks should not have any asset pricing impact

and will not automatically create momentum in a well-diversified economy. Later sections will explain why

momentum exists in a well-diversified economy.
7The assumption of perfect elasticity avoids adding a hedging demand component to investors’ endowments,

allowing one to focus on the asset pricing impact due to the firm’s dynamic investment behavior.
8This builds up a similarity between the production and the investor sectors of the economy. The risk aversion

prevents the firm, which has a linear cost function, from investing infinitely in a favorable risky project. Meanwhile,

because a firm will pay out all its net earnings as dividends to investors, maximizing either net earnings or asset

prices will provide a firm the incentive to invest more into better investment opportunities (which is enough to

generate momentum). Both approaches make economic sense because both earnings and share prices are commonly

used measures for management performance. The approach adopted here is mathematically more appealing. In

terms of the investment q theory, maximizing earnings enables the firm to invest according to the “marginal q,”

while maximizing share price is equivalent to investing according to the “average q.” Both investment policies

can generate momentum. However, the two q values may not match each other exactly. Interested readers may

refer to Blanchard, Rhee, and Summers (1993), for instance, for why the two q values may differ.
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that the net cash flow equals the sum of the cash flows from the risk-free and risky projects,

minus the investment cost. All information is conditioned at the end of time period t. Assume

there is no investment irreversibility, financial constraint, or any other friction. The optimal

investment decision of the firm and its corresponding dividend policy are given by the following

lemma:

Lemma 1 (Optimal Investment Policy of the Firm)

1. The optimal investment policy of the firm is given by:

mt+1 =
Y0 − k(1 + r) + lFt+1

γF σ2
x

, (4)

where mt+1 has a static component (Y0 − k(1 + r))/γσ2
x and a dynamic component lFt+1/γσ2

x.

2. The optimal investment policy mt+1 follows an AR(1) process

mt+1 = m0 + Γmt + εm,t+1, (5)

where m0 = (Y0−k(1+r))(1−Γ)/γF σ2
x and εm,t+1 follows the distribution N(0, σ2

m = l2σ2
F /(γ2

F σ4
x)).

3. The net earning and the dividend payoff of the firm will be

Yt+1 = Dt+1 = D0 + γF σ2
xm2

t+1 + mt+1Xt+1 (6)

4. If the firm is risk neutral, and if the total investment cost function c(mt+1) is increasing

and quadratic in mt+1 (i.e., c(m) = Am + Bm2, where A,B > 0), then the firm’s optimal

investment will follow an AR(1) process, and the dividend policy will be

Yt+1 = Dt+1 = D0 + Bm2
t+1 + mt+1Xt+1. (7)

Assume Y0 − k(1 + r) + lFt+1 > 0 so that firm investments are always positive. The lemma

shows that the optimal scale of the risky project is jointly determined by the firm-level risk

and the market risk. Additional investments help a firm fully utilize its expected investment

opportunity in response to good news at the firm level, but will also result in extra earnings

variations because of increased exposure to unpredictable systematic risk. Equation (4) states

that when the expected firm-level business environment is more favorable, when the whole market

is less risky, or when the firm is less risk averse, the firm will invest more in the risky project.

Hence, a firm’s optimal investment policy, or m(t), correlates with anticipated future investment

opportunities and also follows an AR(1) process. The autocorrelation of firm investments is well

documented in the macroeconomics literature.

More interesting is the dividend policy. In the model, the dividend is simply the net earnings

of the firm. Lemma 1 says that, although the firm does not purposefully respond to the market
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risk, the dividends nevertheless have a dynamic exposure to this market risk: since SUV sales

have a greater exposure to oil price shocks, whenever the car maker expands SUV productions,

its earnings will become more vulnerable to a sudden oil crisis. This exposure, or m(t), can

be thought of as a cash flow beta, since it measures the covariance between a firm’s cash flow

(earnings) and the systematic risk. Later sections will show that the expectation of the cash flow

beta is related to the conditional CAPM beta. Because the cash flow beta is related to the latent

risk, the m(t)X(t) term combines two linear risks together and becomes itself nonlinear. The

m(t)2 term is also nonlinear and directly reflects the benefit from the firm’s dynamic investment

policies. Because a better investment opportunity leads to both more expected net cash flows

per dollar investment and a larger investment scale, the cash flow (or earnings) sensitivity to

investment increases in the investment scale itself. Needless to say, if a firm has no forecasting

power, then m(t) becomes constant and this term drops.

The model’s main focus is on the economy with a risk-averse firm that has a linear cost

function. But the last part of the lemma shows that the same functional dividend policy can

come from a risk-neutral firm with a quadratic cost function. It can be proven that a second-order

Taylor approximation of any increasing cost function is equivalent to a risk-aversion parameter of

the model. In general, for any monotonically increasing cost function or monotonically increasing

and concave utility function, if we allow the firm to achieve economies of scale, then m(t) will

be correlated with the latent factor (business risks) and the dividend policy will be nonlinear in

the total risks.

1.2 Undiversified and Well-Diversified Investors

A typical investor lives two periods. Investor t enters the economy at time period t and receives

a labor income or an endowment Wt for that period. At the beginning of period t + 1, the

investor allocates her endowment between the risk-free asset and the stocks of the firm that she

buys from the older generation. At the end of the period t+1 she collects the dividends, sells

her firm to the new generation, and consumes her terminal wealth of Wt+1.
9 The investor has

a negative exponential utility function and solves the following problem subject to some budget

constraints:

Max
ni

Et[−e−γIWt+1], (8)

where γI measures risk aversion and ni is the number of firm i shares she wants to buy.

To fully explore the asset pricing impact of firm decision making process under different

economic consitions, let us consider the following two important cases. In the first case, asset

9Each generation holds the stock for one period. Hence, the model is essentially a repeated one-period model.
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prices are determined by investors holding undiversified portfolios.10 This economy is historically

important because mutual funds became popular only in the late twentieth century. From

another point of view, the concept of the “firm” in our model can also be applied to industries,

or groups of real firms that are affected by similar technologies, or even stock indexes. For

these macro “firms,” investors might find it difficult to diversify their portfolios. For tractability,

we assume that in this economy there are I investors in each generation, and that investor i

can invest only in firm i and cannot trade with another investor. Mathematically, she solves

out equation (8), subject to W i
t+1 = (1 + r)(W i

t − nP i
t ) + n(Di

t+1 + P i
t+1). In the equilibrium

investors of each generation hold all firms.

On the other hand, for individual firms, institutional investors are well diversified. And they

could be marginal investors who shape the asset prices. Hence, we also examine a second economy

where a well-diversified representative investor of each generation holds all the firms in the

equilibrium. I will call the first economy an undiversified economy; the second, a well-diversified

economy. In the well-diversified economy, the representative investor’s budget constraint will be

determined by

Wt+1 = (1 + r)Wt +

I∑

i=1

ni(Di
t+1 + P i

t+1 − (1 + r)P i
t ). (9)

Before she invests, the investor observes Di
t and Xt. The investor perfectly understands the

dividend policy of the firm as given by equation (6), but she cannot forecast the latent factor as a

firm does. Nor will the firm reveal mi
t+1 to the economy until the t + 1 return has been realized.

Then, to the investor, mi
t+1 can be viewed as a random variable with a normal distribution

N(bi
t+1, σ2

β), where bi
t+1 = Et[m

i
t+1] = b0 + Γmi

t, b0 = m0 (same for all firms), and σ2
β = σ2

m.

Since the investor knows neither the beta uncertainty mi
t+1 nor the market risk Xt+1 precisely,

she must hedge against both. As a result, the investors’ optimization problem contains nonlinear

risks. Later sections will demonstrate that the nonlinear risk structure will lead to nonlinear

risk premium, size (value) effects, and residual momentum in the equilibrium.

The time convention here explicitly follows the information lag existing in the real stock

market. Since investors usually do not observe all useful business information collected by

a firm, they cannot replicate the firm’s investment decisions and need to hedge uncertainties

related to these decisions. It is true that public firms issue quarterly, semiannual, and annual

reports, so that investors are better informed around announcement times. But, in between,

investors typically lack specific information to pin down the behavior of a firm. Furthermore,

10For literature on investors with undiversified portfolio holdings, one can refer to Goyal and Santa-Clara (2003)

and the citations there. For the problem whether institutional investors set the stock prices or not, interested

readers may refer to Bell and Jenkinson (2002).
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accounting reports are backward looking. Even with accurate accounting information investors

still need to make inferences about a firm’s behavior in the future. In practice, analyst forecasts

provide one comprehensive example of such inference.

Finally, a formal definition of the equilibrium is as follows:

Definition 1 (Competitive Equilibrium) A competitive equilibrium is summarized by the optimal

investment policy of all firms, mi
t+1, i = 1, 2, , I, and the optimal investment decision of investors,

ni, and the firm’s stock prices, such that

1. (Optimality) A firm selects its optimal investment policy according to equation (4). In-

vestors solves the optimization problem (8) with proper wealth constraint, and

2. (Market Clearing) The investor’s optimal asset allocation satisfies ni = 1.

1.3 Asset Prices in A One-Firm Economy

Before we solve the cross-sectional equilibrium asset prices in the two economies, let us first

examine a one-firm and one-investor economy in order to get some basic ideas about the asset

return processes. In this economy, the asset price of the firm is given in the following proposition.

Proposition 1 (Equilibrium Asset Prices) In equilibrium, the firm’s price will be

Pt = A + Bbt+1 + Cb2
t+1, (10)

where bt+1 = Et[mt+1] is the investor’s expectation of the firm’s risk exposure in the next period,

and A, B, and C are constant coefficients that can be solved recursively from (25) in Appendix

A.11

Based on the equilibrium prices, the next proposition describes the equilibrium return pro-

cess. Given the overlapping time structure, I follow Lewellen and Shanken (2002) to study the

11When the dividend is D0 + mt+1Xt+1, when the firm can forecast only F̂t+1 = ΓFt, or when the firm reveals

mt+1 at the beginning of the period t+1, the price function still contains all three terms. Especially, Appendix A

proves that if mt+1 is revealed immediately, bt+1 = Et[mt+2] as based on available information, and the equilibrium

price will be a quadratic function of bt+1. Hence, eliminating information asymmetry will not change the functional

form of the equilibrium price. Economically, even when investors perfectly know the firm’s behavior in the current

period (so that earnings in the current period contain only the market risk), earnings in future periods will still

be jointly determined by unknown market-wide and firm-level business risks. And future earnings, as well as

both risk components affecting future earnings, will affect investors’ current-period optimization problem through

anticipated future prices at which investors can sell their stocks. In other words, investors will try to forecast the

firm’s future investment policy and the corresponding future earnings. But even the firm does not know exactly

its future policy. Therefore, investors still face a beta uncertainty, which reflects anticipated fluctuations in the

firm-level investment opportunity set in the future.
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dollar return process instead of the return ratio process. Asset return is defined as the net capital

gain from borrowing from the bond market to hold one share of the stock for one period. The

capital gain is for a zero-cost investment portfolio and resembles the excess return in traditional

asset pricing models.

Proposition 2 (Equilibrium Asset Return) In equilibrium, the asset return can be written as

rt+1 = Dt+1 + Pt+1 − (1 + r)Pt (11)

= mt+1Xt+1 + H1b
2
t+1 + H2bt+1 + H3bt+1εβ,t+1 + H4ε

2
β,t+1 + H5εβ,t+1 + H6, (12)

where Xt+1 is the market risk, and εβ,t+1 = mt+1 − bt+1 is the prediction error for the firm’s

risk exposure. H1 through H6 are constants specified in Appendix A.

Since the analytical expression for C (and therefore B and A) is complex, it is not listed

here. It suffices to know that under certain technical conditions A, B, and C are all constants.

Coefficients H1 through H6 are functions of A, B, and C. The price contains a constant term, a

linear beta term Bbt+1, and a quadratic beta term Cb2
t+1. Asset returns contain the market risk

term mt+1Xt+1, as well as a square beta term H1b
2
t+1 and a linear beta term H2bt+1. When the

firm behavior is not dynamic (σ2
m is small), the price simply becomes D/r, and the risk premium

reverts to γIb
2σ2

x.

In this economy, equilibrium prices reflect all available information, and therefore the market

is semi-efficient. To understand the implication of the two propositions, I will focus on one

important approximation. Omitting high-order variance terms containing σ2
xσ

2
β, one can show

that

A ≈
D

r
+

1 + r + Γ

1 + r − Γ
Cb2

0;B ≈
2ΓCb0

1 + r − Γ
;C ≈

−(γI − γF )σ2
x

1 + r − Γ2
. (13)

With these constants, Proposition 1 states that, for example, if investors are more risk averse

than the firm, the constant C is negative and the price will be discounted. In this case the firm

does not hedge enough in the opinion of the investors. Then, investors take actions to hedge more

themselves by discounting the asset price. Not surprisingly, the price discount is proportional to

the variance of the risk, and is quadratic in investors’ expectation of the risk loading, because

b2
t+1σ

2
x approximately measures the variance of the mt+1Xt+1 part of the dividends. Furthermore,

the equilibrium price should be discounted to the level where the corresponding risk premium

matches investors’ risk aversion. Proposition 2 confirms this intuition. The quadratic risk

premium component in equation (12) is largely determined by the risk aversion of the investor,

regardless of the firm’s behavior: it is straightforward to show that H1 ≈ γIσ
2
x and that the risk

12



premium is γIσ
2
xb

2
t+1.

12 When investors are more risk averse, or when the market is more risky,

the risk premium required by the investor to hold the stock is greater.

Investors also directly ask for compensation of the beta risk, as reflected in the H4ε
2
β,t+1

term. Under the current approximation, H4 ≈ (1 + r)C + γIσ
2
x. Interestingly, it will increase in

both σ2
x and γI : hazards due to the unknown risk exposure become more troublesome when the

market is more risky. Needless to say, more risk-averse investors require higher compensation.

1.4 The Cross-Sectional Dynamic CAPM Model

In accordance with the knowledge of the single-firm economy, we are ready to examine cross-

sectional asset returns. In either the undiversified economy or the well-diversified economy, the

i.i.d. assumption (all firms are i.i.d. ex-ante or at time zero) gurantees that the H1 through H6

parameters are the same for all firms. Hence, the market portfolio return is

rM
t+1 = ΣI

i wi,t+1r
i
t+1 = mt+1Xt+1 + H1b

2
t+1 + H2bt+1 + H4ε

2
β,t+1 + H6, (14)

where the upper bar means the cross-sectional mean. Idiosyncratic risks have been diversified

away. Normalize mt to be one, and we have the following proposition:

Proposition 3 (Dynamic CAPM) In both the undiversified economy and the well-diversified

economy, the expected asset returns satisfy the following equation:

Et[r
i
t+1] = bi,t+1Et[r

M
t+1] + H1(b

2
i,t+1 − b

2
t+1) + H2(bi,t+1 − bt+1), (15)

where Et[.] is the expectation measure conditioned on end-of-period-t information, rM
t+1 is the

return on the market portfolio, bi,t+1 = Et[mi,t+1] is the expectation of ith firm’s risk exposure,

and b
2
t+1 and bt+1 are the cross-sectional mean of b2

i,t+1 and bi,t+1, respectively. The parameters

H1 and H2 for the undiversified economy are provided by Proposition 1. The parameters for the

well-diversified economy are specified in Appendix A.

This proposition builds a counterpart to the CAPM model in the economy. To make a

distinction, call (15) a dynamic CAPM model, while Et[r
i
t+1] = bi,t+1Et[r

M
t+1] is a conditional

CAPM. The parameter bi,t+1 serves the role of the conditional CAPM beta, because it measures

the covariance between the expected asset and market returns. Importantly, the conditional

CAPM does not hold exactly, since the investors want extra compensation for nonlinear risks.

12The quadratic beta risk premium is a natural request by mean variance investors. For example, if a firm’s

return can be written as r(t) = α + βx(t), where α is the expected risk premium and x(t) is an i.i.d. normal

random risk with mean zero, then a positive or negative loading of the risk should carry the same degree of risk

from the investor’s point of view.
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Given their exponential utility function, the extra compensation is related to the mean and

variance of the beta risk investors face. One interesting implication of this property is that

volatility can be endogenously related to expected asset return. A detailed study about volatility,

however, is beyond the scope of this paper.

Proposition (3) essentially illustrates a rational framework where firm-specific risks matter

in a well-diversified economy. Consistant with the traditional wisdom, linear and firm-specific

investment risks will be diversified away. However, when a firm has the ability to identify

superior investment opportunities and make investment decisions accordingly, expected total net

cash flows or net earnings have an increasing sensitivity to better investment opportunities in a

frictionless economy. Roughly speaking, this happens because a better investment opportunity

generates a higher expected net cash flow per dollar investment, which induces a firm to invest

more. Hence, a better investment opportunity leads to disproportionately more expected net

cash flows in the future, and firms with bad investment opportunities will not be able to replicate

the cash flow structure generated by a superior firm. Assuming firms ultimately distribute their

net cash flows to investors, investors then ask for compensation to hold firms that cannot identify

good investment opportunities. In this sense, the increasing cash flow sensitivity to investment

(which is related to beta risks) will be priced. Firm-level investment risks, which are embodied

in beta dynamics, now have nonlinear impact to earnings and will not be diversified away.13

Because traditional asset pricing models do not incorporate any firm-specific risk premium,

these risk premium components become residuals based on traditional models. For example, the

last two components of (15) now become the conditional CAPM model residual.14 Since there

are two sets of risks in the economy, it is reasonable that the CAPM cannot describe the return

process. The surprising result is that, even when latent factors are added to the independent

variable list, the linear APT model of Ross (1976) still fails to explain the whole return process.

The risk premium component H1(b
2
i,t+1 − b

2
t+1) becomes the APT model residual. Therefore,

13The above intuition implies the parameter H1 < 0. In terms of the diversification benefit, cash flow components

that are linear in firm-specific investment risks will sum up to zero with zero variation and, accordingly, have no

impact to asset price. But the increasing cash flow sensitivity to investment (a result of the firm’s investment

activity) will generate cash flow components that are quadratic in firm-specific risks. These quadratic components

will sum up to the cross-section variance of cash flow risks with nonzero variance and, consequently, have nontrivial

impacts on the portfolio return. The prediction that firm-specific risks can be priced in a well-diversified economy

is novel in the literature and adds to the research about “idiosyncratic” risks (Campbell, Lettau, Malkiel, and Xu

(2001); Goyal and Santa-Clara (2003); Malkiel and Xu (2001); and others).
14Yet both the time series and cross-sectional means of the two components are zero. For example, E0[b

2
t ] =

Γ
2

1−Γ2 σ2
β is the same for all firms. Consequently, if an econometrician is isolated from the economy and examines

all the available data, he or she concludes that the time series regression does not reject the unconditional CAPM

model based on Jensen’s Alpha measure.
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firms effectively create a set of new and nonlinear state variables in utilizing their reseach ability

of forecasting investment risks. One can understand the difference between this model and the

APT model as follows. In the APT framework, exposures to one systematic risk factor will earn

one corresponding risk premium component. But in this model, since a firm can dynamically

respond to some risk factors and adjust its investments accordingly, in general, not only the risk

factors themselves, but also the interactions among risk factors are priced. These interactions

allow the earnings risk exposure to depend on risks and create nonlinear asset return components

that are difficult to explain by linear models.15

The failure of the conditional CAPM and the inadequacy of a linear APT model indicate

that we might need to pay more attention to firm-specific information in order to describe the

return process. This naturally leads to a favoring of the three-factor model proposed by Fama

and French (1993). In the present economy a firm forms a zero-cost portfolio to finance the risky

project and passes all the profits to the investor, so the book equity value will not change at the

end of each period after the dividend is paid out. The market capital differs from the market-to-

book equity (MB) by only a constant. Assuming the book value equals the value of the fixed-scale

project in terms of risk-free asset, we have MBi
t = P i

t − D0/r = A − D0/r + Bbi,t+1 + Cb2
i,t+1.

Therefore, we can use either the size or the MB ratio to represent the firm’s characteristics.

These characteristics capture both the linear and nonlinear effect of the firm behavior. The

return process with the firm characteristics can be rewritten as16

Et[r
i
t+1] = bi,t+1Et[r

M
t+1] + H1/C(MBi

t − MBt) + (H2 − H1B/C)(bi,t+1 − bt+1). (16)

Importantly, the first two components in (16) can be viewed as a degenerate version of the Fama

and French (1993) model, because they demonstrate that besides the CAPM market risk, firm

characteristics are also priced. Firm characteristics are priced because they are related to the

firm-level business environment risks forecasted by a firm. In the undiversified economy, the

previous approximation intuitively leads to H1 > 0 and C < 0. Therefore, a firm’s size (MB)

at period t is negatively correlated with the expected return at both period t and period t + 1,

because investor discount market price and ask for high return for high risks. This is consistent

15Similar intuition can be found in conditional models such as Ferson and Harvey (1991). The difference between

this model and the conditional beta literature is the economic intuition that firm decisions will be more easily

affected by firm-specific risks than by systematic factors.
16Of course, we can write the formula in another way, letting the MB or size absorb the linear term and leaving

an additional quadratic term on the right-hand side of the equation. But (16) has the advantage that we can sign

H1 and C. The degenerated size-MB effect follows from the simplified assumption of the model, which ignores

important firm evolution features, such as startup period and distress risk. More detailed examinations of the two

effects are summarized in Fama and French (1992, 1993).
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with the empirical finding of the cross-sectional size (value) premium. Berk (1995) proposes

a similar intuition. In the well-diversified economy, investors view firm-level business risks as

valuable investment opportunities and a promise for future earnings. Investors then ask for

return compensation for holding firms that cannot generate superior earnings by discounting the

current market prices for such firms. As a result, H1 < 0 and C > 0 and the size (MB) effect

also exists in this economy. In both economies, equation (16) provides the economic foundation

for the Fama-French model and explicitly demonstrates why characteristics are risk related.

The model thus far assumes that all predictable risks are firm-specific. As a result, firm

characteristics are also firm-specific. More generally, business risks predicted by firms may

contain both a systematic component (which may contain, for example, macro factors related to

business cycles) and a firm-specific one. In this case, firm-specific component of characteristics

still captures the asset pricing impact of forecasted firm-specific business risks, but a mimicking

portfolio of firm characteristics will be able to capture that of forecasted market-wide risks.

And both components of firm characteristics can be correlated with the return process. This

suggests that Fama and French (1993) and Daniel and Titman (1997) reveal complementary, not

necessarily contradicting, sources of return explanatory power due to firm characteristics.

But, even though firm characteristics such as book-to-market and size have a certain ability

to capture the nonlinear risk premium and add explanatory power to asset returns, equation (16)

suggests that they cannot perfectly address the risk premium. The last term in the equation

becomes the Fama and French model residual and is crucial in explaining the three-factor-

adjusted momentum in the next section. Economically, the Fama-French model residual and the

APT model residual exist only when firms dynamically respond to forecasted firm-level business

risks. If no firm is going to change its investment scale, then firm characteristics (or a proper

APT model) will sufficiently absorb all effects of firm-level risks.

It is of course implausible if the dynamic CAPM model, aiming to explain momentum,

builds its explanatory power on a relationship between firm fundamentals and returns that is

inconsistent with the literature. The existence of the size (value) effect in the well-diversified

economy therefore provides some support that this model inherits the intuitions from traditional

asset pricing models. Other fundamentals in this economy include earnings and investments. In

the context of this article, persistent high earnings result from valuable business opportunities

(large m2
t ). Therefore, consistent with Fama and French (1995), a high MB ratio (size), which

reveals similar information in this model (C > 0), signals high earnings. Thus this model properly

captures the relationships between firm characteristics, earnings, and returns. Meanwhile, a

valuable business opportunity induces more investments; therefore, a high investment ratio often
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is associated with a high MB and a low consequent return (H1 < 0). Xing (2002) offers explicit

evidence that supports these predictions.

2 The Existence of Momentum

This section applies the dynamic CAPM model to explain several momentum-related phenomena

documented in the literature and will propose a unique model prediction to be tested. To

help explain momentum profits, I briefly discuss the two most commonly studied momentum

portfolio strategies: the weighted relative strength strategy (WRSS) and the winner-minus-loser

strategy (WML). For the WRSS strategy, the investment weight (wt) for any asset in period t

is determined by the realized return in period t − 1 (or ri
t−1):

wi
t =

1

I
(ri

t−1 − ri
t−1), (17)

whereas a WML strategy sorts stocks into ten ri
t−1 deciles and longs (shorts) an equal-weighted

portfolio of the winner (loser) deciles for the current period t. When the return process follows

rt = αt + btr
M
t + ǫt, one can decompose the WRSS momentum profits as

π(R) =
I∑

i=1

1

I
(ri

t−1 − rt−1)r
i
t = π(1) + π(2) + π(3) + π(4), (18)

where π(1) = cov (αt, αt−1), π(2) = cov (βt, βt−1) rM
t rM

t−1 + cov (αt, βt−1) rM
t−1 + cov (βt, αt−1) rM

t ,

π(3) = cov (εt, βt−1) rM
t−1+cov (βt, εt−1) rM

t +cov (αt, εt−1)+cov (εt, αt−1), and π(4) = cov (εt, εt−1),

and cov (αt, αt−1) ≡
∑I

i=1
1
I
(αi

t−1 − αt−1)α
i
t stands for the cross-section autocovariance. In the

current model, αt = H1(b
2
i,t+1 − b

2
t+1)+H2(bi,t+1 − bt+1). The first term, π(1), is the momentum

contribution of the dynamic risk premium predicted by the model. The second term contains

contributions related to a dynamic loading of the CAPM market factor. The third term repre-

sents the interaction between unknown factors and the market or latent risk factors, and the last

term denotes the contribution due to missing factors. Economically, the first two momentum

components can be clearly interpreted as compensations for firm-level risks and the market risk,

respectively, while the last two components can be thought of as the risk-adjusted momentum

return. This section mainly focuses on the first two components to theoretically explain docu-

mented empirical findings regarding momentum. Later sections will empirically estimate all the

four components of momentum profits.

Momentum. Even when an unconditional asset pricing model is not rejected by Jensen’s

Alpha measure, the econometrician can still observe momentum in a semi-efficient market. First,

the π(2), or cov (bt, bt−1) rM
t rM

t−1, component of momentum profits in (18) can explain a small
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fraction of momentum. Far more important, however, is the π(1) = cov (αt, αt−1) term measuring

the momentum contribution of the time-varying risk premium not captured by the conditional

CAPM model. It is straightforward to show that both the linear and quadratic terms of bt are

serially autocorrelated, following the autocorrelation of firm investments. In addition, there is

a lead-lag effect in the economy, because the risk premium is determined by the beta’s relative

position (b2
i,t+1 − b

2
t+1) in the economy. For example, in a two-firm economy, a high return in the

current period for one firm in general “predicts” the low return for the other firm in the next

period. Both autocorrelation and the cross-sectional lead-lag effect lead to momentum.

Since neither the CAPM, nor APT, nor the Fama-French model explain the total risk pre-

mium, residuals of the three models (now including the risk premium not captured by the

models) demonstrate momentum. This prediction is supported by Grundy and Martin’s (2001)

finding that Fama-French model residuals exhibit significant momentum profits and Griffin, Ji,

and Martin’s (2002) evidence that APT models with macro and business cycle factors fail to ex-

plain momentum. Section 3 shows that the risk-adjusted momentum, according to the dynamic

CAPM model, will be much less profitable.

Well-known properties of momentum. Consistent with this model, momentum profits

are most favorable for a holding period between 3 and 12 months, because earnings uncertainties

in the next quarter or year are likely to have the most significant asset pricing impact based

on the current financial reporting scheme. Firms can change their investment or risk exposure

during this period without alerting investors. Even when firm investments have a longer horizon,

investors will care only about projected investment uncertainty contained in such a period,

anticipating the uncertainty to be resolved by the next quarterly or annual report. Hence,

momentum will also be most significant in the next 3 to 12 months. The dissipation of momentum

at longer horizons is mathematically captured by the AR(1) property of business risks. To

calibrate the model, let us focus on the quadratic APT anomaly term H1(b
2
t − b

2
t ). Suppose in

the current period there is a ∆ shock for asset i for this APT anomaly term. It is straightforward

to show that Et(b
2
t+k − b

2
t+k) = Γ2k(b2

t − b
2
t ). The expected excess return will decay to a fraction

f in lnf/(2lnΓ) periods. For example, if Γ is 0.75 and each period contains six months, it takes

about four periods or two years for an excess return to decay to 10% of the original level. This

dissipation rate seems to be reasonable.17

As for the economic magnitude of momentum profits, note that, when there is little time

variation in beta, the quadratic risk premium for the investors to hold the whole market is

17The current model explains well momentum and the dissipation of momentum, but does not gurantee a long-

run reversal. George and Hwang (2004) provides evidence that short-term momentum and long-term reversals are

largely separate phenomena.
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H1b
2
t ≈ γIσ

2
xb

2
t in equation (14). Since b = 1 on average, γIσ

2
x approximately has the magnitude

of the well-known equity premium (7% per year). Momentum returns for the quadratic term

equal γIσ
2
x(b2

t+1(winnert) − b2
t+1(losert)). If the current period winners have an average beta of

1.5, and the losers have one of 0.5, then b2
t (winner)− b2

t (loser) is approximately 2. For the next

period, the winner-loser spread will decay to 2(.75)2 of the equity premium. This leads to about

8% per year for momentum profits, which is in proper order.18

Hong, Lim, and Stein (2000) illustrate that momentum profits are driven mostly by loser

stocks rather than by winner stocks. This asymmetry is difficult to explain by traditional linear

models, as noticed by these authors, but exactly implies a nonlinear risk premium as proposed

by this article. To demonstrate the intuition, let us assume that bi,t has a normal cross-section

distribution of N(bi,t, σ
2
b ). When expected market return is positive, winner stocks on average

have a higher bi,t value. It is true that the H2(bi,t+1 − bt+1) component in equation (15) is

symmetric for winners and losers, but momentum profits also contain the contribution from

the quadratic term: π(R) ∝
∑I

i=1
1
I
(b2

i,t − b
2
i,t)(b

2
i,t+1 − b

2
i,t+1) ≈

∑Γ2

i=1
Γ2

I
(b2

i,t − b
2
i,t)

2. This

quadratic contribution is asymmetric because b2
i has an asysmetric Chi-square distribution, and

it is easy to check that
∑

loser(b
2
i,t − b

2
i,t)

2 >
∑

winner(b
2
i,t − b

2
i,t)

2. As a numerical example,

suppose the economy contains three stocks with their betas to be 0 (loser), 1, and 2 (winner).

Then, (b2
i,t − b

2
i,t)

2 are 25/9 and 1/9 for the loser and the winner stock, respectively, where the

loser obviously generates more momentum return. Intuitively, the cash flow generated by a

firm has an increasing sensitivity to investment. The increasing sensitivity leads to a nonlinear

sensitivity of expected asset returns to firm investment, and consequently creates a difference

between winner’s momentum and loser’s momentum.

Even though this paper focuses on the cross-sectional properties of momentum, the model

also provides a powerful tool with which to examine the time-series property of momentum. For

example, the model can easily explain why momentum is more significant during business cycle

expansions than during the contractions (Chordia and Shivakumar (2002)). Economically, when

firms increase their investments, there will be more cross-sectional dispersion of the nonlinear

risk premium component. This is because the momentum component
∑I

i=1
1
I
(b2

i,t − b
2
i,t)

2 can be

18It is well known that the exponential utility function usually cannot generate a significant equity premium

(Mehra and Prescott (1985)). This paper therefore does not address the equity premium puzzle or calibrate the

model directly from the γI and σ2
x parameters. Rather, the calibration here demonstrates that momentum returns

are reasonable according to the observed magnitude of the U.S. stock market equity premium. The dynamic

CAPM model implies that the magnitude of momentum and that of the equity premium can be endogenously

related. Appendix A shows that H1 in the diversified economy usually has the magnitude of γF σ2
x, so momentum

profits there can have a similar magnitude.
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regarded as the cross-section variance of b2
i and is proportional to b

2
i,t. In the expandion period,

the aggregate investment of the economy (or bi,t) grows. As a result, both b
2
i,t and momentum

profits will increase. Similarly, expanding investment may also help explain why momentum

profits are more significant following positive market return (Cooper, Gutierrez, and Hameed

(2004)).

Industry and Fama-French portfolio momentum. The existence of industry momen-

tum (Moskowitz and Grinblatt (1999)) has an especially clean interpretation in this model,

because industry by its definition may be viewed as a macro firm containing all smaller firms

affected by a common technology or investment opportunity in the undiversified economy. From

another point of view, predicted business environment risks can contain both industry-level and

firm-level components. For example, SUV demand shocks may affect all car manufacturers, but

each firm can develop its own model of SUV. Naturally both industry momentum and firm-level

momentum can exist in the economy.

Interestingly, the model here implies that the Fama-French portfolios themselves will exhibit

momentum, because average expected returns of each sorted portfolio approximately follow (16)

and still have Fama-French model adjusted momentum. Lewellen (2001) provides empirical

evidence that size and book-to-market portfolios exhibit momentum. This momentum can be

regarded as a portfolio version of the Fama-French model adjusted momentum.

Earnings momentum. Equations (15) and (16) not only predict the existence of momen-

tum, but also imply a link between momentum and corporate behavior in the well-diversified

economy. As mentioned earlier, investors interpret high earnings as a result of good business

opportunities. To the extent that return is also driven by a firm’s forecasted risks, which are

unlikely to change dramatically over time, the relationship between earnings and returns will

persist for a while. Consequently, the model predicts the existence of earnings momentum. The

empirical evidence of earnings momentum, such as that documented in Chan, Jegadeesh, and

Lakonishok (1996), provides a hypothetical test for this model.

First, the market-adjusted unexpected earnings (as a proxy for earnings news) are γF σ2
x(m2

t −

m2
t−1) in this model. The earnings momentum strategy therefore longs (shorts) stocks with

high (low) m2
t − m2

t−1 values. Since firms are ex-ante identical, those with positive earnings

shocks are more likely firms with low previous earnings (mathematically, Et[m
2
t+1 − m2

t ] ≈

(Γ2 − 1)m2
t + Et[ǫ

2
m,t+1] decreases in m2

t ). Equation (15) implies that expected return Et[rt+2]

also decreases in m2
t in the well-diversified economy. As a result, large positive earnings shocks

are associated with large positive future returns. Sorting on unexpected earnings will then

introduce a spread on the expected return and generate significant momentum profits. Second,
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the return spread of the earnings momentum depends on the difference m2
t+1 − m2

t , whereas

that of the price momentum depends on m2
t+1. The two strategies are therefore different and

cannot subsume each other. Roughly speaking, m2
t+1 better correlates with future returns than

the m2
t+1 − m2

t term. Thus, this model implies that price momentum is more profitable and

persistent than earnings momentum.19 Finally, the earnings momentum is not absorbed by

size or book-to-market. All these detailed predictions are consistent with Chan, Jegadeesh, and

Lakonishok (1996). This article therefore offers an alternative explanation (or one that can be

compared with their underreaction hypothesis).

Characteristics-based momentum. Equation (16) predicts that the two seemingly un-

related anomalies, firm characteristics and momentum, may economically share the same foun-

dation. This interpretation provides new insight into the documented relationship between the

two anomalies. Daniel and Titman (2001) and Sagi and Seasholes (2001) find that high MB

(growth) firms tend to generate high momentum returns. This model generates precisely this

effect. Equation (16) implies that Et[π(R)] ∝
1
I

∑
i∈I [G1(MBi

t−MB)2+G2MBi
t], where G1 and

G2 are two positive parameters specified in Appendix A. Since G2 > 0, momentum portfolios

based on high MB firms are likely to generate more profits. Furthermore, the first component

G1(MBi
t − MB)2 suggests a possible (but not necessary) U-shaped relationship between mo-

mentum and MB.20 Economically, high-MB firms are more likely firms with temperate good

investment opportunities. These firms will probably invest more aggressively, anticipate more

future earnings, invoke more CAPM deviations, and consequently generate higher momentum

profits.

The relationship between size and momentum is more complex. Under the current assump-

tions, this model predicts that momentum profits should increase in firm size. But, though

book-to-market equity generally measures the investment opportunity set of a firm, size has

some other effects. For example, large firms usually have more analyst coverage and lead small

firms in terms of information (Hong, Lim, and Stein (2001), Hou (2002)), so in reality it may

be more difficult for investors to precisely predict small-firm behavior. If we relax the current

19A simple derivation might help in this case. Let us focus on the b2
t part of the return. We have rt+2 ∼

b2
t+2 ∼ m2

t+2. Expected earnings momentum profits are proportional to γF σ2
xcov(m2

t+2, m
2
t+1 −m2

t ), which equals

γF σ2
xcov(m2

t+2, m
2
t+1) − γF σ2

xcov(m2
t+2, m

2
t ). Note the first term reflects the profits for price momentum. The

second term roughly equals Γ2 of the first term. Therefore, the earnings momentum profits are approximately

1 − Γ2 of (and smaller than) the price momentum profits.
20Appendix A provides more details. Sagi and Seasholes (2001) sort firms into four MB quartiles (their Table 3).

The momentum profits from MB quartile 1 (low) and 4 (high) are higher than those generated from MB quartiles

1+2 and 3+4, respectively, suggesting that momentum in quartiles 2 and 3 is less profitable than in quartiles 1

and 4.
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model assumption to allow investors’ prediction error of a firm’s behavior to depend on firm

size (i.e., small firms have a larger prediction error variance), then investors will not only expect

a positive return for real investments, but also require some additional return for small firms

because of this enlarged prediction error (see Appendix A for more details). In this case, the

extra premium associated with a larger level of information asymmetry in one period and ex-

pected positive return of real investments in the next period can effectively produce a positive

return autocorrelation (other things equal). As a result, small firms can generate relative large

momentum profits. Note that this information premium can lead to a negative relationship

between momentum and size without resorting to investor under- or overreaction. Combining

the positive and negative relationships between momentum and size can produce an inverted

U-shape relationship between the two, as reported in Hong, Lim, and Stein (2000). Earlier

studies usually focus on and explain the second part of the inverted U-shape. The omitted part,

however, also seems to be a natural output of this model.

New prediction. Although all the empirical evidence listed above directly supports the

model, the remaining section aims to achieve more by proposing unique predictions untouched

by the literature. In the economy proposed here, the unconditional CAPM holds exactly. But

conditionally, because of dynamic firm behavior, the risk premium αt can deviate from zero

at times and consequently generate momentum. In this case, based on firms with more dy-

namic investment policy (more dynamic αt and more deviations from the conditional CAPM),

momentum portfolios could be more profitable. With the standard deviation of αt as a proxy

for the asset pricing impact of firm dynamics, the model predicts that momentum portfolios

based on a group of higher σα(t) stocks will be more profitable. Mathematically, Et−1[π(R)] ∝

Et−1[
∑

i∈I αi
t−1α

i
t] ∝

∑
i∈I(α

i
t−1)

2. The last approximation follows because the risk premium

is positively autocorrelated according to this model (the correlation itself is omitted because it

is the same for all firms). Furthermore, the relationship between momentum profitability and

σα(t) should not be subsumed by other characteristics, such as size and market-to-book. Section

3 empirically confirms these predictions. The measure of firm dynamics, albeit unique to this

model, reflects an econometrician’s estimation of the asset pricing impact of a firm’s investment

policies. With this economic explanation, we may regard it as a special firm characteristic.

3 Empirical Estimation of Momentum Profits

Empirically, one of the most interesting questions is what fraction of momentum profit can be

attributed to risks by this simple model. This section mainly explores the in-sample explanatory

power of the model but will also provide one out-of-sample test for the model prediction.
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3.1 A Time Series Model and the Kalman Filter

The traditional rolling regression method may not be directly applicable to tests and estimations

of a dynamic model, because it largely ignores short-term dynamics. To bypass problems related

to rolling regressions, this section proposes an alternative computational technique in order to

more precisely estimate firm dynamics. The structure of the model, especially the assumption

of an AR(1) latent risk, invokes the possibility of using the Kalman filter to estimate the risk

premium. Decomposing the CAPM beta into a static part and a dynamic part, bt = β0 + βt,

where βt follows the AR(1) process of the latent factor (its unconditional mean is normalized to

be zero), we can write the asset return process as (suppressing the index i for the ith firm)

rt = αt + (β0 + βt)r
M
t + ǫt, (19)

αt = α0 + H1β
2
t + H2βt; βt = Γβt−1 + εβ,t,

where αt is the conditional risk premium, ǫt ∼ N(0, σ2
ǫ ), and εβ,t ∼ N(0, σ2

β). The residual ǫ(t)

reflects the risk-adjusted return implied by this model. Note that, under the model assumptions,

the market is efficient and asset return in (19) should have already included all useful information.

Since equation (19) is nonlinear in the latent factor, this paper adopts the extended Kalman

filtering technology.21 The estimation of the risk premium takes two steps. First, the Kalman

filter observes a firm’s return and the market excess return and then estimates the Kalman

parameters (as reported in Table 1, Panel B). Next, these parameters, together with the whole

return process, give out a smoothed estimation of the αt and βt process (the best estimation

based on all available data). A minimum of 60 data points is required for the Kalman estimation.

Because of this requirement and the finite sample period, no cross-sectional or unconditional

constraints will be imposed on the estimation. If the Kalman model is sufficient in describing

the asset return process, we expect to see no significant risk-adjusted momentum profits.

3.2 Data Description and Momentum Portfolios

Monthly returns seem to be a natural choice for our estimation, not only because of the litera-

ture’s conventions, but also because this horizon is likely to correlate with measurable changes

in firm fundamentals. Though quarterly returns would be another good candidate, a minimum

requirement of 60 quarters might be too long. Monthly stock return data and market portfolio

returns come from the Center for Research in Security Prices (CRSP). To eliminate possible

21The basic idea (Harvey (1989)) is to set the quadratic term of the latent factor as βt
2 = (βt|t−1 +βt−βt|t−1)

2,

where βt|t−1 is the Kalman estimation of βt given all t − 1 information, and then omit the higher orders of the

error term βt − βt|t−1. Details of the Kalman filter can be found in Harvey (1989) and Hamilton (1994).
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survivorship bias and liquidity constraints, I also look at a special group of stocks: the S&P 500

index stocks. A list of the S&P 500 index firms at the end of the year 1999 is extracted from

COMPUSTAT. The additions and deletion of the index firms (year 1976 to 1999) is downloaded

from Jeff Wurgler’s Web page.22 I then replicate the S&P 500 index from January 1976 to

December 1999. For earlier months, I use the S&P 500 firm list as it appeared in January 1976.

All variables used to construct book equity come from the COMPUSTAT database.23

To be included in the sample, an asset should have at least 60 months of return data from

January 1962 to December 2000 and converged Kalman estimations for all available returns

during the same period. S&P firms include all members of the S&P 500 index during the period

from 1975 to 1999. Panel A of Table 1 lists the mean excess return and Sharpe ratio of the pooled

NYSE-AMEX and S&P stocks. This panel also reports the R2 statistics of the OLS CAPM and

Fama-French three-factor model regressions, and the effective R2, as well as the revised R2
D, of

the Kalman estimation.24 The panel shows that the CAPM explains a relatively small part of

the return variations. The Kalman model generally improves the explanatory power by 20%.

The Kalman R2 is even larger than that of the Fama and French three-factor model, indicating

that the Kalman model is able to capture more return variation than traditional models. Panel

B reports the mean and cross-sectional standard deviation of the Kalman parameters for the

pooled stocks. The Kalman estimations of αt and βt time series, though not listed here, will be

used for future tests. [Insert Table 1 here.]

22The author thanks Jeff Wurgler for making the data available.
23Book equity is defined as the stockholders equity, plus balance sheet deferred taxes and investment tax credit,

plus postretirement benefit liabilities, minus the book value of preferred stock (if available). Since I will use

only the mean of book-to-market value for available periods, the COMPUSTAT fiscal year problem will not be

important in this case. I simply match the year t reported book equity with the December market cap of the same

year to get the BM ratio. The market capital in June of each year will be used as size.
24For the Kalman filter the effective R2 measure, which reflects the goodness of fit, is defined as R2 = 1 −

SSE/(r̃′r̃), where SSE is the sum of residual squares and r̃ is the demeaned excess return process. This definition is

consistent with the OLS regression. To eliminate possible bias caused by time series with a trend, Harvey (1989,

p. 268) proposes a revised measure R2
D = 1 − SSE/

∑T

t=2
(∆rt − ∆rt)

2, where ∆rt = rt − rt−1 is the return

increment and ∆rt is the mean of the first differences. I first estimate the Kalman model for available returns

from Jan. 1962 to Dec. 2000 and then perturb estimated parameters for 20 times to get the global maximum log

likelihood function. Momentum tests will be conducted from 1965 to 1999. The parameter estimating period is

slightly longer than the testing period, in order to allow formation periods before 1965 and holding periods after

1999. The estimation from 1965 to 1999 gives almost identical results. As a robustness check, I also pick up the

global maxima according to the two R2 measures and the main conclusions of this study hold. An estimation is

regarded as converged if |αt| < 2, |βt| < 2 and σβ will not hit the upper bound of 10 (more than 100 firms are

discarded). If a firm has two valid return periods separated by missing data, then it will be counted twice in the

pool, one for each period.
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To form a momentum portfolio at the beginning of month t, I rank realized stock returns in

a formation (or ranking) period of F months from month t − F to t − 1. Once the momentum

portfolio is formed following either the WRSS or WML strategy, it will be held for H months

(from month t to t + H − 1). Sometimes a gap of G months (usually one, if not zero) is inserted

between the ranking and the formation period. A complete momentum strategy can be described

by PortfolioStrategy:F :G:H. When there is no confusion, I abbreviate WRSS:1:0:1 as WRSS101.

Finally, the momentum return is normalized to be the profit realized per dollar long.25

The literature usually reports monthly momentum return based on overlapping portfolios for

past winners (losers).26 For the decomposition equation (18), however, this approach might be

confusing when F and H are both greater than one, because more than one portfolio formation

period is used to calculate the momentum return in each month. To make the interpretation

straightforward, I instead focus on the decomposition of holding-period returns of nonoverlapping

momentum portfolios.27 Specifically, I construct only one momentum portfolio at the beginning

of month t (based on realized returns of previous F months), hold it for H months, and then

report the monthly return and its components as generated by the portfolio during the entire H

months. This approach is economically appealing: just replace rt−1 with the formation-period

return, replace rt with the holding-period return, and (18) cleanly decomposes total momentum

profits in terms of autocovariance among ranking and holding-period risk premium, market

factor, and errors. The advantage, however, comes at some cost: the holding period for the month

t momentum portfolio and month t+1 portfolio will overlap for H−1 months. These overlapping

holding periods can induce an autocorrelation to the holding-period returns and bias the t

statistics. To remedy the problem, whenever I report the returns for nonoverlapping momentum

portfolios, the t statistics will be Newey-West adjusted by a lag of H − 1 months (Newey and

West (1987)). For results unrelated to the decomposition, I adopt the traditional overlapping

portfolio method. Finally, following Grundy and Martin (1999), I calculate the formation period

returns as the mean monthly returns during the ranking periods. Consistently, holding-period

returns for nonoverlapping momentum portfolios are computed as the mean monthly returns of

the entire H-month holding period. This method has the advantage of diversifying away the

25For the WML case, the momentum investor invests one dollar in the winner portfolio and shorts one dollar in

the loser portfolio. For the WRSS case, all positive weights sum up to one for any momentum portfolio. Therefore,

the weights can be directly interpreted as the dollar amount invested into individual stocks.
26Details are discussed by Jegadeesh and Titman (1993).
27As a robustness check, I look at the decomposition of both overlapping and nonoverlapping portfolio mo-

mentum returns. All results will be similar, with use of either method. Over a long run, the magnitude of

momentum profitability should be the same, whether we view momentum profits as coming from monthly returns

of overlapping portfolios, or from H-month returns of nonoverlapping portfolios.
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idiosyncratic errors of the CAPM model, as discussed by Grundy and Martin (1999).

3.3 Decomposition of Momentum Profits: 1965-1999

Before we look at the real data, a simulation experiment helps explain how well the technology

can capture the dynamics of momentum profits. All details are provided in Appendix B. The

simulations demonstrate that the Kalman technology can estimate the time-varying betas and

risk premium very well. For the π(2) component of momentum profits, the Kalman model usually

gives out a smoothed though unbiased estimation, whereas the π(1) estimation is somehow

downward biased under the null model. This is because a smoothed (though unbiased) estimation

of the risk premium leads to a downward-biased estimation of the autocovariance and momentum

profits.28 Nevertheless, Panel A of Figure 1 illustrates that the π(1) estimations (shadowed area)

convincingly track the time series fluctuations of the true value (solid line). Hence, we can rely

on the Kalman filter to capture the time series property, as well as a majority magnitude, of

momentum profits.

In Table 2, all NYSE-AMEX listed firms with at least 60 months of returns and converged

Kalman estimations are used. In forming momentum portfolios, I use only firms with a valid

formation and holding period return (survivorship biased).29 The formation periods are set to

be 6 or 12 months, while the holding periods are 3, 6, and 12 months when G = 0, and 1, 3, 6,

and 12 months when G = 1. The goal here is not to restate the well-documented relationship

between holding horizon and momentum profitability, though the result confirms the relationship.

The different lengths of F and H are designed primarily to have a wide spread over profitable

momentum strategies. Panel A uses the WRSS strategy, whereas Panel B focuses on the WML

strategy. This table thus covers 28 momentum strategies. Different momentum portfolios for

the raw asset returns are formed from January 1965 to December 1999. The magnitudes of

momentum returns are, as expected, very close, using overlapping or nonoverlapping portfolio

methods. Therefore, just the nonoverlapping portfolios monthly returns (π(R)) are reported.

To determine the significance level, I report the time series t statistics (TJT ) for overlapping

portfolio momentum returns and the Newey-West H − 1 lags-adjusted t statistics (TNW ) for

nonoverlapping portfolio returns. The Newey-West t statistics appear to be slightly larger than

the time series t statistics, but the difference is unlikely to drastically change the significance

level of momentum profits. Panels A and B illustrate significant momentum profitability for

28The downward bias works only against the current model. Other filtering technologies may have similar or

even more serious problems. For example, unconditional OLS regressions smooth the risk premium to a straight

line and therefore miss most momentum returns.
29I will come back to the survivorship bias shortly.
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a wide range of momentum strategies. When a lag of one month is inserted, the momentum

strategies often become more profitable. These results are in general consistent with Jegadeesh

and Titman (1993), where they use a lag of one week. [Insert Table 2 here.]

Next, the Kalman model is used to examine momentum profits. Recall that, if the model is

sufficient, risk-adjusted momentum should not be profitable. In accordance with this intuition,

I calculate two types of risk-adjusted momentum. For the first type, the winner-loser position

(or the portfolio weight) is determined by the realized return, while the holding-period return,

π′(ǫ), is computed from the Kalman ǫt residuals. Economically, π′(ǫ) is the risk-adjusted momen-

tum return based on the model. As a sensitivity check, I also compute a second risk-adjusted

momentum return π′′(ǫ), where the Kalman ǫt residuals determine both investment weights

and holding-period returns (replacing the return process in (18) with the ǫt residuals). Panels

A and B report the risk-adjusted momentum in percentage of the original return momentum:

η′ = π′(ǫ)/π(R) × 100%, and η′′ = π′′(ǫ)/π(R) × 100%. Note that 1− η′ can also be interpreted

as the fraction of π(R) that is risk related according to the model. The Newey-West t statistics

are omitted, while the superscripts 1 and 2 indicate a significance level of 1% and 5% for a

two-tailed t test based on the Newey-West t measure, respectively.

The result is striking. In Panel A, for π′(ǫ), more than half of the strategies do not end up

with significant risk-adjusted momentum returns. In other words, the dynamic CAPM model

totally explains these momentum-strategy profits. For the remaining significant risk-adjusted

momentum profits, the magnitude usually drops to around 30% of the original magnitude for

a set of WRSS strategies. Equivalently, dynamic risk premium explains more than half of the

momentum profitability. For π′′(ǫ) we get similar results, though more momentum strategies

remain profitable. Panel B, however, suggests that the model is less successful in explaining the

return process of the most extreme stocks. For example, compared to the counterpart of Panel

A, the range of η′ suggests that the top and bottom 10% stocks generate more risk-adjusted

momentum profits. Nevertheless, more than 40% of momentum profits are still risk related. If

we look at the economic magnitude of the risk-adjusted momentum η′, then it is usually less

than 4% a year for WRSS strategies and 6% a year for WML strategies before transaction costs.

To further explain the source of momentum profits, I decompose the WRSS momentum

returns according to equation (18). Table 3 provides an intuitive way to look at the relative

contribution of the four components: ηi = |π(i)|/(|π(1)| + |π(2)| + |π(3)| + |π(4)|) × 100%. The

ηi will be interpreted as the percentage or relative contribution of π(i) to momentum return.

In Panel A, relative contributions are calculated for nonoverlapping momentum portfolios. To

understand these numbers, let us focus on the WRSS603 strategy. Panel A says that about
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57% of momentum profits are due to risk premium, 11% are due to dynamic loading of the

market factor, 16.5% are due to the interaction between unknown factors and the risk premium

or market factor, and 16% are due to reasons purely outside this model. These numbers seem

to be typical for all strategies. Therefore, according to the dynamic CAPM model, most of the

explanatory power comes from the risk premium associated with firm-level risks (π(1) is usually

significant and contributes 50% to 70% of momentum returns). A better estimation of beta

adds only marginal explanatory power (the relative magnitude of π(2) is usually less than 10%).

The error-related parts, π(3) and π(4), are relatively small (together 20% to 40% of momentum

returns). In a robustness check, Panel B decomposes the returns for momentum strategies based

on overlapping portfolios. The relative strength could be off around 10%, but this panel supports

the conclusion that a leading part of momentum profits may be related to risks, especially to

firm-level risks. Finally, different formation and holding-period horizons have some, but not

prevailing, impacts on the relative contributions. [Insert Table 3 here.]

In applying the Kalman model in Table 2, I require a minimum of 60 months of valid returns

for a stock to be included in the momentum portfolio. Since both the raw return and Kalman

risk-adjusted momentum strategy are based on a common set of data, this requirement is unlikely

to seriously undermine the decomposition results. Nevertheless, Table 4 explicitly examines the

momentum of the S&P 500 index firms, firms least likely to be affected by this requirement, as

well as the survivorship biases.

To be included into an SP momentum portfolio, a firm must be a member of the S&P 500

index in the month right before the holding period. During other months of the ranking or

holding periods, the firm may or may not be in the index. The momentum portfolios are formed

from January 1965 to December 1999. The Kalman ǫt residuals are then used to calculate SP

risk-adjusted momentum profits for nonoverlapping momentum portfolios, based on formation-

period realized returns.30 Since this momentum is not well studied in the literature, I extend

the holding period up to 2 years. In general, the SP momentum portfolios generate lower

(but still significant) profits compared to their NYSE-AMEX counterparts. Although the SP

momentum portfolios can earn significant profits up to a holding horizon of 2 years, the Kalman

estimation shows that the risk-adjusted momentum return for a long holding period is very low,

and may even be negative. Consistent with Table 2, the Kalman model sharply decreases the

significance level of risk-adjusted momentum and usually explains more than 50% of the raw

return momentum profits for WRSS strategies and more than 30% for WML strategies. The

30To save space I will not report the t statistic and the decomposition based on overlapping momentum portfolios,

and will not report the type 2 risk-adjusted momentum η′′: all these results are consistent with the conclusion.
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relative contribution of the four components are plotted in Figure 3 for WRSS strategies with

F = 6 and 12, and G = 1. The graph directly reflects that the fraction of momentum due to

risk is enormous (around half) and does not diminish for long holding horizons. For a variety of

other momentum strategies, a similar fraction of the SP momentum profits originates from the

dynamic risk premium. [Insert Table 4 and Figure 3 here.]

The study of the S&P firms encompasses another advantage: these are the most important

and liquid firms in the economy. It is therefore unlikely that the explanatory power of this model

is totally subject to liquidity constraints. Though not reported, a study including NASDAQ

stocks confirms that the previous decomposition results remain largely the same for stocks in

different exchanges.

3.4 Empirical Test of the Model Prediction: 1965-1999

The theoretical model predicts that momentum portfolios should be more profitable when based

on more dynamic firms, as measured by larger standard deviations of estimated α(t) time series.

This section aims to explicitly test this hypothesis. Table 5 sorts firms into four quartiles based

on the ex-post estimated σα(t) (Group 0, 1, 2, and 3 [highest σα(t)]). It turns out that Group

0 firms have a virtually zero σα(t). We regard this zero σα(t) as an indication that the Kalman

estimation fails to properly capture the firm dynamics and reverts to a static OLS model. For

this reason Group 0 is discarded in the current table. Excluding these firms will not change the

previous decomposition conclusions. [Insert Table 5 here.]

Panels A1 and A2 report the monthly momentum return for WRSS and WML overlapping

portfolios. Nonoverlapping portfolios will generate similar results for all remaining tables. It

is apparent that for all listed momentum strategies, profitability monotonically increases from

Group 1 to 3. Furthermore, compared to Table 2, Group 1 generates fewer momentum profits

than the pool of all firms, whereas Group 3 generates more. The return difference between

the third and the first group is huge. Panel B calculates the mean and the t statistics of the

differences. For example, the WRSS613 strategy generates a profit difference of more than

7% a year (comparable to the momentum profitability based on all firms). The WML613 profit

difference is even higher (more than 10% a year). In general, the difference is more than half of the

Group 3 profits and is both statistically and economically significant. These numbers indicate

that both the theoretical model and the empirical tool are quite powerful in examinations of

momentum profits.31

31If the model is completely misspecified, or if overfitting of data mainly drives the estimation of firm dynamics,

then we should not observe significant difference here.
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The dynamic CAPM model also predicts that firm characteristics such as size and MB are

related to momentum. For example, there exists an increasing relationship between momentum

and MB ratio, which should not subsume the relationship between σα and momentum. To test

this hypothesis, Table 6 independently sorts firms into four σα(t) quartiles and three MB groups.

Since the σα(t) measure is ex-post, the MB value is calculated as the mean of the inverse of

available book-to-market values. All firms with negative mean MB ratios have been discarded.

While the ex-post measure might induce an underestimation of the momentum sensitivity to

MB, this approach eliminates possible measurement error in the MB ratio and is reasonable for

an in-sample test. Momentum portfolios are formed for each of the 12 double-sorted pools. Each

pool contains 400 to 600 firms. Table 6 focuses on the 606 and 616 strategies. Panel A1 and

A2 report the time series mean and t statistics for WRSS606 and WRSS616 momentum profits

based on overlapping portfolios. Panel B reports same result for WML strategies. Momentum

profitability is increasing in σα(t) from Group 1 to 3 within each MB group. For 2 of the 3

MB groups, σα(t) will generate enough spread that the difference between Group 3 and Group 1

momentum returns is significant. Within each σα(t) group (including Group 0), high-MB firms

are able to generate significant momentum profits. The low-MB firms usually generate more

momentum profits than median-MB firms but fewer profits than high-MB firms. As mentioned

before, this somehow U-shaped relationship is consistent with the dynamic CAPM model.32

The relationship between the momentum profits, firm dynamics, and MB is more intuitively

illustrated by Panel A and B of Figure 4. Clearly, the MB measure does not subsume the

relationship between momentum and firm dynamics. [Insert Table 6 and Figure 4 here.]

Table 7 independently sorts firms into four σα(t) quartiles and three size groups. The mean

of June market capital during the whole period is used as the ex-post size measure. Antici-

pated by this model and consistent with Hong, Lim, and Stein (2000), the relationship between

momentum profits and size follows an inverse U-shape within σα(t) groups, while the monotonic

increasing relationship between momentum return and σα(t) remains within each size group. The

relationship is intuitively illustrated in Panels C and D of Figure 4. [Insert Table 7 here.]

The dynamic CAPM model suggests that more deviations from the conditional CAPM model

lead to more momentum profits. But such deviations could also come from mispricing or missing

factors. Table 8 explores whether the relationship between momentum and σα(t) will be absorbed

by two mispricing measures. The first proxy for mismeasurement is 1 − R2
CAPM . The intuition

is that, if R2
CAPM = 1, then there should be no momentum. Presumably, if momentum is due to

32Both the magnitude of momentum profits and the relationship between momentum and MB indicates that

Group 0 firms are average firms. Therefore, the Kalman technique does not fail for a particular group of firms.
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mispricing, we expect to see more momentum profitability from low R2
CAPM firms. The second

proxy for missing factors is the standard deviation of the Kalman ǫ− residual. In Panels A and

B, firms are independently sorted into four σα(t) quartiles and three groups based on 1−R2
CAPM

and σǫ(t), respectively. In Panel A, the momentum profitability does not decrease according

to the explanatory power of the unconditional CAPM model. On the contrary, firms better

described by the unconditional CAPM are able to generate more momentum profits. This result

is surprising but does no harm to the Kalman model. In Panel B, however, both σα(t) and the

mispricing measure correlate with momentum profitability. The current table, together with

the results in Table 3, suggest that the empirical model properly identifies important sources of

momentum. At the same time, there could be some momentum-related features that are outside

the model and deserve future research. [Insert Table 8 here.]

Although this study mainly examines the in-sample explanatory power of the dynamic CAPM

model, Table 9 provides an out-of-sample version of Table 5 to complete the analysis. Instead

of estimating the Kalman model once for all available return data during the test period, this

table estimates the Kalman model year by year for each stock, dividing stocks into different

quartiles according to ex-ante σα(t) in each month. In order to get the ex-ante σα(t) measure

in year t, I apply the Kalman model to all available return data after January 1962 and before

January of year t (if there are more than 60 data points). Then, the standard deviation of

the estimated risk premium (σα(t), based on prior-t information) is assigned to each month in

year t as the ex-ante measure for firm dynamics. Next, in each month, firms are sorted into

four quartiles according to the ex-ante σα(t) measure (Groups 0 to 3 [more dynamic firms]),

and momentum strategies are applied to stocks within each of the four quartiles. Since more

than one ranking period is involved for the overlapping-portfolio strategies in each month, stocks

are sorted according to available σα(t) values at the end of the first (and the earliest) ranking

period. Panel A reports the mean momentum return generated by Group 1 to 3 (Group 0

stocks are discarded as discussed). The return pattern is very close to that reported in Table 5:

momentum profitability monotonically increases in firm dynamics. The WML:12:1:3 strategy,

for example, generates a monthly momentum return of 1.5% based on most dynamic stocks

and 0.87% for less dynamic stocks. Panel B further studies the momentum return difference

between Group 3 and Group 1. Compared to Table 5, the return spreads here appear to be

less significant. Nevertheless, for most combinations of ranking and holding-period lengths, the

spreads are significant at the 5% level. The economic magnitudes of these spreads, ranging from

3% to 7% a year, are hardly negligible. Therefore, the theoretical model and empirical method

provided here not only can explain a large part of momentum profitability in-sample, but also
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predict the group of stocks that are likely to generate more momentum returns out-of-sample.

Tables 9 through 5 also provide direct evidence that, econometricians can properly anticipate

some firms to generate more momentum profits based on a proper estimation of firm-specific

risks. In other words, part of momentum profits are compensation for firm-level risks.

Overall, the evidence provided by this section indicates that a large fraction of momentum

profits can be associated with firm-level risks in ways that the dynamic CAPM model predicts.

Even a conservative interpretation of these tables confirms that the model captures several im-

portant properties of momentum. Allowing the traditional CAPM model to incorporate firms’

decision-making process, we may move closer to the economic foundation of momentum prof-

itability.

4 Related Literature

Well-established behavioral hypotheses that explain momentum returns include underreaction

(Hong and Stein (1999)), representativeness and conservatism (Barberis, Shleifer, and Vishny

(1998)), and overreaction and self-attribution (Daniel, Hirshleifer, and Subrahmanyam (1998)).

More recently, Grinblatt and Bin (2002) utilize the existence of a disposition effect to explain

momentum. There have also been continual efforts to understand momentum without resorting

to bounded rationality, but some rational voices are not without dispute. Conrad and Kaul

(1998), for example, attribute momentum profits to the cross-sectional dispersion of uncondi-

tional means of stock returns, but Jegadeesh and Titman (2002) illustrate that Conrad and

Kaul’s conclusion is premature because of the small sample biases of their tests and bootstrap

experiments. Consistent with the APT framework, Moskowitz and Grinblatt (1999) conjecture

that unpriced industry factors may lead to momentum, yet Grundy and Martin (2001) imply that

stock and industry momentum components are different. In his recent examination of auto- and

cross-serial correlation for size and book-to-market equity portfolios, Lewellen (2002) suggests

that stocks covary very strongly and that it is the excess covariance, not underreaction to firm-

specific news, that explains portfolio momentum. Chen and Hong (2002), however, demonstrate

that Lewellen’s empirical results do not necessarily refute the underreaction hypothesis. Chordia

and Shivakumar (2002) investigate whether macro variables known to predict the business cycle

can explain momentum. They show that momentum profitability is no longer significant when

these macro variables are controlled. Their conclusion, however, is not supported by Griffin, Ji,

and Martin (2002), who use data from both international and U.S. stock markets. Recently,

Ang, Chen, and Xing (2002) demonstrate that momentum may be linked to a systematic factor

of downside correlation. Ahn, Conrad, and Dittmar (2003) use a stochastic discount factor to
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explain half of momentum strategy profits. Their research adds to the rational explanations of

momentum but differs from the traditional structural asset pricing approaches that this article

adopts.

Besides the momentum literature, this work is also related to recent efforts attempting to

explain size and book-to-market anomalies within a rational framework. Gomes, Kogan, and

Zhang (2002), for example, extend the Berk, Green, and Naik (1999) intuition to a general

equilibrium model. They show that firm characteristics such as size and book-to-market ratio

will be correlated to the conditional CAPM betas and help explain the expected stock returns.

Brennan, Wang, and Xia (2002) take inflation risk and the Sharpe ratio into consideration and

conclude that the Fama-French mimicking portfolios carry information about latent investment

opportunities. Berk (1995) provides a rational framework for understanding the size effect. Xing

(2002), Zhang (2002), and Adrian and Franzoni (2002), among others, attempt to rationally

explain the value premium. This article, however, starts from the intuition of economies of scale

and uniquely proposes that the size, value, and momentum anomalies may all stem from the

asset pricing impact of firm-level risks.

This model is essentially conditional. Empirically conditional models are arguably more

successful than their unconditional counterparts (see, for example, Harvey (1989), Ferson and

Harvey (1991), and a recent work of Lettau and Ludvigson (2001)). This paper differs from the

conditional CAPM literature by pointing out that firm-specific information might be an impor-

tant determinant of firm returns (Daniel and Titman (1997)). The empirical model proposed

here does not rely on predetermined instruments (one purpose of this study is to show that the

information set of an unconditional CAPM suffices to explain a large part of momentum profits),

though it is quite easy to incorporate them into the two components of risk. In a similar way

this paper differs from existing nonlinear CAPM researches, such as Harvey and Siddique (2000).

The study of firm-specific components of risks is not new in the literature (Campbell, Lettau,

Malkiel, and Xu (2001); Malkiel and Xu (2001); and Goyal and Santa-Clara (2003)). The novel

feature of this study is that firm-specific risk is priced in the equilibrium even when investors

hold well-diversified portfolios.

5 Conclusion

This article proposes a simple model in which a firm achieves economies of scale by dynam-

ically adjusting its business according to anticipated firm-level business risks. Investors view

the dynamic behavior of a firm as a beta risk, in addition to the market risk. Firms’ dynamic

investment policy ultimately leads to a dynamic beta and a nonlinear risk premium in the equi-
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librium.33 This risk premium is not captured by traditional linear asset pricing models and will

bring many interesting phenomena into the economy. Momentum, for example, can be explained

mostly by the part of the risk premium ignored by traditional linear asset pricing models. Other

momentum phenomena consistent with this story include industry momentum, Fama-French

portfolio momentum, and earnings momentum.

This article reconciles several CAPM anomalies by pointing out that different anomalies

capture different aspects of the asset pricing impact of firms’ investment policies. Firm charac-

teristics can explain time series and cross-sectional return variation because they are correlated

with predicted investment opportunities. From this point of view, the two seemingly irrele-

vant phenomena, momentum and firm characteristics, may indeed be deeply related. Empirical

findings about the relationship between the two support this interpretation.

On this evidence, it may appear premature to equal the existence of momentum and other

asset pricing anomalies to irrationality and market inefficiency, though achievements from the

behavioral literature are both necessary and promising. Momentum, for example, is likely to

contain both rational and irrational components. To the extent that models usually provide a

simplified description of the real world, this article suggests that CAPM and a possible theory

for momentum might belong to different levels of approximations for real corporate business

activities. This work therefore provides incentives to study the asset pricing impact of more

complex corporate decision-making processes, in order to understand the power and limitation

of traditional asset pricing approaches.

33The existence of such conditional and nonlinear risk premium itself is interesting. For example, the mutual

fund literature has a long tradition of separating the so-called selection ability from the timing ability, whereas

linear asset pricing theories deny the existence of such abilities.
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Appendix A

Proof. (Lemma 1) The first result follows directly from a constrained optimization. The second

and the third results follow the first one trivially. When the cost function is quadratic, the first-order

condition gives out that mt+1 = (C0−A+ lFt+1)�2B. So mt+1 still follows AR(1) process. The dividend

policy follows trivially.

The proof of Proposition 1 depends on the following lemma, which extends Whittle (1990) Lemma

6.1.2 to more general stochastic control problems with separable quadratic risks.

Lemma 2 (Control Problem with Separable Quadratic Risks) Let Y follow a multivariate normal distri-

bution, Y ∼ N (µ,Ω), and z be a vector control variable. Let Q(Y, z) be a quadratic function of Y and

g(z) be an arbitrary function of z. If the function f(Y, z) = g(z)Q(Y, z) + 1/2 (Y − µ)
′
Ω−1 (Y − µ) is

positive definite, then

max
z

EY [exp(−g(z)Q(Y, z))] ∝ exp

(
−

[
min

z

min
Y

f(Y, z) +
1

2
ln(|H(z)|)

])
, (20)

where H(z) = ∂2f(Y,z)
∂Y∂Y

′ denotes the Hessian matrix of f(Y, z) with respect to Y.

Especially, when x, y are two independent normal variables, x ∼ N
(
µx, σ2

x

)
and y ∼ N

(
µy, σ2

y

)
,

Q(x, y) is a quadric function of x and y such that f(x, y, z) = zQ(x, y) + (x−µx)2

2σ2
x

+
(y−µy)2

2σ2
y

is positive

definite, then

max
z

Ey [exp(−zQ(x, y)] ∝ exp

(
−

[
min

z
min
x,y

f(x, y, z) − ln(G(z))

])
, (21)

where G(z) =
[(

zQxx + 1/σ2
x

) (
zQyy + 1/σ2

y

)
− z2QxyQyx

]−1/2
.

Proof. (Lemma 2) It is straightforward to show that

max
z

EY [exp(−g(z)Q(Y, z, )] ∝ max
z

∫
exp (− f(Y, z)) dY.

Let Y∗ satisfy the following first order condition:

∂f(Y∗, z)

∂Y
= 0. (22)

Since f(Y, z) is quadric in Y, it can be Taylor expanded as follows:

f(Y, z) = f(Y∗, z) +
1

2
(Y − Y∗)′

∂2f(Y, z)

∂Y∂Y′
(Y − Y∗) = f(Y∗, z) +

1

2
(Y − Y∗)′H(z)(Y − Y∗),

and the original maximization problem becomes

max
z

∫
exp (− f(Y, z)) dY = max

z

exp (−f(Y∗, z))

∫
exp(−

1

2
(Y − Y∗)′H(z)(Y − Y∗))dY

∝ max
z

exp (−f(Y∗, z)) |H(z)|
−1/2

.

The last step follows since H(z) and Y∗ can be treated as constants when one is performing the integration.

This result and the first-order condition (22) lead to (20). The second part of the lemma is a trivial

application of the first one.
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Proof. (Proposition 1) The budget constraint can be written as

Wt+1 = (1 + r)Wt + n(D0 + m2
t+1γF σ2

x + mt+1Xt+1 + Pt+1 − (1 + r)Pt). (23)

In the equilibrium, n∗ = 1. Now, conjecture the price under the dynamic system to be Pt = A +

Bbt+1 + Cb2
t+1. Note that bt+1 = Et[mt+1] reflects available information on the firm dynamics, while

bt+2 = b0 + Γmt+1 and Pt+1 = A + Bb0 + Cb2
0 + (BΓ + 2CΓb0)mt+1 + CΓ2m2

t+1 contain random variable

mt+1. Using the terminology of Lemma 2, we have (ignoring Wt, the nonstochastic part of the wealth)

f(n, Xt+1, mt+1) = γIn(D0 + γF σ2
xm2

t+1 + mt+1Xt+1 + A + B(b0 + Γmt+1)

+ C(b0 + Γmt+1)
2 − (1 + r)(A + Bbt+1 + Cb2

t+1)) + X2
t+1/2σ2

x + (mt+1 − bt+1)
2/2σ2

β.

An investor’s original control problem is solved by

Exmn,X,m f(n, Xt+1, mt+1) − ln(G(n)), (24)

where Exmn,X,m means to take first-order derivatives of the three variables. The three FOCs are

(1 + r)(A + Bbt+1 + Cb2
t+1) = D0 + γF σ2

xm2
t+1 + mt+1Xt+1 − (ln G(n∗))′/γ

+ A + B(b0 + Γmt+1) + CΓ(b0 + Γmt+1)
2;

Xt+1 = −nγIσ
2
xmt+1; mt+1 =

bt+1 − γIσ
2
β(BΓ + 2CΓb0)

1 − n2γIσ2
xσ2

β(γI − 2γF ) + 2Γ2γIσ2
βC

.

Plugging the last two FOCs into the first one and matching the coefficient for bt+1, b2
t+1 and a constant,

we get three equations that A, B, and C should satisfy

C =
(γF − γI)σ

2
x + CΓ2

Z2(1 + r)
; B =

2CΓb0/Z + 4γIσ
2
βC2Γ(1 + r)

1 + r − Γ/Z + 2γIσ2
β(1 + r)C

; (25)

A = (D0 + Bb0 + Cb2
0 + γIσ

2
β [(1 + r)CγIσ

2
β − 1/Z](BΓ + 2CΓb0)

2)/r − (lnG(n∗))′/γr,

where Z = 1−n2γIσ
2
xσ2

β(γI−2γF )+2Γ2γIσ
2
βC and b0 = m0. These equations will solve out the parameters

C, B, and A recursively. Since [lnG(n∗)]′n is a constant in this case, it enters the constant part of the

price and will not have any impact on the main results. To save space, I omit the analytical expression

for this term. It is worthwhile, however, to point out that, when σ2
x ≪ 1 or σ2

β ≪ 1, G(n) will almost be

a constant, since the integration is not sensitive to n. In this case we can totally ignore the [lnG(n∗)]′n

term. Finally, if investors know mt+1 at the beginning of period t+1, then denoting bt+1 = Et[mt+2] and

conjecturing Pt = A + Bbt+1 + Cb2
t+1, one can easily calculate A, B, and C by repeating the above steps.

So the functional form of the price function will not be affected by the information policy of the firm.

Proof. (Proposition 2) Notice that Pt+1 = A + Bb0 + Cb2
0 + (BΓ + 2CΓb0)mt+1 + CΓ2m2

t+1, let

εβ,t+1 = mt+1 − bt+1, and plug them into the return process, we get

rt+1 = Dt+1 + Pt+1 − (1 + r)Pt

= D0 + mt+1Xt+1 + m2
t+1γF σ2

x + A + Bb0 + Cb2
0 + (BΓ + 2CΓb0)mt+1 + CΓ2m2

t+1

− (1 + r)(A + Bbt+1 + Cb2
t+1).
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Reorganizing the terms gives out

H1 = (1 + r)C(Z2 − 1) + γIσ
2
x; H2 = (1 + r)B(Z − 1) + 2(1 + r)γIσ

2
β(BΓ + 2CΓb0)C;

H3 = 2[(1 + r)CZ2 + γIσ
2
x]; H4 = (1 + r)CZ2 + γIσ

2
x; (26)

H5 = BΓ + 2CΓb0; H6 = γIσ
2
β((1 + r)CγIσ2

β − 1/Z)(BΓ + 2CΓb0)
2 − (lnG(n∗))′/γ.

Easy to check, when σ2
β is very small, Z ≈ 1, H1 ≈ γIσ

2
x, and H6 ≈ 0.

Proof. (Proposition 3) For the undiversified economy, individual stock returns could be written as

ri
t+1 = mi

t+1r
M
t+1 + H1(b

2
i,t+1 − b

2

t+1) + H2(bi,t+1 − bt+1) + H4(ε
2
βi,t+1 − ε2

βi,t+1) + H3bt+1εβi,t+1 + H5εβi,t+1.

The proposition follows when one takes the expectation of the above equation. The ε2
βi,t

terms drops

because E[ε2
βi,t+1|t] = σ2

βi
and will be the same for all firms.

For the well-diversified economy, it suffices to show that asset returns can be describe by equation

(12) (omit index i for each firm) and that H1 and H2 are nonzero parameters. Conjecturing the pricing

formula to be P i
t = Ai +Bibi,t+1 +Cib2

i,t+1, and following Lemma 2, the investor now solves the following

problem:

Exmni,Xt+1,mi,t+1
γI{(1 + r)Wt +

I∑

i=1

ni[Di
0 + γF σ2

xm2
i,t+1 + mi,t+1Xt+1

+Ai + Bi(bi
0 + Γmi,t+1) + C(bi

0 + Γmi,t+1)
2 − (1 + r)(Ai + Bibi,t+1 + Cib2

i,t+1)]}

+
X2

t+1

2σ2
x

+

I∑

i=1

(mi,t+1 − bi,t+1)
2

2σ2
β

− ln(G(n1, ...nI)). (27)

Since the portfolio is well diversified, assume
∑I

i=1 nimi,t+1 = Ib0. Now the FOCs are (ni∗ = 1):

I∑

i=1

(1 + r)(Ai + Bibi,t+1 + Cib2
i,t+1) =

I∑

i=1

[Di
0 + γF σ2

xm2
i,t+1 + mi,t+1Xt+1 + Ai

+Bi(bi
0 + Γmi,t+1) + C(bi

0 + Γmi,t+1)
2] − (lnG(n∗))′i/γ; (28)

Xt+1 = −γIσ
2
x

I∑

i=1

mi,t+1 = −γIσ
2
xIb0; (29)

mi,t+1 =
bi,t+1 − γIσ

2
β(BiΓ + 2CiΓb0)

1 + γIσ2
β(2CiΓ2 + 2γF σ2

x) − γIσ2
x)

. (30)

In deriving the envelop condition for a single stock, the assumption is Xt+1 = −γIσ
2
x

∑I
i=1 mi,t+1 ≈

−γIσ
2
x(mi,t+1 + (I − 1)b0) ≈ −γIσ

2
x(mi,t+1 + Ib0), since all other stocks could be viewed as given. Now

plugging the last two FOCs into the first one, strictly assuming Xt+1 = −γIσ
2
xIb0 (the investor holds all

the stocks), matching terms for the ith asset for the constant term, the first- and second-order terms of

bi,t, and denoting Z = 1 + γIσ
2
β(2CiΓ2 + 2γF σ2

x − γIσ
2
x) and omitting the index i, we get

Z2C =
γF σ2

x + CΓ2

1 + r
; B =

2CΓb0(Γ/Z − 2γIσ
2
β(1 + r)C) − γIσ

2
xIb0/Z

1 + r − Γ/Z + 2γIσ2
β(1 + r)C

;

rA = D0 + Bb0 + Cb2
0 + γIσ

2
β [(1 + r)CγIσ2

β − 1/Z](BΓ + 2CΓb0)
2

+ γIσ
2
xIb0(BΓ + 2CΓb0) − (ln G(n∗))′i/γ. (31)
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As seen before, the parameters can be solved in a sequence of C, B and A. Again I omit the analytical

expression for lnG(n∗). It suffices to know that (ln G(n∗))′i is a constant for each i.

As a result, return processes are described by equation (12). Furthermore, H1 = (γF σ2
x + CΓ2 − (1 +

r)C) = (1 + r)C(Z2 − 1) = γF σ2
x(Z2 − 1)/(Z2 − Γ2/(1 + r)) and H2 = BΓ + 2CΓb0 − (1 + r)B = (1 +

r)B(Z−1)+2γIσ
2
β(BΓ+2CΓb0)CZ +γIσ

2
xIb0 and both are nonzero. Therefore there exists Fama-French

residual momentum effect. When 1 > Z2 > Γ2/(1 + r), C > 0 and H1 < 0. When Z2 > 1 > Γ2/(1 + r)

or Z2 < Γ2/(1 + r) < 1, both C and H1 are positive. The magnitude of H1 in the diversified economy

(∼ γF σ2
x) can have the same order as that in the undiversified economy. Next, if the firm reveals mt+1

immediately at the beginning of the period t + 1, then one can denote bi,t+1 = Et[mi,t+2] and conjecture

P i
t = A′+B′bi,t+1+C′b2

i,t+1 as the equilibrium price. The parameters are generally nonzero. For example,

one can show that C′ =
γF σ2

x

Γ2(1+r−Γ2/(1+2CΓ2γIσ2
β
)2)

> 0 and H
′

1 =
γF σ2

x

Γ2 (1 − 1+r−Γ2

1+r−Γ2/(1+2CΓ2γIσ2
β
)2

) > 0,

where H ′

1 is the counterpart of H1 parameter when there is no information lag. As a result, the functional

form of the price function will not be affected by the information policy of the firm.

Proof. (Characteristic-based momentum)

1. The relationship between momentum and MB:

Expected momentum profits can be written as Et[π(R)] = 1
I

∑
i∈I(r

i
t − rt)Et[r

i
t+1]. For simplicity,

denoting bt = b, MBt = MB, and A′ = A − D0/r, we can Taylor expand MB around b as MBi
t =

A′ +Bbi,t +Cb2
i,t = A′ +Bb+Cb

2
+(2Cb+B)(bi,t − b)+C(bi,t − b)2. From equation (16), one can easily

get that Et[π(R)] ∝
1
I

∑
i∈I [(H1/C)2(MBi

t−MB)Et[MBi
t+1−MB]+(H2−H1B/C)2(bi,t−b)Et[bi,t+1−b]],

and that Et[π(R)] ∝
1
I

∑
i∈I [G1(MBi

t − MB)2 + G2MBi
t], where G1 = (H1/C)2corr(MBi

t , MBi
t+1) > 0

(because MB are positively correlated), G2 = (H2−H1B/C)2Γ/C > 0, and I omit the interaction between

MB and bi,t since the model cannot sign this term. Since G2 > 0, momentum profitability is in general

increasing in MB. Furthermore, depending on the parameter values, there could be a second U-shaped

relationship between momentum and MB: when MB is very low, momentum profits could increase because

of the G1(MBi
t − MB)2 component. In other words, expected momentum profits can be viewed as a

convex quadratic function of MB. Since G1 > 0, ∂Et[π(R)
∂MBi

t

|MB > 0, and we refine MBi
t > 0, momentum

can either monotonically increase in MB (when MB − G2/G1 < 0) or first decrease and then increase in

MB (U-shape, when MB − G2/G1 > 0). But even in the latter case momentum will increase in MB for

most MB values.

2. The relationship between momentum and size:

The model will first predict an increasing relationship between momentum and size, because size and

MB have similar roles in the economy. However, if size has other effects, the relationship will also be

modified. For example, if small firms on average have more information asymmetry, then to investors the

beta uncertainty will have higher variance (it is more difficult to predict the firm behavior). In this case,

size negatively correlates with ε2
βi,t

. Intuitively investors will ask for more return for more beta uncertainty

(the H4 component in [27] can be viewed as an information premium; easy to see H4 > 0). Hence

from equation (27) there will be an additional component of momentum profitability due to information

premium: Et[π(R)] ∝
1
I

∑
i∈I(ε

2
βi,t

− ε2
βi,t)Et[r

i
t+1]. Since ε2

βi,t
− ε2

βi,t is largely independent of Et[r
i
t+1],
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larger ε2
βi,t

(small firms) can generate more momentum profits, so long as Et[r
i
t+1] > 0. Intuitively,

for small firms, a positive information premium in one period and a positive overall return in the next

period introduce a positive return autocorrelation, which contributes to momentum (the size premium and

information premium in the next period return only exaggerate the autocorrelation). The combination

of the two relationships can produce an overall inverse-U relationship between momentum and size, as

observed by Hong, Lim, and Stein (2001).

Appendix B: Simulation Results

To better illustrate how well the Kalman filter estimates momentum profits, I conduct two stages of

simulations. In Figure 1, a hypothetical economy is simulated for 100 times. This economy contains 30

firms, whose returns are determined by equations (19). More specifically, Xt is taken to be the realized

monthly market excess return from January 1965 to December 1999. For ith firm, αi
0 = 0, βi

0 = 1, Γi = 0.8,

Hi
1 = 0.5, Hi

2 = 0.8, ǫi
t ∼ N(0, 0.032), and εI

β,t ∼ N(0, 0.12). These numbers are just illustrative. One

can obtain similar simulation results for a wide range of parameter values. For the current stage of

simulation, a random realization of βi
t and αi

t, according to the second and third equation of (19), is used

for all simulations. Therefore, the latent factor of each stock, as well as the π(1) and π(2) components of

WRSS101 momentum profits, are fixed for all 100 simulations. The cross-sectional mean of the βi
t and

αi
t are plotted by the solid lines in Panels C and D in Figure 1, while the time series of π(1) and π(2) are

plotted by the solid lines in Panels A and B in Figure 1. For each simulation, ǫi
t is randomly generated;

therefore, the return process will differ according to the noise term.

For each simulation, the Kalman filter observes the market return and the simulated return processes

of each stock, and estimates the βi
t and αi

t time series. Panels C and D plot the 10% and 90% confidence

levels of estimated cross-sectional mean alphas and betas as the shadow regions, illustrating that under

the current conditions the Kalman filter generally gives out very close and unbiased estimates of dynamic

alphas and betas for individual firms. For individual firms similar results hold. The Kalman filter might

smooth the time series of the latent factor and induce a downward bias in the estimated autocovariance

and momentum profits. Panels A and B first calculate π(1) and π(2) from estimated alphas and betas

for each simulation, and then plot the 10% and 90% distribution of the two estimated components. Panel

A shows that in general π(1) is underestimated under the null, while Panel B illustrates that, when the

market factor itself does not bear momentum, the estimation of π(2) is smoothed but unbiased. However,

π(1) estimations convincingly track the time series fluctuations of the true value. Therefore, we can rely

on the Kalman filter to capture the time series property, as well as a majority magnitude, of momentum

profits.

Figure 2 generalizes the previous experiment by randomizing the βi
t and αi

t time series and boot-

strapping the market return (without replacement) for each simulation. The cross-sectional means of true

alphas and betas, αt and βt, are different across simulations. Panels C and D report the cross-simulation

mean (solid line) of αt and βt, the cross-simulation mean (dashed line) and the standard deviation (dotted

line) of estimation error of αt and βt (αt(Kal)− αt(True) and βt(Kal)− βt(Kal)). It remains plausible

that the Kalman estimations for latent factors are unbiased. In Panel A1, the solid lines plot the 10%
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and 90% levels of true momentum profit distribution (across simulations) at any given time. The shadow

area plots the same region for the Kalman estimations. Panel A2 plots the cross-simulation mean of π(1)

and the cross-simulation mean and the standard deviation of the estimation error (πKal(1) − π(1)). The

gap between the two distributions and the negative value of the mean estimation error again indicate

that smoothed estimations of latent factors will lead to a small downward bias in the estimation of π(1),

while the cross-simulation mean and standard deviation of estimation errors indicate that the Kalman

model still tracks the time variations of π(1) well. Panels B1 and B2 plot the same distributions for π(2).

The second component of momentum profits is generally estimated without significant bias. This stage

of simulation illustrates that the first-stage simulation result is quite robust for different realizations of

risks.
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Table 1: Summary Statistics. Panel A reports the cross-sectional mean and standard devia-
tion of several summary statistics for monthly returns of pooled NYEX-AMEX firms (ALL) and
S&P index firms (SP). To be included in the sample, an asset must have at least 60 months of
return data from January 1962 to December 2000. If a firm has two valid return periods sepa-
rated by missing data, then it will be counted as two firms in the pool, one for each period. Each
S&P firm must once be a member of the S&P 500 index during the period from 1975 to 1999.
Column 1 (Number) reports the number of valid firms in the two pools that have converged
Kalman estimation (|αt| < 2, |βt| < 2 and σβ will not hit the upper bound of 10. More than
100 firms are discarded.). Columns 2 and 3 list the mean excess return and the Sharpe ratio for
available firm return data during the period from January 1962 to December 2000. The R2

CAPM

and R2
FF3 columns report the OLS R2 measure when the CAPM model and the three-factor

Fama and French (1993) model are applied to these firms, based on available return data during
the period. The last two columns list the effective R2 and the Harvey revised R2

D measure when
the Kalman model is applied to these firms. Panel B lists the cross-sectional means and standard
deviations of the estimated Kalman parameters.

A. Summary Statistics

Number Mean Sharpe R2
CAPM R2

FF3 R2
KAL R2

D,KAL

ALL mean 6363 0.0072 0.0669 0.1670 0.2339 0.3819 0.5852
std 0.0113 0.0822 0.1102 0.1204 0.2840 0.0673

SP mean 952 0.0110 0.1035 0.2146 0.2930 0.3805 0.6103
std 0.0100 0.0657 0.1104 0.0875 0.2380 0.0617

B. Kalman Estimates

α0 β0 Γ σ2
ǫ σ2

β H1 atan(H2)

ALL mean -0.0005 1.0152 0.1979 0.0109 0.7562 0.0621 -0.0059
std 0.2910 0.5258 0.3130 0.0124 1.3863 1.5180 0.5165

SP mean 0.0049 1.0365 0.2118 0.0069 0.4846 0.0653 -0.0372
std 0.0091 0.3883 0.3494 0.0059 0.9618 1.0381 0.6914
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Table 2: Momentum Profits of NYSE-AMEX Stocks. This table examines stock momen-
tum profitability over the horizon from 1965 to 1999. All NYSE and AMEX listed firms with at
least 60 months of CRSP return data and converged Kalman estimations are used. Only stocks
with valid formation- and holding-period returns are included in any momentum portfolio. Each
panel reports monthly momentum portfolio return (π(R)), its corresponding time series t statis-
tics (when overlapping portfolios are used), its corresponding Newey-West H − 1 lags-adjusted t
statistics (when nonoverlapping portfolios are used), and risk-adjusted momentum profits (π′(ǫ)
and π′′(ǫ)) in percentage of original return momentum profits (η′ = π′(ǫ)/π(R) × 100% and
η′′ = π′′(ǫ)/π(R) × 100%). For calculating π′(ǫ) and π′′(ǫ), momentum portfolio weights are
determined by the ranking-period raw returns and Kalman residuals, respectively, while holding-
period returns are calculated from Kalman residuals. Panels A and B are based on WRSS and
WML (long [short] top [bottom] 10% stocks) strategies, respectively. F , H, and G denote the
length (in months) of the formation period, the holding period, and the gap between the two
periods.

G = 0 G = 1
F H = 3 H=6 H=12 H=1 H = 3 H=6 H=12

A. WRSS strategies with G = 0

π(R) 6 0.00392 0.00561 0.00531 0.00631 0.00681 0.00771 0.00521

π(R) 12 0.00841 0.00741 0.00422 0.01031 0.00901 0.00721 0.00352

TJT 6 2.02 3.28 3.77 3.26 3.73 4.77 3.78
TJT 12 4.15 3.90 2.51 5.07 4.60 3.91 2.10

TNW 6 2.29 3.89 4.87 3.25 4.52 5.73 4.84
TNW 12 5.11 5.29 3.37 5.04 5.80 5.32 2.69

η′ 6 1.90 24.46 21.78 26.35 34.092 37.991 20.13
η′ 12 26.962 21.87 −14.57 35.161 31.961 20.77 −32.22

η′′ 6 10.12 29.691 29.411 29.04 37.211 40.011 29.061

η′′ 12 29.531 28.481 4.39 34.641 35.171 28.531 −7.27

B. WML with G = 0

π(R) 6 0.00622 0.00831 0.00751 0.01001 0.01031 0.01101 0.00721

π(R) 12 0.01141 0.01031 0.00591 0.01421 0.01231 0.01011 0.00492

TJT 6 2.53 3.83 4.22 4.11 4.46 5.45 4.22
TJT 12 4.50 4.32 2.81 5.63 5.02 4.39 2.38

TNW 6 2.96 4.61 5.37 4.14 5.57 6.62 5.39
TNW 12 5.63 5.97 4.04 5.60 6.43 6.10 3.36

η′ 6 19.80 48.661 40.071 54.372 60.081 62.891 37.862

η′ 12 40.431 37.852 −9.83 50.731 47.651 36.602 −30.97

η′′ 6 39.31 72.281 63.081 72.061 82.801 84.351 62.321

η′′ 12 61.231 59.611 13.11 67.121 71.281 57.681 −5.32

1 and 2: Significant at the 1% and 5% levels, two-tailed t test.
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Table 3: Decomposition of NYSE-AMEX Stock Momentum Profits. This table decom-
poses WRSS momentum strategy returns for NYSE-AMEX stocks over the period from 1965
to 1999 into four components: π(R) = π(1) + π(2) + π(3) + π(4), where π(1) = cov (αt, αt−1),
π(2) = cov (βt, βt−1) rM

t rM
t−1 + cov (αt, βt−1) rM

t−1 + cov (βt, αt−1) rM
t , π(3) = cov (εt, βt−1) rM

t−1 +
cov (βt, εt−1) rM

t +cov (αt, εt−1)+cov (εt, αt−1), and π(4) = cov (εt, εt−1) for the dynamic CAPM
model of rt = αt + βtr

M
t + ǫt. All components will be scaled by a same constant so that the

portfolio will have one dollar in the long position. Panels A and B report the percentage contri-
bution of each component, ηi = |π(i)|/(|π(1)| + |π(2)|+ |π(3)|+ |π(4)|)× 100%, for returns from
nonoverlapping momentum portfolios and overlapping momentum portfolios, respectively.

G = 0 G = 1
F H = 3 H=6 H=12 H=1 H = 3 H=6 H=12

A. WRSS strategies, Nonoverlapping Portfolios

η1 6 56.901 70.861 70.101 71.531 64.831 62.471 69.371

η1 12 72.771 71.351 57.081 67.501 66.921 70.231 53.961

η2 6 10.662 11.03 7.27 12.30 10.74 7.48 7.30
η2 12 7.50 7.44 6.872 6.29 6.80 7.25 7.192

η3 6 16.471 16.991 20.211 13.532 11.032 10.012 20.461

η3 12 15.811 18.591 21.281 11.102 12.961 18.381 21.311

η4 6 15.98 1.12 2.41 2.64 13.40 20.051 2.88
η4 12 3.93 2.62 14.772 15.112 13.332 4.14 17.541

B. WRSS strategies, Overlapping Portfolios

η1 6 68.471 61.731 65.281 60.641 55.871 56.161 64.671

η1 12 64.521 65.281 73.991 61.131 60.661 64.671 68.441

η2 6 16.65 12.78 8.32 13.67 12.74 9.36 8.02
η2 12 8.53 8.32 9.70 7.11 7.95 8.02 9.71

η3 6 14.39 7.66 8.28 7.25 5.36 1.92 8.55
η3 12 6.47 8.28 15.732 2.93 5.23 8.55 16.092

η4 6 0.48 17.83 18.12 18.44 26.041 32.561 18.762

η4 12 20.482 18.12 0.58 28.831 26.161 18.762 5.75

1 and 2: Significant at the 1% and 5% levels, two-tailed t test.
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Table 4: Momentum Profits of S&P 500 Stocks. This table examines momentum strategy
returns based on S&P500 stocks. In each month, stocks that have been members of the S&P 500
index in the previous month are used to form nonoverlapping momentum portfolios. Each panel
reports the mean and Newey-West t statistics of the monthly momentum profits (π(R)), as well
as risk-adjusted momentum profits (π′(ǫ)) in percentage of original return momentum profits
(η′ = π′(ǫ)/π(R) × 100%). For calculating π′(ǫ), momentum portfolios weights are determined
by the ranking-period raw returns, whereas holding-period returns are calculated from Kalman
residuals. Panels A and B are based on WRSS and WML (long [short] top [bottom] 10% stocks)
strategies with no lag between the ranking and holding periods. Panels C and D report the
results when G = 1.

F H=1 H = 3 H=6 H=12 H = 18 H=24

A. WRSS strategies with G = 0
π(R) 6 0.0006 0.0032 0.00491 0.00541 0.00252 0.00172

π(R) 12 0.00671 0.00831 0.00781 0.00501 0.00242 0.0014
TNW 6 0.31 1.86 3.07 4.20 2.45 2.12
TNW 12 3.19 4.36 4.24 3.39 2.04 1.33

η′ 6 − 18.08 43.262 49.971 19.49 −3.18
η′ 12 38.86 50.691 49.861 35.64 −5.88 −65.30

B. WML with G = 0
π(R) 6 0.0014 0.00452 0.00651 0.00721 0.00351 0.00232

π(R) 12 0.00831 0.01051 0.00991 0.00661 0.00312 0.0016
TNW 6 0.57 2.04 3.32 4.56 2.83 2.52
TNW 12 3.14 4.39 4.29 3.59 2.26 1.37

η′ 6 − 31.53 58.892 67.741 33.10 4.30
η′ 12 45.12 63.161 63.591 47.712 −8.91 −95.03

C. WRSS strategies with G = 1
π(R) 6 0.00382 0.00491 0.00651 0.00521 0.00251 0.00152

π(R) 12 0.00911 0.00871 0.00761 0.00431 0.0019 0.0011
TNW 6 2.06 2.87 4.24 4.14 2.58 1.98
TNW 12 4.49 4.54 4.25 3.03 1.69 1.04

η′ 6 27.78 44.10 53.771 49.481 20.44 −9.47
η′ 12 54.121 53.701 50.091 29.49 −25.67 −101.14

D. WML strategies with G = 1
π(R) 6 0.00582 0.00681 0.00851 0.00691 0.00351 0.00212

π(R) 12 0.01161 0.01101 0.00981 0.00571 0.0025 0.0012
TNW 6 2.42 3.11 4.51 4.42 2.97 2.31
TNW 12 4.57 4.62 4.34 3.23 1.89 1.01

η′ 6 50.63 64.972 71.841 66.841 35.67 −3.05
η′ 12 67.881 68.711 65.051 39.59 −34.00 −142.44

1 and 2: Significant at the 1% and 5% levels, two-tailed t test.

46



Table 5: Momentum Profits for More Dynamic versus Less Dynamic Stocks. This
table examines momentum profits generated by ex-post sorted NYSE-AMEX stocks from 1965
to 1999. Firms are sorted into four quartiles according to the standard deviation of estimated
Kalman alphas, σα(t). Firms in Group 0 to 3 have σα(t) between 0 and 8.2 × 10−11, between
8.2 × 10−11 and 0.0067, between 0.0067 and 0.0269, and above 0.0269, respectively. Each group
has 1,595 firms. Group 0 is discarded since the Kalman model fails to properly capture the
dynamics of firms in that group. Momentum strategies are then applied to firms within each
of the three remaining groups. Panels A1 and A2 report the (overlapping-portfolio) WRSS and
WML momentum strategy profits generated by firms in Groups 1 to 3 (π(R1) to π(R3)). To
save space, t statistics are not reported. Panel B reports the time series mean and t statistics
for differences between Group 3 and Group 1 momentum profits (π(R3) − π(R1)).

G = 0 G = 1
F H = 3 H=6 H=12 H = 3 H=6 H=12

A1. WRSS strategies

π(R1) 6 0.0005 0.00262 0.00331 0.00332 0.00461 0.00341

π(R2) 6 0.00342 0.00511 0.00501 0.00611 0.00701 0.00491

π(R3) 6 0.00621 0.00771 0.00651 0.00931 0.00971 0.00621

π(R1) 12 0.00481 0.00461 0.00272 0.00591 0.00481 0.0024
π(R2) 12 0.00761 0.00701 0.00431 0.00821 0.00701 0.00371

π(R3) 12 0.01051 0.00891 0.00501 0.01091 0.00851 0.00402

A2. WML strategies

π(R1) 6 0.0005 0.00372 0.00461 0.00511 0.00641 0.00501

π(R2) 6 0.00482 0.00721 0.00701 0.00851 0.00981 0.00691

π(R3) 6 0.00911 0.01121 0.00901 0.01401 0.01391 0.00861

π(R1) 12 0.00601 0.00611 0.00372 0.00771 0.00671 0.00342

π(R2) 12 0.01001 0.00951 0.00591 0.01101 0.00961 0.00511

π(R3) 12 0.01371 0.01251 0.00721 0.01501 0.01201 0.00592

B1. Difference between 3 and 1: WRSS

π(R3) − π(R1) 6 0.00581 0.00511 0.00331 0.00601 0.00521 0.00281

π(R3) − π(R1) 12 0.00571 0.00431 0.0023 0.00501 0.00371 0.0016

Tπ(R3)−π(R1) 6 4.10 4.06 3.07 4.37 4.21 2.65
Tπ(R3)−π(R1) 12 3.74 3.02 1.71 3.35 2.57 1.22

B2. Difference between 3 and 1: WML

π(R3) − π(R1) 6 0.00861 0.00751 0.00441 0.00891 0.00751 0.00371

π(R3) − π(R1) 12 0.00771 0.00641 0.0035 0.00731 0.00532 0.0025

Tπ(R3)−π(R1) 6 4.43 4.34 3.05 4.67 4.44 2.59
Tπ(R3)−π(R1) 12 3.47 3.07 1.80 3.30 2.55 1.30

1 and 2: Significant at the 1% and 5% levels, two-tailed t test.

47



Table 6: Momentum Profits (Dynamic versus Market-to-Book). This table examines
momentum profits generated by ex-post double-sorted NYSE-AMEX stocks from 1965 to 1999.
Firms are sorted independently into four σα(t) quartiles (Groups 0 to 3 [most dynamic firms])
and three market-to-book groups (MB1 to MB3 [high-MB firms]), where MB value is calculated
as the mean of the inverse of available book-to-market values (all firms with negative means
have been discarded). Each group contains from 400 to 600 firms. Momentum strategies are
then applied to firms within each of the 12 double-sorted groups. Panels A1 and A2 report
the time series mean and t statistics for WRSS606 and WRSS616 momentum profits (based on
overlapping portfolios). Panel B reports WML strategy profits.

Strategy:6:0:6 Strategy:6:1:6
MB1 MB2 MB3 MB1 MB2 MB3

A1. WRSS strategies

π(R0) 0.00542 0.00422 0.00831 0.00871 0.00611 0.01011

π(R1) 0.0016 0.0013 0.00481 0.00392 0.00332 0.00621

π(R2) 0.00691 0.00412 0.00591 0.00911 0.00591 0.00751

π(R3) 0.00641 0.00711 0.00861 0.00871 0.00901 0.01041

π(R3) − π(R1) 0.00492 0.00591 0.0038 0.00482 0.00571 0.00422

A2. Corresponding t statistics

Tπ(R0) 2.04 2.04 3.63 3.46 3.07 4.46
Tπ(R1) 0.77 0.75 2.83 1.98 2.07 3.81
Tπ(R2) 3.39 2.39 3.00 4.80 3.51 3.97
Tπ(R3) 2.66 3.21 3.67 3.81 4.28 4.51

Tπ(R3)−π(R1) 2.22 3.12 1.95 2.20 3.13 2.16

B1. WML strategies

π(R0) 0.00782 0.00582 0.01111 0.01291 0.00841 0.01391

π(R1) 0.0027 0.0023 0.00641 0.00572 0.00502 0.00881

π(R2) 0.00911 0.00621 0.00791 0.01261 0.00851 0.01011

π(R3) 0.01081 0.00961 0.01261 0.01331 0.01221 0.01461

π(R3) − π(R1) 0.00801 0.00731 0.00622 0.00772 0.00721 0.00582

B2. Corresponding t statistics

Tπ(R0) 2.20 2.12 3.52 3.77 3.22 4.45
Tπ(R1) 1.06 1.14 3.07 2.25 2.55 4.34
Tπ(R2) 3.36 2.76 2.92 4.94 3.86 3.92
Tπ(R3) 3.20 3.17 3.98 4.09 4.29 4.70

Tπ(R3)−π(R1) 2.66 2.80 2.24 2.52 2.91 2.11

1 and 2: Significant at the 1% and 5% levels, two-tailed t test.
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Table 7: Momentum Profits (Dynamic versus Size). This table examines momentum
profits generated by ex-post double-sorted NYSE-AMEX stocks from 1965 to 1999. Firms are
sorted independently into four σα(t) quartiles (Groups 0 to 3 [more dynamic firms]) and three
size groups (Size1 to Size3 [large-sized firms]) according to the average market capital of a firm
during the period. Each group contains 400 to 600 firms. Momentum strategies are then applied
to firms within each of the 12 double-sorted groups. Panel A1 and A2 report the time series
mean and t statistics for WRSS606 and WRSS616 momentum profits (based on overlapping
portfolios). Panel B reports WML strategy profits.

Strategy:6:0:6 Strategy:6:1:6
Size1 Size2 Size3 Size1 Size2 Size3

A1. WRSS strategies

π(R0) 0.0010 0.01051 0.00921 0.00472 0.01161 0.01031

π(R1) 0.0016 0.00521 0.0020 0.0040 0.00631 0.00391

π(R2) 0.0030 0.00571 0.00691 0.00551 0.00751 0.00851

π(R3) 0.0028 0.01211 0.01091 0.00542 0.01311 0.01251

π(R3) − π(R1) 0.0012 0.00691 0.00891 0.0013 0.00691 0.00871

A2. Corresponding t statistics

Tπ(R0) 0.40 4.81 4.26 2.05 5.33 4.89
Tπ(R1) 0.63 2.89 1.36 1.68 3.68 2.75
Tπ(R2) 1.35 3.26 3.82 2.57 4.50 4.85
Tπ(R3) 1.14 5.44 4.61 2.30 6.14 5.45

Tπ(R3)−π(R1) 0.43 3.64 4.84 0.47 3.72 4.69

B1. WML strategies

π(R0) 0.0010 0.01611 0.01301 0.00672 0.01791 0.01431

π(R1) 0.0025 0.00781 0.0029 0.00672 0.00951 0.00541

π(R2) 0.0044 0.00801 0.00911 0.00791 0.01061 0.01101

π(R3) 0.0046 0.01801 0.01461 0.00782 0.01961 0.01681

π(R3) − π(R1) 0.0021 0.01021 0.01171 0.0012 0.01011 0.01141

B2. Corresponding t statistics

Tπ(R0) 0.28 5.46 4.61 1.99 6.22 5.14
Tπ(R1) 0.72 3.42 1.59 1.98 4.37 3.01
Tπ(R2) 1.45 3.39 3.83 2.67 4.70 4.75
Tπ(R3) 1.36 5.83 4.58 2.37 6.58 5.39

Tπ(R3)−π(R1) 0.50 3.82 4.43 0.29 3.79 4.30

1 and 2: Significant at the 1% and 5% levels, two-tailed t test.
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Table 8: Momentum Profits (Dynamic versus Mispricing). This table examines momen-
tum profits generated by ex-post double-sorted NYSE-AMEX stocks studied from 1965 to 1999.
In Panel A, firms are sorted independently into four σα(t) quartiles (Groups 0 to 3 [more dy-
namic firms]) and three mispricing groups (E1 to E3 [more mispricing]) according to 1−R2

CAPM

(R2
CAPM is the ex-post R2 measure from the CAPM regression, based on all available firm re-

turns from 1965 to 1999). Momentum strategies are then applied to firms within each of the 12
double-sorted groups. Panel A1 and A2 report the time series mean and t statistics for WRSS606
and WRSS616 momentum profits (based on overlapping portfolios). In Panel B firms are sorted
independently into four σα(t) quartiles and three mispricing groups according to σ(ǫKal) (Group
E1 to E3 [highest value]). The E3−E1 column reports the profit difference between column E3
and column E1.

Strategy:6:0:6 Strategy:6:1:6
E1 E2 E3 E3 − E1 E1 E2 E3 E3 − E1

A1. WRSS strategies, σ(αt) vs. 1 − R2
CAPM

π(R0) 0.00991 0.00791 0.0033 −0.00662 0.01051 0.00981 0.00612 −0.0045
π(R1) 0.00302 0.0026 0.0013 −0.0018 0.00491 0.00432 0.0039 −0.0010
π(R2) 0.00601 0.00571 0.0032 −0.0028 0.00761 0.00771 0.00542 −0.0023
π(R3) 0.01081 0.00661 0.0046 −0.00622 0.01271 0.00861 0.00721 −0.00552

π(R3) − π(R1) 0.00781 0.00402 0.0033 − 0.00781 0.00422 0.0032 −

A2. Corresponding t statistics

Tπ(R0) 4.95 3.53 1.22 −2.44 5.44 4.60 2.35 -1.70
Tπ(R1) 2.14 1.39 0.48 −0.74 3.59 2.38 1.52 -0.42
Tπ(R2) 3.48 3.06 1.35 −1.44 4.65 4.31 2.30 -1.19
Tπ(R3) 4.88 2.70 1.88 −2.53 5.95 3.73 2.99 -2.27

Tπ(R3)−π(R1) 4.52 2.10 1.17 − 4.62 2.25 1.11 −

B1. WRSS strategies, σ(αt) vs. σ(ǫKal)

π(R0) −0.0004 0.00411 0.00721 0.00751 0.0013 0.00541 0.00961 0.00831

π(R1) −0.0008 0.0023 0.00651 0.00731 0.0011 0.00421 0.00851 0.00731

π(R2) 0.00302 0.00591 0.00641 0.0035 0.00481 0.00771 0.00841 0.0036
π(R3) 0.00531 0.00741 0.01061 0.0053 0.00781 0.00921 0.01161 0.0038

π(R3) − π(R1) 0.00611 0.00511 0.0040 − 0.00671 0.00491 0.0031 −

B2. Corresponding t statistics

Tπ(R0) -0.26 2.78 3.45 3.53 0.92 3.72 4.90 3.96
Tπ(R1) -0.66 1.68 2.76 3.50 0.99 3.19 3.78 3.65
Tπ(R2) 2.25 3.53 2.68 1.75 3.83 4.82 3.64 1.83
Tπ(R3) 2.64 3.49 3.29 1.92 4.03 4.56 3.68 1.37

Tπ(R3)−π(R1) 3.51 2.98 1.35 − 3.87 2.95 1.04 −

1 and 2: Significant at the 1% and 5% levels, two-tailed t test.
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Table 9: Out-of-Sample Momentum Profits for More Dynamic versus Less Dynamic
Stocks. This table examines momentum profits generated by ex-ante sorted NYSE-AMEX
stocks from 1965 to 1999. Instead of estimating the Kalman model once for all available return
data during the test period, this table estimates the Kalman model year by year for each stock,
and divides stocks into different quartiles according to ex-ante σα(t) in each month. In order to
attain the ex-ante σα(t) measure in year t, the Kalman model is applied to all available return
data after January 1962 and before January of year t (if there are more than 60 data points).
Then, the standard deviation of the estimated risk premium (σα(t), based on prior-t information)
is assigned to each month in year t as the ex-ante measure for firm dynamics. Next, in each
month, firms are sorted into four quartiles according to the ex-ante σα(t) measure (Groups 0 to 3
[more dynamic firms]) , and momentum strategies are applied to stocks within each of the four
quartiles. More specifically, since more than one ranking period is involved for the overlapping-
portfolio strategies in each month, stocks are sorted according to available σα(t) values at the
end of the first (earliest) ranking period. Panels A1 and A2 report the (overlapping-portfolio)
WRSS and WML momentum strategy profits generated by firms in Groups 1 to 3 (π(R1) to
π(R3)). To save space, t statistics are not reported. Panel B reports the time series mean and
t statistics for differences between Group 3 (more dynamic firms) and Group 1 (less dynamic
firms) momentum profits (π(R3) − π(R1)).

G = 0 G = 1
F H = 3 H=6 H=12 H = 3 H=6 H=12

A1. WRSS strategies

π(R1) 6 0.0020 0.00372 0.00352 0.00452 0.00581 0.00401

π(R2) 6 0.00362 0.00491 0.00571 0.00551 0.00661 0.00531

π(R3) 6 0.0040 0.00621 0.00601 0.00791 0.00871 0.00601

π(R1) 12 0.00631 0.00611 0.0026 0.00681 0.00611 0.0024
π(R2) 12 0.00821 0.00741 0.00511 0.00861 0.00711 0.00442

π(R3) 12 0.00951 0.00871 0.00551 0.01081 0.00901 0.00511

A2. WML strategies

π(R1) 6 0.0039 0.00572 0.00521 0.00741 0.00821 0.00571

π(R2) 6 0.00502 0.00711 0.00811 0.00801 0.00971 0.00761

π(R3) 6 0.00672 0.00961 0.00851 0.01231 0.01281 0.00841

π(R1) 12 0.00771 0.00781 0.0037 0.00871 0.00811 0.0035
π(R2) 12 0.01111 0.01031 0.00721 0.01221 0.01051 0.00611

π(R3) 12 0.01331 0.01271 0.00851 0.01491 0.01281 0.00781

B1. Difference between 3 and 1: WRSS

π(R3) − π(R1) 6 0.0021 0.0025 0.00252 0.00342 0.00292 0.00202

π(R3) − π(R1) 12 0.00322 0.0027 0.00292 0.00391 0.00282 0.00272

Tπ(R3)−π(R1) 6 1.44 1.85 2.41 2.36 2.25 2.00
Tπ(R3)−π(R1) 12 2.18 1.83 2.43 2.65 2.03 2.23

B2. Difference between 3 and 1: WML

π(R3) − π(R1) 6 0.0028 0.00392 0.00342 0.00492 0.00461 0.00282

π(R3) − π(R1) 12 0.00561 0.00492 0.00481 0.00621 0.00482 0.00432

Tπ(R3)−π(R1) 6 1.43 2.19 2.43 2.47 2.66 2.01
Tπ(R3)−π(R1) 12 2.71 2.45 2.87 2.98 2.49 2.57

1 and 2: Significant at the 1% and 5% levels, two-tailed t test.
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Figure 1: Simulation of Momentum Profits with Fixed Factors. Below, a hypothetical
economy is simulated for 100 times. The economy contains 30 firms, whose returns are deter-
mined by: rt = αt + (β0 + βt)r

M
t + ǫt;αt = α0 + H1β

2
t + H2βt;βt = Γβt−1 + εβ,t, where rM

t is
the realized monthly market excess return from January 1965 to December 1999. For ith firm,
αi

0 = 0, βi
0 = 1, γi = 0.8, H i

1 = 0.5, H i
2 = 0.8, ǫi

t N(0, 0.032), and εi
β,t N(0, 0.12). For each

simulation, αi
t and βi

t are fixed, while ǫi
t are different to generate different return processes. In

Panel A and B the solid lines plot the true value of momentum components π(1) and π(2). The
shadow region represents the 10% to 90% distribution of the estimated π(1) and π(2). In Panel
C and D the solid lines plot the true value of cross-sectional mean of αi

t and βi
t , αt and βt, while

the shadow region represents the 10% to 90% distribution of the estimated αt and βt.
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Figure 2: Simulation of Momentum Profits with Random Factors. Below, a hypothet-
ical economy is simulated for 200 times. The economy contains 30 firms, whose returns are
determined by rt = αt +(β0 +βt)r

M
t + ǫt;αt = α0 +H1β

2
t +H2βt;βt = Γβt−1 + εβ,t, where for ith

firm, αi
0 = 0, βi

0 = 1, γi = 0.8, H i
1 = 0.5, H i

2 = 0.8, ǫi
t N(0, 0.032), and εi

β,t N(0, 0.12). For each

simulation, new αi
t, βi

t time series, as well as ǫi
t, will be generated, while rM

t , the market excess
return from 1965 to 1999, is bootstrapped without replacement. In Panel A1 and B1 the solid
lines plot the 10% and 90% true value of cross-simulation momentum components π(1) and π(2).
The shadow region represents the 10% to 90% distribution of the estimated π(1) and π(2). Panel
A2 plots the cross-simulation mean of π(1), the cross-simulation mean and standard deviation of
estimation error (π(1,Kal) − π(1)). Panel B2 plots the cross-simulation mean estimation error,
π(2,Kal)−π(2). Panels C and D report the cross-simulation mean (solid line) of cross-sectional
mean of αi

t and βi
t for each month (αt and βt), the cross-simulation mean (dashed line) and

standard deviation (dotted line) of estimation error of αt and βt, or αt(Kal) − αt(True) and
βt(Kal) − βt(True).
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Figure 3: Components of S&P 500 Momentum Profits. This figure decomposes a set of
nonoverlapping WRSS S&P 500-stock momentum strategy profits from 1965 to 1999 into four
components: π(r) = π(1) + π(2) + π(3) + π(4). The percentage contribution of each component
is calculated as ηi = |π(i)|/(|π(1)| + |π(2)| + |π(3)| + |π(4)|) × 100%. In Panels A and B, the
formation horizons are 6 and 12 months, respectively, while G = 1 month. The two panels plot
the four components with holding horizons from 1 to 24 months.
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Figure 4: Sorted Momentum Profits. Panels A and B independently sort firms into four σα(t)

quartiles (Groups 0 to 3 [more dynamic firms]) and three MB groups (MB1 to MB3 [high-MB
firms]), where MB value is calculated as the mean of the inverse of available book-to-market
values (all firms with negative means have been discarded). Firms within each of the 12 double-
sorted groups are used to form momentum portfolios. Panels A and B plot the WML606 and
WML616 momentum strategy profits, respectively. Details are in Table 6). Panels C and D
independently sort firms into four σα(t) quartiles and three size groups (Size1 to Size3 [large
firms]). Momentum profits for WML606 and WML616 strategies are plotted. Details are in
Table 7.
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