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Abstract

We develop a method for classification of works of art based on their price dynam-

ics. The method is in the same spirit as factor models commonly used within financial

economics. Factor models assume that price dynamics of assets are related to underlying

fundamental characteristics. We assume that such characteristics exist for works of art,

and that they are associated with what we intuitively think of as style. We use a recently

developed clustering algorithm to group artists that represent similar styles. This algo-

rithm is specifically well-suited for situations where statistical distributions are far from

normal – A description we believe fits well with markets for art. We test the method

empirically on a ten-year sample of price data for paintings by 58 artists. Even with

this limited data set, we clearly identify five groups and show that these are related to a

standard classification of style.
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Haven, Connecticut 06520.
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1 Introduction

Style has long been the basis for classification in the history of art, however a precise definition

of style, and a consistent basis for grouping works of art into styles has eluded scholarship. Style

as applied to works of art is necessarily based upon not only a large variety of visual and material

attributes of an object, but also upon the manner in which these attributes are executed and

assembled. If engineers are only now beginning to develop optical recognition tools that can

consistently identify the same face in front of a camera, imagine how long it will take to use

optical data to distinguish say, a Renaissance from a Baroque painting, or to understand the

subtleties of visual allusion and allegory. Given that works of art from the 20th Century were

often, by their very nature, crafted to challenge stereotyping or easy classification, it is hard

to imagine that style recognition will ever be meaningfully automated. It could happen, just

as we have seen Gary Kasparov’s chess prowess equaled by an IBM computer. However the

limited dimensionality and the clarity of the rules of chess make it more susceptible to analysis.

Aesthetic development has often taken place by breaking rules and replacing them. As Morse

Peckham suggests, the most influential works of art are those that are initially perceived as

chaotic. Art, in Peckham’s view,

... serves to break up orientations, to weaken and frustrate the tyrannous drive

to order, to prepare the individual to observe what the orientation tells him is

irrelevant, but what may every be relevant.1

A difficult challenge indeed, for a tool trained on patterns to detect regular, logical structure.

Recent research by economist David Galenson has suggested an economic basis for the

identification and the analysis of quality in works of art (Galenson 2002). Rather than using

the visual characteristics of works of art as the grounds for evaluating which works are the most

important, Galenson uses auction prices. In effect, he projects the vast, complex dimensionality

of the visual and physical and historical characteristics of works of art down to two dimensions,

price and time. This allows hypothesis testing about which works of art, for example, are

1Peckham (1967), Man’s Rage for Chaos: Biology, Behavior and the Arts, Patrick Wilkinson, editor, Maison-

neuve Press, University Park Maryland, reprint of the 1967 edition.
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perceived as most important, and the identification of a few basic career trajectories of successful

artists.

In this paper, we propose adopting this economic approach to the problem of identification

of style. Rather than construction an automaton and feeding it the world’s books on the

history of art and training it ultimately to synthesize visual and physical input into stylistic

classification, we propose to use auction prices. The use of price data has the potential to employ

the cognitive and aesthetic capacities of the world’s art auction market participants in order to

define aesthetic styles. By relying upon the bidding behavior of market participants, under some

simplifying assumptions, we can interpret the world’s auction markets as a continually active

and constantly changing market for opinions about the relative value and associations of works

of art. The proposal in this paper is to use auction data in an econometric model to uncover

“associations” among the works of artists, and these associations one could label “style.” While

we cannot claim that this approach uncovers style as an art historian might understand it, we

would claim that it can, when executed with the proper econometrics, approximate the idea

of style as collectors and dealers might understand it. Since collectors and dealers necessarily

rely upon art historical scholarship and interpretation as the basis for value, this approach may

then, at least secondarily, reflect expert opinion.

An important limitation of using market information to define style is that it displaces the

specialists – the connoisseur and the art historian – from the definition of style, and replaces

them with the customers for works of art, few of whom are likely to be trained in art evaluation.

In asset pricing, where object values are common values, this problem is addressed through the

processes of arbitrage in expectations. The Arbitrage Pricing Theory (Ross 1976) for example

shows that the existence of a single risk-neutral investor with unconstrained borrowing capacity

– the expert – can enforce efficient pricing. This person can drive the value of two economically

equivalent assets to the same price by bidding up the price of shares of the undervalued asset

and shorting the shares of the over-valued asset until these values align themselves according to

the “Law of One Price.” A tricky aspect of this theory is that two such financial titans cannot

agree to permanently disagree on the economic equivalence of the assets, or else they would

furiously and infinitely bid their views without driving the prices towards some common value.
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In a sense you would get two equally powerful invisible hands arm wrestling with no resolution.

Thus, even in the world of asset pricing models there must be some agreement on style. In

the example, of course, at least one of the financial titans must be wrong, for, in an economic

framework of objective values are equivalent to expected sums of future discounted cash flows.

In the world of art, this need not be the case. There is no ultimate economic value for objects

apart from the tastes of those with the money to indulge them.

Curiously, recent scholarship in financial economics has found the term “style” useful in

the analysis of asset values and investor behavior. Barberis and Schelifer (2003), Chan, Chen,

and Lakonishok (2002), Brown and Goetzmann (1997), Sharpe (1992) among many others

use the term style to describe common strategies of investors and/or common characteristics

of investment securities. In doing so, they implicitly assume that broad market perceptions,

behavior and perhaps even tastes are important in the world of assets. Indeed, Kumar and Lee

(2002) and Kumar (2002), explore the pricing implications of style investing and find empirical

evidence that common perceptions – not just the perceptions of the well-capitalized arbitrageur

– may affect prices. Thus, an interesting implication of recent asset pricing theory and empirical

evidence is that subjective style “factors” exist in the investment world and that they matter.

The suggestion that financial economics has begun to profitably borrow from the concepts

of art historical scholarship may be a slim motivation for art historical scholarship to borrow

the tools of modern finance. After all, in a private values market, in which personal taste, not

expected sums of future discounted cash flows, drive market prices, the law of one price does

not necessarily hold. Theoretically, tastes for works of art could be orthogonal. There might

be no agreement on what is good or bad art, or what objects are meaningful substitutes for

each other in the collector’s imagination. In fact, we know this is not the case. A by-product of

the construction of art price indices (Anderson (1974), Goetzmann (1993) and Mei and Moses

(2002)) is a measure of the variance in price changes explained by the common factor – the

art index. The index explains a lot; typically half of the price change in a painting’s purchase

then re-sale over long holding periods can be attributed to broad market movements. Even if

some of this can be explained by the shifting economic fortunes of collectors (Goetzmann and

Spiegel (1995), Ait-Sahalia, Parker, and Yogo (2002)), there remains a common component of
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value to works of art that reflects the degree to which a set of auctioned objects are regarded as

substitutes for each other in collector utility functions. Formalizing this result, and expressing

the idea of style in terms that will eventually allow estimation, will require some algebraic

notation.

The next section develops a more formal framework for defining a relationship between style

and prices, and for estimating styles from observed prices. In the third section, we use this

framework to empirically analyze art styles. In a limited data set of auction prices over ten

years, we clearly identify five groups of artists. These groups fit quite well with a standard

classification of art style. The fourth section concludes.

2 Defining style

There are two steps in developing a method for empirically estimating styles from observed

prices. The first step is to assume a model of the relationship between styles and prices:

Consider an hedonic valuation model of a work of art j for collector i at time t. We assume a

functional, f , that is conditioned upon the stochastic state of the world, where ω is the wealth

of the collector and γ is the percentage of that wealth the collector wishes to invest in art.

This model generalizes the model in Goetzmann and Spiegel (1995). The characteristics of the

artworks; the artist [a], the size [s], the date [d] and other characteristics [x] all figure into the

price, Pijt, the collector is willing to pay at that time, and are represented by a vector X. We

simplify the valuation to a linear model Xj βit for which the βit represent factor loadings at

time t and the Xi represent perceived factors that are associated with the definition of style,

for example, landscape subject matter, pointilist technique and so forth. These are scaled by

the value of the investor’s art investment at a given point in time ωitγit:

Pijt = fit(aj , sj, dj, xj) =
[
Xjβit

]
ωitγit. (1)

In an auction, the bidder with the highest valuation at time t obtains the work of art. If all

bidders had the same wealth and the same preference for art, then the determinant of the

winning bid would rely solely on the characteristics Xj and the factor loadings βit. If everyone
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had the same aesthetic tastes as well as the same wallet, then the highest priced item would

be determined solely by the characteristics Xj . If these common sets of tastes evolved through

time, prices of objects would change according to their characteristics.

So how does this models help us with style? Style can be thought of as classifying work of art,

j = 1, . . . , N , into K < N styles, according to the characteristics, Xj . Notice that although we

are actually interested in Xj, Pijt can make this classification problem easier, since the biggest

challenge to classification of works of art using characteristics is the mispecification problem

– we may mismeasure or leave out key variables, or not be able to correctly capture them in

our functional form. If we only had Xj we would be back to the problem of programming

the subtleties of the Baroque into a computer – with no way to check our work except by

asking a human expert! In a setting in which tastes evolve, however, the dynamics of object

prices can help differentiate styles. We observe PI,j,t = XjβItωItγIt. In this case, the capital

I subscript indicates the winning bidder. For example, as factor loadings for some works of

art decrease, their relative prices will decline. Without dynamics, the classification is infeasible

unless an econometrician is willing to specify X and estimate a classic hedonic regression. With

dynamics, it is not necessary to separately estimate Xj and βit.

This leads us to the second step in empirically classifying styles from observed prices, which

is to use an algorithm to group together artworks with similar price dynamics. Input to such

a classification algorithm will be price changes of artworks through time; output will be a

number of clusters - a parsimonious set of groups with artists in the same clusters representing

the same style. Brown and Goetzmann (1997) exploited this idea to estimate styles of mutual

fund investment managers, applying a clustering algorithm to the time-series of returns of

funds. Each observation consisted of the time-series of monthly returns of a single fund. The

algorithm groups funds so as to minimize the within-group sums of squared residuals from

the group center. This is a so-called K-means algorithm. It requires ex ante specification

of the number of groups – as long as K < N there will be squared residuals to minimize.

More general algorithms allow for hierarchical clustering – the estimation of a graphic tree

expressing the distance among subgroups of observations. They relieve the investigator from

the burden of guessing the number of appropriate styles. In recent years, new algorithms

5



have been developed that have attractive robustness characteristics. Traditional methods often

depend on the “noise” in the model being close to normal (Gaussian) and relationships being

linear. The new methods also work well when “noise” is far from normal and relationships are

nonlinear – a reasonable assumption on the relationship between art styles and prices. We shall

use a specific such algorithm, the Laplacian eigenmap method, and we will see that it performs

better than standard methods when applied to our art data set.

3 Style classification – an example

In order to exploit the dynamics of taste to classify works of art into styles, it is necessary to

observe a time-series of prices for each individual work of art. Alas, individual works of art do

not sell every day – the illiquidity would seem to be a hopeless barrier. One approach, which

we will follow, is to specify subgroups – that is, to lump the works of a single artist into one

category and then apply a classification algorithm at the level of the artist, rather than the

artwork. We do this for a specific data set provided by ArtNet.2

3.1 Data

ArtNet identified the 100 most widely represented artists in their database of auction prices

over the period 1984-1995, according to how many works of art by the artist were sold in the

time period. The raw data consisted of 115,812 reported paintings and other works of art.

For each artist, we constructed an index of the median sales price of the artist’s works each

year. The median is better than the mean, of course, because it eliminates the effects of extreme

sales prices. Bought in prices were not recorded as transactions. This is an admittedly crude

measure of the price dynamics of the artist’s works. Heterogeneity of quality alone is likely to

cause fluctuations in the median price – Fluctuations in Xj due to changing works of art will

be misconstrued as changes in βit.

Many artists did not have any reported sales for 1984-1985, so these years were not included

2http://www.artnet.com

6



in the sample. Furthermore, some artists were dropped from the sample because they did not

have at least one painting sold in each of the remaining years. This left us with 10 years of data

for 58 painters and altogether 20,700 observations. The bulk of the the remaining artists are

late 19th century and early 20th century painters, represented by giants like Picasso, Renoir and

van Gogh. “Younger” artists, like Warhol and Lichtenstein are also well represented, whereas

only five artists in the sample were born before 1840 – the oldest being Jean Babtiste Corot

(born 1796).

The prices varied a lot between different types of art. We therefore identified three subtypes:

Paintings, Watercolors and Drawings that were treated separately. Yearly returns (defined as

relative increase in median price) were calculated for each subtype. For each year, the return

was defined as the average of the returns of the three subtypes. For a specific subtype, if

observations were lacking for any of the two years used to calculate return, this subtype was

excluded.

In Table 1, we show summary data for the 58 remaining artists, i.e., total number of paintings

sold and average price over the entire time-period for the three subtypes. We see that there

are large variations between artists within a specific type, e.g., paintings, from a low average

median price of $22,000 for Alexander Calder (Artist 27), to a high of $1,903,000 for Vincent van

Gogh (Artist 4). Moreover, the average median price for paintings is typically, but not always,

signicantly higher than for the other two types – A notable exception is Henri Matisse (Artist

6) whose median price for paintings were $540,000, compared with $1,333,000 for watercolors.
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Artist name Paintings Watercolors Drawings

# P , [$1,000] # P , [$1,000] # P , [$1,000]

1 Picasso, Pablo 460 528 123 155 712 38

2 Renoir, Pierre Auguste 588 239 19 63 118 113

3 Monet, Claude 198 1698 0 21 162

4 Gogh, Vincent van 46 1903 5 511 37 245

5 Chagall, Marc 238 572 263 145 179 19

6 Matisse, Henri 109 540 13 1333 331 51

7 Degas, Edgar 51 393 5 83 329 195

8 Miro, Joan 188 262 135 83 148 31

9 Pissarro, Camille Jacob 198 557 89 140 198 6

10 Cezanne, Paul 64 1553 54 206 35 31

11 Leger, Fernand 220 280 272 36 126 21

12 Dubuffet, Jean 310 201 85 47 223 14

13 Gauguin, Paul 59 666 14 157 48 18

14 Vlaminck, Maurice de 574 98 127 26 118 7

15 Modigliani, Amedeo 58 1058 7 107 109 31

16 Bonnard, Pierre 209 293 21 55 92 5

17 Braque, George 138 280 35 26 36 61

18 Warhol, Andy 475 56 66 7 139 4

19 Kandinsky, Wassily 62 515 55 192 32 48

20 Utrillo, Maurice 473 132 147 56 30 15

21 Klee, Paul 58 298 157 159 111 30

22 Toulouse-Lautrec, Henri de 55 355 10 678 120 291

23 Sisley, Alfred 105 678 0 17 42

24 Dufy, Raoul 266 118 324 38 250 4

25 Dongen, Kees van 208 191 71 35 38 10

26 Foujita, Tsuguharu 166 150 76 44 190 18

27 Calder, Alexander 62 22 401 8 90 7

28 Bacon, Francis 42 1369 0 1 8

29 Buffet, Bernard 467 72 48 30 71 10

30 Magritte, Rene 108 394 68 118 99 10

31 Lichtenstein, Roy 134 185 1 244 25 51

32 Rouault, Georges 171 155 83 42 11 29

33 Laurencin, Marie 248 126 184 34 140 8

34 Signac, Paul 70 493 264 16 40 11

35 Fantin-Latour, Henri 182 160 0 38 2

36 Chirico, Giorgio de 228 110 34 44 68 10

37 Dali, Salvador 94 222 97 38 203 10

38 Gris, Juan 59 513 12 94 50 28

39 Boudin, Eugene Louis 389 80 74 13 66 9

40 Stella, Frank 389 80 74 13 66 9

41 Nolde, Emil 35 594 231 74 16 15

42 Ernst, Max 173 129 16 104 58 17

43 Derain, Andre 214 28 50 14 109 2

44 Francis, Sam 246 131 78 53 0

45 Redon, Odilon 59 215 10 50 73 198

46 Corot, Jean Baptiste Camille 247 83 0 42 4

47 Kisling, Moise 357 78 14 9 14 5

48 Morandi, Giorgio 76 357 11 48 45 11

49 Marquet, Albert 223 98 47 9 73 1

50 Kline, Franz 71 212 9 14 39 16

51 Jawlenskij, Alexej von 170 114 15 26 12 13

52 Kirchner, Ernst Ludwig 31 405 62 34 191 7

53 Poliakoff, Serge 163 104 102 25 3 5

54 Martin, Henri 250 68 3 0 9 3

55 Le Sidaner, Henri Eugene Augustin 223 57 4 6 21 11

56 Delvaux, Paul 30 689 28 37 69 21

57 Basquiat, Jean-Michel 240 44 9 8 81 9

58 Nicholson, Ben 128 74 25 31 59 11

Total 10917 4158 5625

Table 1: Summary data for 58 artists in sample. For each type of painting (Painting, Watercolor and

Drawing), the total number of works sold and the average price over the 10 year period is shown.
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3.2 The clustering algorithms

Formally, a clustering algorithm applied to a set of points aims at dividing the set into K

clusters. Here, K can either be endogenously determined or exogenously specified. Points

within a cluster are “similar,” whereas points in different clusters are “different.” In this paper,

the aim is to cluster artists with similar styles by observing price dynamics of sold works of art.

There are a large number of traditional clustering algorithms, including parametric ap-

proaches, like Gaussian mixture methods and K-means methods, and non-parametric ap-

proaches, like hierarchical clustering algorithms. For a survey article, see Jain, Murty, and

Flynn (1999). We will use two such traditional algorithms, the K-means algorithm and a

hierarchical tree algorithm. Inspired by the recent interest in the learning community about

nonlinear methods for dimensionality reduction and data mining (Tenenbaum, de Silva, and

Langford 2000, Donoho and Grimes 2002, Roweis and Saul 2000, Belkin and Niyogi 2001, Coif-

man and Lafon 2002), we also decided to use a third, recently developed algorithm. Various

constructions have been proposed that seek to nonlinearly embed a set of data points in a

lower dimensional space while minimizing distortion. These algorithms can be directly applied

to clustering problems, as solutions in lower-dimensions offer advantages in terms of stability,

interpretability and speed. The algorithm focus on local estimations of properties of the data,

and have different ways of incorporating these local structures into a global structure. We

will use the Laplacian eigenmap method, as a representative for these new types of methods

(Belkin and Niyogi 2001). By focusing on local similarities, the Laplacian eigenmap algorithm

has the potential to outperform Gaussian probabilistic models, when probability distributions

are highly non-normal.

We give a brief description of the three algorithms that we shall use: The first algorithm is

the K-means algorithm (also used in Brown and Goetzmann (1997)). It works as follows: Given

a set of N points, X, with a distance d (inversely related to a similarity measure), and a fixed

integer K, it returns a partition of X into K subsets S1, . . . , SK . The partition is constructed

by finding the K “best” centroids, and then by assigning each point of X to the closest centroid.
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The minimization problem solved by K-means is

argmin{S1,...,SK}
K∑

i=1


∑

x∈Si

d(x, xi)




over all partitions {S1, . . . , SK} of X, where xi is the centroid of Si. The expression in the

round bracket is a measure of dissimilarity of each cluster, hence K-means tries to minimize

the sum of these measures, over all possible K-partitions of X. Common choices for d, are

the squared Euclidean distance, or one minus the cosine of the angle between points viewed as

vectors.

The second algorithm is a hierarchical clustering algorithm. It works as follows: Given a

set of N points, X, with a distance d (inversely related to a similarity measure), it returns a

(usually binary) tree. The root of the tree is the whole set X, the leaves are the single elements

of X. The other nodes are sets that are union of the sets associated to the children nodes.

Each level of the tree simulates the structure of X by means of a certain partition into clusters.

Hierarchical clustering algorithms can work either bottom-up, by agglomerating points and

clusters of points into new, coarser level nodes, or top-down, by partitioning X recursively

until singletons are reached. In the agglomerative approach, the key ingredient is the similarity

measure between two clusters. This is computed between any pair of clusters, at each level, in

order to decide which two clusters are the most similar. These will be joined into a new cluster.

Common measures of similarity between clusters include the following:

Nearest distance : min
xi∈Xi,xj∈Xj

d(xi, xj),

Average distance : avexi∈Xi,xj∈Xjd(xi, xj),

Complete distance : max
xi∈Xi,xj∈Xj

d(xi, xj).

The third algorithm is the Laplacian eigenmap algorithm. It rests upon more complicated

mathematics than the previous two algorithms. We give a detailed description of the algorithm

in Appendix A. Here, we show how it works with an example: We are given a set of N points,

X, each point being a vector of M numbers. This could, e.g., be the value over M consecutive

years for N paintings. We wish to divide these into K clusters. For simplicity, let us assume
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that we have N = 2, 000 vectors of length M = 2, as shown in Figure 1. It is trivially clear to

the eye that there are two distinct clusters of points in Figure 1. However, as the mean and

covariance terms between points in the two clusters are zero, it is also clear that any method

based on a normal distribution of points will fail to separate the two clusters, even if means,

variances and covariances are known! Another way of stating this, is that there is simply no

way to separate the two clusters with a straight line, which is what standard Gaussian methods

do. A similar argument also applies to the K-means algorithm. A method for separating the
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Figure 1: Set of points with highly non-Gaussian distribution. There are 2,000 points that form two

separated groups (“ring” and “blob”).

two sets needs to rely on more local measures than what is provided by means and variances.

Phrased differently, we need a method that uses the fact that points that are close to neighbors

of a specific point, are close to that specific point too, whereas not “bothering” too much of the

distance of points that are far apart.

The Laplacian eigenmap method starts with a symmetric similarity matrix Q ∈ R
M×M ,

where Qij defines the similarity of points i and j. Thus, a large value of Qij implies that point i
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and j are similar. The similarity measure must be accurate for points that are close, but it does

not have to be very accurate for points that are far apart as long as it is small – These points

will typically not end up in the same cluster anyway. The measure is thus defined in a way

such that a focus on locality is introduced. We can now view each point as an element in R
M .

In the example, we have embedded each point in R
2 in R

2,000! The key here is that even though

we now have a much larger space to work with, our embedding is a low-dimensional manifold

in (ideally, two-dimensional). If we make an eigenvector decomposition of this mapping, the

two eigenvectors corresponding to the second and third largest eigenvalues will provide a good

representation of this manifold (the first eigenvector does not provide any information at all –

it is a constant). The eigenvector decomposition is a nonlinear map.

Finally, by looking at the eigenvector representation of a specific point, we can determine

which cluster it belongs to. We do this for the points in Figure 1. The resulting plot of the

coefficients for the second and third eigenvectors are shown in Figure 2. We see that there is

a perfect separation between the two sets, and that they can easily be separated by a straight

line. In general, clustering algorithms can be expected to be more efficient when working in

the image of the points under the Laplacian eigenmaps. A heuristic argument for why this

works, and how the similarity mapping should be chosen, is given in Belkin and Niyogi (2001).

Now, although there are many other traditional clustering algorithms that would also succeed

in separating these two clusters, there are more complicated distributions where the Laplacian

eigenmap is superior, e.g., when the two sets are “spirals”, see Coifman and Lafon (2002).

3.3 Results

3.3.1 K-means algorithm

We run K-means clustering with Euclidean distance. After trying different numbers, we arrive

at specifying 5 clusters (remember that the number of clusters must be exogenously given to

the K-means algorithm). The resulting clusters are shown in Table 2. The resulting clusters are

unbalanced – the smallest cluster containing 3 artists and the largest containing 22. Ideally, we

would want the first number – the average distance between artists within the same cluster – to

12



−0.03 −0.025 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

φ
2

φ 3

Figure 2: Decomposition of points with Laplacian eigenmap method. A separation is achieved, with

“ring” points forming a line (left part of figure), and “blob” points forming a cone (right part of

picture).
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be as small as possible, whereas we would want the nondiagonal elements of columns two to six

– the minimal distance between artists in two different clusters – to be as large as possible. We

see that, except for cluster K1, this is by no means the case for the other clusters. Especially,

cluster K5 has an average distance of 40.5 between elements within cluster K5, whereas the

minimum distance to each of the other clusters is less than 10. This is a clear indicator that

this cluster contains scattered elements that did not fit into the other clusters. This suggests

that the K-means algorithm is not very well suited for our dataset.

Distance: Within K1 K2 K3 K4 K5 Artists

K1 2.3 - 3.3 6.5 3.9 9.1 2,11,15,18,21,25,26,27,31,32,33,

35,36,39 ,40,42,43,44,45,50,51,58

K2 8.9 3.3 - 5.7 3.0 7.4 1,6,10,17,30,37,38,41,57

K3 17.2 6.5 5.7 - 5.4 8.4 4,22,48

K4 6.6 3.9 3.0 5.4 - 5.6 5,8,9,12,13,14,16,19,20,24,28,

34,46,47,49,52,53,54,55

K5 40.5 9.1 7.4 8.4 5.6 - 3,7,23,29,56

Table 2: Clusters identified with K-means algorithm, K1-K5. The clusters are unbalanced, and it is

difficult to visualize how separated they are. The artist associated with respective number is given in

Table 1.

3.3.2 Hierarchical tree algorithm

We next run a hierarchical clustering algorithm. As discussed, there are two degrees of freedom

when running this algorithm: the choice of similarity function between points, and the choice
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of similarity between clusters. We tried several combinations: most led to highly unbalanced

trees, with one or two very large clusters, and the rest of the clusters consisting of a single

artist. The choice that gave the best result was using the angle (cosine) distance function,

and the complete distance among clusters at different levels in the hierarchy. The results with

this choice are shown in Figure 3. The vertical axis describes the distance between different

branches in the tree. To separate, e.g., 5 clusters that minimize the distance between elements

within a cluster, we should start from the top, and proceed downwards until the tree is split

into 5 branches. This level is represented by the horizontal line in Figure 3. We see that, even

with this parameter choice, such a procedure produces even more unbalanced clusters than the

K-means algorithm, with cluster H3 containing 3 elements, and cluster H4 containing 30! Thus,

hierarchical tree algorithms also seem quite poorly suited for our data.

3.3.3 Laplacian eigenmap algorithm

Finally, we run the Laplacian eigenmap method. The results are shown in Figure 4. We see that

five clearly separated clusters can be identified. These clusters are also identified when we run

a K-means algorithm on the transformed two-dimensional dataset. The clusters are relatively

well balanced, ranging in size between 7 and 15 artists. Also, we note that the representation in

Figure 4 offers a nice two-dimensional visualization of the dataset (Coifman and Lafon 2002).

We now have three suggestions for how artists should be clustered. In some cases they agree:

For example, the impressionists Claude Monet and Edgar Degas (# 3 and 7 respectively) are

put in the same cluster by all three methods. In other cases they do not: For example, the

Laplacian eigenmap method groups Vincent van Gogh (# 4) together with Paul Klee (# 21,

expressionist) and Pierre August Renoir (# 2, impressionist). The hierarchical tree algorithm

on the other had chooses to put these three artists in separate clusters, rather focusing on the

connection between Renoir and Max Ernst (# 42), and between Klee and Alexander Calder

(# 27). Finally, the K-means algorithm agrees with the Laplacian eigenmap method that

Renoir and Klee should be in the same cluster, but puts Van Gogh in a small cluster together

with Henri de Toulouse Lautrec (# 22) and Giorgio Morandi (# 48). Now, the situation is
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Figure 3: Tree built by hierarchical clustering algorithm with cosine distance and complete similarity

measure. The horizontal line represents the similarity level at which there are 5 clusters: H1-H5,

shown in bottom part of Figure. The clusters are unbalanced. The artist associated with respective

number is given in Table 1.
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Figure 4: Clusters identified with Laplacian eigenmap algorithm. The clusters are fairly well balanced.

The artist associated with respective number is given in Table 1.
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analogous to having three art connaisseurs in the same room, and having as many opinions on

what constitutes style. However, the point of our exersize is to try to objectively measure what

constitutes style, or at least market substitutes, from observed price data. We should therefore

be able to pick one of the three methods, solely based on the price dynamics and then compare

if it relates to what we think of as style.

We would like an objective way of measuring which method gives the best clusters for this

dataset. The different degrees of balancedness of the clusters gives us some indication, but we

would also like an “objective” measure of how “similar” artists within a cluster are, and how

“different” artists in different clusters are. Right now, we are comparing apples and pears, as

the three methods have different measures of what constitutes a cluster. Unfortunately, it is

almost a folk theorem that for any method, one can define a measure of success and a data

distribution, such that the method is optimal (for a semi-serious article, see Laloudouana and

Tarare (2003)). For example, we compared the methods with their own “measures of success,”

i.e., comparing the Laplacian eigenmap clusters with the K-means clusters, with the K-means

algorithm’s measure of similarity, etc. Not surprisingly, each method outperforms the others

when its own measure of success is used. We have performed, but do not report the details of,

these tests.

A more objective, frequently used, measure is the N-Cut criterion, Shi and Malik (2000).

It measures how close points within a cluster are, compared with points in different clusters,

by summing distances within clusters, and dividing over total distances, in a way such that a

scale-free parameter is achieved. The measure has some optimality implications. Furthermore,

it is not immediately related to any of our algorithms. In this sense, the N-Cut measure is like

calling for an outsider to judge which of three paintings has the highest quality, instead of letting

one of the three painters decide. For our data, the points represent price returns, and a high

N-Cut measure means that returns for artists within a cluster are highly correlated, whereas

returns for artists in different clusters have low correlation. It therefore fits well with the factor

model described in Section 2. We compare the N-Cut-measure for the three algorithms in

Table 3. Here, a higher number means that the algorithm is more successful. We see that

the K-means algorithm and the Laplacian eigenmap algorithm outperform the hierarchical tree
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algorithm, and that even though it is a close call, the Laplacian eigenmap algorithm has a

higher score than the K-means algorithm. Thus, in addition to the balancedness, we have a

Algorithm K-means Hierarchical tree Laplacian eigenmap

N-Cut 10.2% 6.3% 10.9%

Table 3: Comparing the three algorithms with the N-Cut criterion of success. The Laplacian eigen-

map method has highest score, closely followed by the K-means algorithm, both outperforming the

hierarchical tree algorithm.

quantitative indication that the Laplacian eigenmap algorithm is to prefer. Finally, we prefer

the visualization provided by the Laplacian eigenmap algorithm compared with the distance

matrices provided by the K-means algorithm. We therefore focus on the clusters identified by

the Laplacian eigenmap method.

The aim with this paper is, of course, not to find the ultimate clustering algorithm – rather

we wish to show that there is a connection between style as an economist and as an art historian

might define it. In the next section, we analyze the clusters, L1-L5, identified by the Laplacian

eigenmap method, and how they relate to style. For completeness, we also give a brief summary

of the (weaker) results for the clusters identified by the K-means algorithm (K1-K5) and by

the hierarchical clustering algorithm (H1-H5).

3.4 Relationship with style

What do the clusters in Figure 4 represent? To answer this question, we first study the price

dynamics for the different clusters, then we compare the clusters with “style” as it might be

classified by an Art historian. There is not much relationship between price level and clusters.

For example, average price for each artist (shown in Figure 6 in Appendix B, where size of

price is represented by the area of each ring), seems fairly evenly distributed across clusters.
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Returns for different artists on the other hand (shown in Figure 7 in Appendix B) have a clear

relationship with the clusters - from large returns for cluster L1, and then decreasing, with the

lowest returns for cluster L5. Thus, average returns partly explain the different clusters.

However, this is just one dimension – Let us now see if the clusters do in any sense represent

how the art historian might classify style. We naturally have to choose a very simple classifica-

tion: One comparison is to look at the year of birth for respective artist and see if it is related

to our clusters: We would expect artists that were active in the same time-period to be more

similar in style. This comparison is shown in Figure 8 in Appendix B. It seems like clusters

L1 and L4 on average contains “older” artists, whereas cluster L5 contains “younger” artists.

We test whether these hypotheses bear any statistical significance. We count the number of

artists in each group that are older and younger than the median age of the sample respectively.

We use a χ2-test to see whether these groups have a random distribution. The hypothesis is

rejected at the 5% level (Table 5b), and thus the clusters do not seem to have a random age

distribution. We also perform a two-sample t-test to see whether the artists in clusters L1 and

L4 are significantly older than the rest of the sample. Finally, we test whether the artists in

cluster L5 are significantly younger than the rest of the sample. These results are shown in

Table 5a. We can conclude that the artists in cluster L5 are younger than the rest of the sample

at the 5% significance level. We do not get 5% significance for either of the separate hypotheses

that clusters L1 and L4 are older than the rest of the sample, although the hypotheses that

artists in clusters L1 and L4 are older than the rest of the sample is supported at the 1% level

(not shown in table). Thus, we have at least an indirect indicator that the clusters are related

to style.

A direct test can be performed by comparing the clusters with a style classification. We use

Artcyclopedia3 as a primary source to associate one style with each artist. When no clear clas-

sification was given by Artcyclopedia, we used The-Artists.org4 as a secondary source. Artists

that were not classified by either of these sources were defined as “Unclassified”. The resulting

3http://www.artcyclopedia.com

4http://www.the-artists.org

20



(admittedly very rough) classification is shown in Figure 5. The results are mixed, but there
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Figure 5: Style for artists. Hypotheses: Impressionists are over-represented in cluster L1, Post-

impressionists are overrepresented in clusters L2 and L4, Expressionists dominate cluster L4, Surreal-

ists are well represented in cluster L3, as are Popart painters in cluster L5.

seems to be some structure:

• Impressionists are mainly in cluster L1.

• Cluster L2 is small, but contains two out of four Post-impressionists, as does cluster L4.

• Cluster L3 is mixed, but has a high representation of Surrealists.

• Expressionists dominate cluster L4.

• Two out of three Popart painters are in cluster L5.
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We use an exact contingency test5 with the null hypothesis that our identified structures are

random. In doing this, look at the following styles: Impressionism, Post-impressionism, Ex-

pressionism, Surrealism and Popart. Artists that do not belong to any of these are grouped

into Other. A frequency table is shown in Table 4b. The hypotheses and the significance level

a.

Cluster L1 L2 L3 L4 L5

Older than median 4 4 10 1 10

Younger than median 10 4 4 6 5

Total 14 8 14 7 15

b.

Cluster L1 L2 L3 L4 L5

Style Impressionism 4 1 0 1 0

Post-impressionism 0 2 0 2 0

Expressionism 2 1 0 3 2

Surrealism 1 1 3 0 1

Popart 0 0 1 0 2

Other 7 3 10 1 10

Total 14 8 14 7 15

Table 4: a) Number of artists in each cluster that are born before and after median year of birth. b)

Number of artists in each cluster that represent different styles.

that the respective alternative hypothesis can be rejected at are shown in Table 5b. We see

that we can reject that the clusters are random at the 1% level. The hypotheses on Impres-

sionists, Post-impressionists and Expressionists are all supported at the 5% level or better (i.e.,

the alternative hypothesis is rejected). The hypotheses on Surrealists being over-represented in

5Rather than a χ2-test, as the frequency table contains several zeros.
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cluster L3, and popart painters in cluster L5 are not significant.

a)

Hypothesis χ2/t-statistic Supported with p-value

Cluster L1 born earlier than rest of sample -1.64 0.10

Cluster L4 born earlier than rest of sample -1.50 0.14

Cluster L5 born later than rest of sample 1.97 < 0.05∗

b)

Hypothesis χ2-statistic Degrees of freedom Supported with p-value

Age-distribution is not random 10.38 4 < 0.05∗

Style-distribution is not random < 0.007∗∗

Cluster L1 more Impressionists 6.61 1 < 0.025∗

Cluster L2 more Post-impressionists 5.82 1 < 0.025∗

Cluster L3 more Surrealists 2.44 1 < 0.2

Cluster L4 more Expressionists 5.66 1 < 0.025∗

Cluster L4 more Post-impressionists 4.74 1 < 0.05∗

Cluster L5 more Popart 2.75 1 < 0.1

Table 5: Statistical tests of style distribution of identified clusters: a) two-sample t-test for the year

of birth of artists in different clusters. b) χ2-test for the relationship between age, styles and different

clusters.

We also perform the same tests with the clusters identified by the K-means algorithm. The

results are somewhat weaker – summarized in what follows: The test does not reject that the

clusters are random with respect to style at the 5% level, although it is close (p = 0.052).

Neither does it, reject randomness with respect to age (χ2 = 3.6 with 4 degrees of freedom).

Furthermore, no cluster has a t-statistic higher than 1.15 when testing whether age distribution

of the specific cluster differs from the rest. For styles within individual clusters, the two small
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clusters (K3 and K5) contains statistically significant overrepresentation of Impressionists and

Post-Impressionists respectively – similar to what was found by the Laplacian eigenmap method.

However, no relations (not even weak) are identified for Expressionists, Popart and Surrealism,

with highest χ2 statistics of about 1.2. Thus, it seems like the K-means algorithm does a decent

job in separating out Impressionists and Post-Impressionists, in the two small groups K3 and

K5, but fails to separate styles among the rest.

Finally, we test the clusters identified by the hierarchical algorithm. Here, we are not even

close to reject randomness of either age or style. The p-value for randomness of style is p = 0.30,

and for randomness of age, χ2 = 1.6 with 4 degrees of freedom. Thus, there does not seem to

be any relationship between style and the clusters identified by the hierarchical tree algorithm.

4 Conclusions

We have empirically verified a connection between price dynamics and style of works of art,

using a clustering algorithm. The Laplacian eigenmap algorithm identified five clusters (L1-L5)

and we could reject that these clusters were random with respect to style and age of artist.

Furthermore, we found support for:

1. Impressionists being overrepresented in cluster L1.

2. Post-impressionsists being overrepresented in clusters L2 and L4.

3. Expressionists being overrepresented in cluster L4.

Our results should, of course, not be over-stated. We realize that we are using post hoc

hypotheses that were identified from the data. A Bonferroni correction of the p-values for

the individual hypotheses (in Table 5), to take this into account, would destroy statistical

significance, except for the overall hypotheses that the clusters are not random over age and

style. Moreover, the clusters are noisy and the correspondence with what we call style is far

from one-to-one. Our interpretation is therefore that there is a relationship between price

dynamics of artwork and style, and that a richer data-set would permit us to further explore

and refine this relationship.
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A Description of Laplacian eigenmap method

We are given a set of points and their pairwise distances representing similarities (the smaller

the distance, the more similar two points are). These distance are assumed to be rather accurate

when they are small (i.e. the two objects being compared are very similar) but they may become

unreliable when they are big (i.e. the two objects being compared are quite not similar). This

a rather common situation in many applications.

We look for a representation of the set of points in as low a dimension as possible, while

preserving the important, reliable distances (the small ones), and allowing distortion for less-

important distances (the large ones). Geometric harmonics (Coifman and Lafon 2002) and

the related eigenmaps are non-linear maps that try to preserve local distances while in general

distorting non-local distances. Moreover, these maps have the property of pulling clusters

apart, automatically detecting possible good cuts for separating different clusters. Geometric

Harmonics have a scaling parameter, which allows for looking at different level of details in the

data set.

We want to look at the geometric harmonics on a data set X ⊂ R
N , each point being, in out

particular case, one of the time series described above. We get the Laplacian eigenmap when

we choose kernel

K(x, y) = e−‖x−y‖2/δ2 (2)

for some choice of δ and normalized as follows: let

D(x)
def
=

∑
yi

K(x, yi), (3)

and consider the (normalized) Laplacian operator on the data set given by

L = D−1(D −K). (4)

We compute the eigenvalues and eigenvectors of this operator:

Lϕi = λiϕi, (5)

for i = 1, 2, . . ., where the λi’s are ordered in nondecreasing order. It is always the case

that λ1 = 0 (since the operator is identity minus averaging). The first few eigenvectors are
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particularly interesting. For any fixed k we can consider the map

Φk : X → R
k, defined by Φk(X) = (ϕ2(x), . . . , ϕk+1(x)). (6)

This map minimizes the distortion as defined by

N − tr(ϕKϕT ) =
k+1∑
i=2

(1− λi) =
1

2

k+1∑
i=2

∑
x,y

(
ϕi(x)− ϕi(y)

)2
K(x, y), (7)

among all “projection maps” (AKAT with A orthogonal and AKAT = I). Since the kernel

K(x, y) is larger for x, y close, the emphasis in the distortion of Φk is in keeping close points

close.

Observe that the matrix P = D−1K is a Markov matrix, whose (i, j)-entry defines the

transition probability of jumping from point xi to point xj , thus defining a random walk on

X, which we think of as a heat diffusion. Also, observe that the eigenvectors of P are exactly

{ϕi}i and that the eigenvalues of P are just 1 − λi. Hence the eigenvectors {ϕi}i are also

the eigenfunctions of the heat operator on X. Now observe that two clusters in X would by

definition be weakly linked together, where weakly is measured with respect to the strength of

the connections between points inside each cluster. Then the heat diffusion will be slow along

the links connecting different clusters, compared to the speed of diffusion inside the clusters.

We expect the second eigenfunction ϕ2 of the heat operator to have its 0-level set in the middle

of these weak connections, and be of different sign on different clusters. Along these lines, it

can for example be proved that the second eigenfunction ϕ2 arises from the relaxation of a (NP-

hard) clustering problem (Shi and Malik 2000). In the example in Figure 1, the eigenfunction

ϕ2 is negative in the core cluster and positive in the annulus around it, as one can clearly see

in Figure 2, and its 0 level set is a good cut in the graph determined by the set of points.
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B Clusters vs styles – Additional figures from Section

3.4
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Figure 6: Average prices over ten year period. There is no clear relationship between prices and

clusters. The artist associated with respective number is given in Table 1.
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Figure 7: Average returns over ten year period. There is a clear relationship between prices and

clusters Basically, the average return increases in the second eigenvector φ2. The artist associated

with respective number is given in Table 1.
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Figure 8: Year of birth for artists: Cluster L1 and L4 contain “Old artists”, cluster L5 contains

“young artists”. Average birthyear: Cluster L1 – 1867, Cluster L2 – 1878, Cluster L3 – 1883, Cluster

L4 – 1864, Cluster L5 – 1891.
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