
Electronic copy available at: http://ssrn.com/abstract=954767

Heterogeneous Expectations and Bond Markets∗

Wei Xiong† and Hongjun Yan‡

May 2009

Abstract

This paper presents a dynamic equilibrium model of bond markets in

which two groups of agents hold heterogeneous expectations about future

economic conditions. The heterogeneous expectations cause agents to take

on speculative positions against each other and therefore generate endoge-

nous relative wealth fluctuation. The relative wealth fluctuation amplifies

asset price volatility and contributes to the time variation in bond premia.

Our model shows that a modest amount of heterogeneous expectations can

help explain several puzzling phenomena, including the “excessive volatil-

ity” of bond yields, the failure of the expectations hypothesis, and the

ability of a tent-shaped linear combination of forward rates to predict bond

returns.
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1 Introduction

Standard asset pricing models use a representative-agent based framework. While this

framework leads to tractable asset pricing formulas, it ignores important interactions

among heterogeneous agents. There is ample evidence supporting the existence of

heterogeneous expectations among agents, as shown in various surveys of professional

forecasters and economists.1 Casual observations also suggest that agents take on

different investment positions and trading between them can have important effects

on asset prices. For example, in the ongoing financial crisis of 2007-2008, while many

financial institutions heavily invested in securities related to subprime mortgages, some

hedge funds instead took on large short positions. When the prices of these securities

started to fall, these funds were able to make a large profit at the expense of those

optimistic financial institutions.2 The increased capital allowed these hedge funds to

take even larger short positions and to push the prices further down.

In this paper, we analyze a dynamic equilibrium model in which heterogeneous

expectations cause investors to trade with each other. We show that the endogenous

wealth fluctuations caused by investors’ trading can help resolve several challenges

encountered by standard representative-agent models, including the “excessive volatil-

ity” of bond yields, the failure of the expectations hypothesis, and the ability of a

tent-shaped linear combination of forward rates to predict bond returns.

We adopt the standard endowment economy of Lucas (1978). To bridge our model

with empirical studies of nominal interest rates, we introduce an exogenous price infla-

tion process. We allow investors to hold heterogeneous expectations of future economic

conditions. Specifically, we assume that there are two groups of investors using dif-

ferent learning models to estimate the unobservable inflation target, which determines

1For example, Mankiw, Reis and Wolfers (2004) find that the interquartile range among professional
economists’ inflation expectations, as shown in the Livingston Survey and the Survey of Professional
Forecasters, varies from above 2% in the early 1980s to around 0.5% in the early 2000s. Swanson
(2006) finds that in the Blue Chip Economic Indicators survey of major U.S. corporations and financial
institutions between 1991 and 2004, the difference between the 90th and 10th percentile forecasts of
the next-quarter real US GDP growth rate fluctuates between 1.5% and 5%, and the 90th and 10th
percentile forecasts of the four-quarter-behind 3-month Treasury bill rate fluctuates between 0.8% and
2.2%.

2Two hedge funds managed by Paulson & Co were reported to make $15 billion from shorting
subprime mortgages with a return over 600%, see e.g., “The Wall Street investor who shorted subprime
and made $15bn”, Money Week, January 28, 2008.
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future inflation and nominal short rates. Consequently, the two groups of investors hold

heterogeneous expectations about future interest rates. This disagreement motivates

investors to take on speculative positions against each other, and market clearing con-

ditions determine the equilibrium prices. Following Detemple and Murthy (1994), we

solve for the equilibrium in a closed form and show that the equilibrium bond price is

a wealth-weighted average of bond prices in homogeneous economies, in each of which

only one type of investor is present.

Our model implies that the relative wealth fluctuation caused by investors’ spec-

ulative positions amplifies bond yield volatility and contributes to the time variation

in bond premia. The intuition is as follows. Suppose a group of investors are opti-

mistic about future short interest rates (i.e., their expectation of future short rates is

higher than the other group’s). Then, investors in the optimistic group would bet on

rates rising against those pessimistic investors. In equilibrium, bond prices aggregate

investors’ heterogeneous beliefs and, in particular, reflect their wealth-weighted aver-

age belief. When investors’ wealth-weighted average belief about future short rates is

higher than the econometrician’s belief, they will discount bonds more heavily and the

equilibrium bond prices would appear “cheap” to the econometrician, i.e., the bond

premium is high. Similarly, the bond premium is low when investors’ wealth-weighted

average belief is lower than the econometrician’s belief. Thus, the bond premium varies

with the two groups’ beliefs and wealth distribution. Note that the two groups’ wealth

distribution is endogenously determined by their trading. When a positive shock hits

the market, it favors optimistic investors and causes wealth to flow from pessimistic

investors to optimistic investors, giving the optimistic belief a larger weight in deter-

mining bond prices. The relative-wealth fluctuation thus amplifies the effect of the

initial news on bond prices and makes bond premia more variable.

We provide a calibration exercise to show that even with a modest amount of belief

dispersion, the volatility amplification effect of investors’ relative wealth fluctuation

is significant enough to explain the “excess volatility puzzle” documented by Shiller

(1979), Gurkaynak, Sack and Swanson (2005), and Piazzesi and Schneider (2006).

These studies find that long-term yields appear to be too volatile relative to the levels

implied by standard representative-agent models.

We also show that heterogeneous expectations can help explain the failure of the
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classic expectations hypothesis in the data. The expectations hypothesis suggests that

when the yield spread (long term bond yield minus the short rate) is positive, the

long term bond yield is expected to rise (or the long term bond price is expected to

fall), because, otherwise, an investor cannot be indifferent about investing in the long

bond or the short rate. However, this hypothesis has been rejected by many empirical

studies. To mention one here, Campbell and Shiller (1991) find that when the yield

spread is positive, the long term bond yield tends to fall rather than rise. This pattern

is a natural implication of our model: Suppose the wealth-weighted average belief about

the future short rates is higher than the econometrician’s belief. On the one hand, it

implies that investors discount long term bonds more heavily, which leads to higher

long term bond yields and so larger yield spreads; on the other, it also implies that the

long term bond prices appear “cheap” from the econometrician’s point of view, i.e.,

the long term bond prices are expected to rise and bond yields are expected to fall.

Taken together, a high wealth-weighted average belief implies both large yield spreads

and falling long term bond yields in the future. Indeed, our simulations show that a

reasonable amount of belief dispersion is able to generate regression results similar to

those of Campbell and Shiller.

Our model can also shed light on the recent finding of Cochrane and Piazzesi (2005)

that a single tent-shaped linear combination of forward rates predicts excess returns on

two- to five-year bonds. On the one hand, as elaborated later in the paper, this tent-

shaped factor tracks investors’ wealth-weighted belief: the higher the weighted average

belief about future short rates, the bigger the value of the tent-shaped factor. On the

other hand, a higher wealth-weighted average belief about future short rates also makes

bond prices cheap from the econometrician’s point of view, and thus predicts higher

future bond returns. As a result, the tent-shaped factor predicts bond premia. Our

simulations confirm that a reasonable amount of belief dispersion is able to generate

bond return predictability results comparable to those of Cochrane and Piazzesi.

Our paper complements the growing literature on equilibrium effects of heteroge-

neous beliefs. Detemple and Murthy (1994) are the first to demonstrate that equilib-

rium prices have a wealth-weighted average structure. Zapatero (1998), Basak (2000),

Dumas, Kurshev and Uppal (2009), Jouini and Napp (2007), Buraschi and Jiltsov

(2006), David (2008), Li (2007), Gallmeyer and Hollifield (2008) provide equilibrium
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models to study the effects of heterogeneous beliefs on a variety of issues, including

asset price volatility, interest rates, equity premium, and the option implied volatility.

More recently, Shefrin (2008) provides a textbook treatment of belief heterogeneity,

emphasizing its implications on a number of aspects in asset pricing. Our model differs

from these models in two aspects. First, our model specification allows us to iso-

late belief-dispersion effects from other learning-related effects that also arise in these

earlier models, such as effects caused by under-estimation of risk and by erroneous

average beliefs. Second, and more importantly, our model provides new implications

of heterogeneous beliefs on bond yield movement and bond return predictability.

Our model also differs from the literature that studies the effect of investor prefer-

ence heterogeneity on asset prices, e.g., Dumas (1989), Wang (1996), Chan and Kogan

(2002), and Bhamra and Uppal (2009). In particular, Wang analyzes the effect of

preference heterogeneity on the yield curve. In another related study, Vayanos and

Vila (2007) analyze the effect of the difference in investors’ preferred habitats on bond

markets. In contrast to these studies, our model generates new implications based on

investors’ belief dispersion.

The rest of the paper is organized as follows. Section 2 presents the model. Section

3 discusses the effect of heterogeneous expectations on bond market dynamics. Section

4 concludes. We provide all the technical proofs in the Appendix.

2 The Model

We adopt the standard endowment economy of Lucas (1978). To bridge our model

with empirical studies of nominal interest rates, we also introduce a price-inflation

process and allow two groups of investors holding heterogeneous expectations regarding

an unobservable variable that determines the long-run inflation rate. Because of the

disagreement on long-run inflation rates, investors speculate in the capital markets.

We study a competitive equilibrium in which each investor optimizes consumption

and investment decisions based on his own expectation. Market clearing conditions

determine the equilibrium short rate and asset prices.
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2.1 The economy

There is a single consumption good. The aggregate endowment of the consumption

good follows
dDt

Dt

= µDdt + σDdZD(t), (1)

where µD and σD are constants, and ZD(t) a standard Brownian motion process. We

assume that the price level pt (e.g., the CPI index) follows

dpt

pt

= πtdt, (2)

where πt is the inflation rate. πt follows a linear diffusion process

dπt = −λπ(πt − θt)dt + σπdZπ(t), (3)

where λπ is the mean-reverting parameter, θt the long-run mean of the inflation rate,

σπ a volatility parameter and Zπ(t) a standard Brownian motion independent of ZD(t).

The long-run mean θt is unobservable and follows an Ornstein-Uhlenbeck process

dθt = −λθ(θt − θ̄)dt + σθdZθ(t), (4)

where λθ is the mean-reverting parameter, θ̄ the long-run mean of θt, σθ a volatility

parameter, and Zθ(t) a standard Brownian motion independent of ZD(t) and Zπ(t).

Intuitively, we interpret πt as the current inflation rate, and θt as the monetary author-

ity’s inflation target, which is not directly observable by the public. For convenience,

we will refer to θt as the inflation target in the rest of the paper.

The aforementioned model structure–inflation rate πt chasing a time-varying infla-

tion target θt–is motivated by the findings of Gurkaynak, Sack and Swanson (2005).

They show that a model in which agents’ expectations of long-run inflation stay con-

stant is inconsistent with the significant responses of long-run forward rates to un-

expected macroeconomic data releases. Making the inflation target time-varying and

unobservable provides a convenient way of modeling investors’ heterogeneous expecta-

tions. The central part of our analysis is to show that the heterogeneity in investors’

expectations can generate significant effects on bond markets.3

3For simplicity, this paper focuses on agents’ disagreement about future inflation rates. In an
earlier version, we study the effects of agents’ disagreement about the real side of the economy and
the main insights are similar.
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2.2 Heterogeneous expectations

The economics and finance literature has widely adopted the Bayesian inference frame-

work to model investors’ learning processes about unobservable economic variables,

such as productivity of the economy and profitability of a specific firm. One line of the

literature, e.g., Harris and Raviv (1993), Detemple and Murthy (1994), Morris (1996)

and Basak (2000), assumes that investors hold heterogeneous prior beliefs about unob-

servable economic variables. In these models, investors continue to disagree with each

other even after they update their beliefs using identical information, but the difference

in their beliefs deterministically converges to zero.

In another strand of the literature, e.g., Scheinkman and Xiong (2003), Dumas,

Kurshev and Uppal (2009), Buraschi and Jiltsov (2006) and David (2008), heteroge-

neous beliefs arise from investors’ different prior knowledge about the informativeness

of signals and the dynamics of unobservable economic variables. In support of this ap-

proach, Kurz (1994) argues that nonstationarity of economic systems and limited data

make it difficult for rational investors to identify the correct model of the economy from

alternative ones. More recently, Acemoglu, Chernozhukov, and Yildiz (2007) show that

when investors are uncertain about a random variable and about the informativeness

of a source of signal regarding the random variable, even an infinite sequence of signals

from this same source does not lead investors’ heterogeneous prior beliefs about the

random variable to converge. This is because investors have to update beliefs about

two sources of uncertainty using one sequence of signals. Finally, behavioral biases

such as overconfidence could also prevent investors from efficiently learning about the

informativeness of their signals.

Following this approach, we analyze two groups of investors who hold different prior

knowledge about the informativeness of a flow of signals on the inflation target θt. In

particular, we assume that the signals are not informative, but the heterogeneous prior

knowledge leads the two groups to react differently to the signal flow and therefore

to possess heterogeneous expectations about future inflation rates. This approach is

tractable and generates a stationary process for the difference in investors’ beliefs.

More specifically, we assume that all investors observe the following signal flow:

dSt = dZS (t) ,
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where ZS (t) is a standard Brownian motion independent of all the Brownian motions

introduced earlier. That is, St is pure noise. However, investors in the economy believe

that St is partially correlated with the fundamental shock to θt and thus contains useful

information.

There are two groups of investors, group A and group B. They have different

interpretations of St. In particular, group-i (i ∈ {A,B}) investors believe that the

signal generating process is

dSt = φidZθ(t) +
√

1− φ2
i dZS (t) , (5)

where the parameter φi ∈ [0, 1) measures the perceived correlation between the signal

dSt and the fundamental shock dZθ(t). For generality, we assume that group-i investors

believe that the unobservable process θt follows

dθt = −λθ(θt − θ̄)dt + kiσθdZθ(t), (6)

where ki > 0. That is, group-i investors misperceive the volatility of θt by a factor of

ki and ki = 1 corresponds to the case in which group-i investors correctly perceive the

volatility. This assumption is not crucial for the main implications of this paper and

the reason for introducing it is that this general specification of processes (5) and (6),

as will become clear later, allows us to isolate the impact of heterogeneous beliefs.

2.2.1 Benchmark belief

We will evaluate the effects of investors’ heterogeneous beliefs on asset price dynamics

from the view point of an outside observer, an econometrician, who understands that

the signals are not informative. Hence, we first derive the belief of the econometrician.

His information set at time t is {πτ}t
τ=0 . We assume that the econometrician’s prior

belief about θ0 has a Gaussian distribution. Since his information flow also follows

Gaussian processes, his posterior beliefs about θt must likewise be Gaussian. Accord-

ing to the standard results in linear filtering, e.g., Theorem 12.7 of Liptser and Shiryaev

(1977), the econometrician’s belief variance converges to a stationary level at an ex-

ponential rate. For our analysis, we will focus on the steady state, in which the belief

variance has already reached its stationary level, denoted by v̄, which is the positive

root to the following quadratic equation of v:

λ2
π

σ2
π

v2 + 2λθv − σ2
θ = 0. (7)
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We denote the econometrician’s posterior distribution about θt at time t by

θt| {πτ}t
τ=0 ∼ N

(
θ̂R

t ,v̄
)

,

where θ̂R
t is the mean of the posterior distribution. Applying Theorem 12.7 of Liptser

and Shiryaev (1977), we obtain that

dθ̂R
t =− λθ(θ̂

R
t − θ̄)dt +

λπ

σπ

v̄dẐR
π (t), (8)

where

dẐR
π =

1

σπ

[
dπt + λπ(πt − θ̂R

t )dt
]

(9)

is the information shock in dπt. ẐR
π is a standard Brownian motion from the econome-

trician’s point of view.

2.2.2 Heterogeneous beliefs

We now derive group-A and group-B investors’ beliefs about θt. These investors’

information set at time t includes {πτ , Sτ}t
τ=0 . We denote group-i investors’ posterior

distribution about θt at time t by

θt| {πτ , Sτ}t
τ=0 ∼ N

(
θ̂i

t,v̄i

)
, i ∈ {A, B},

where θ̂i
t is the mean of group-i investors’ posterior distribution and v̄i is the steady level

of their belief variance. We will refer to θ̂i
t as their belief hereafter. Again, according

to Theorem 12.7 of Liptser and Shiryaev (1977), v̄i is the positive root to the following

quadratic equation of v:

λ2
π

σ2
π

v2 + 2λθv −
(
1− φ2

i

)
k2

i σ
2
θ = 0, (10)

and θ̂i
t follows

dθ̂i
t =− λθ(θ̂

i
t − θ̄)dt +

λπ

σπ

v̄idẐi
π(t) + φikiσθdSt, (11)

where

dẐi
π =

1

σπ

[
dπt + λπ(πt − θ̂i

t)dt
]

(12)

is the information shock in dπt to group-i investors. Ẑi
π is a standard Brownian motion

from group-i investors’ point of view. Note that the difference in the two groups’
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perception, summarized by φi and ki, causes them to react differently to the signal

flow.

This heterogeneous economy differs from a homogeneous economy through several

channels. First, disagreement induces speculative trading between the two groups and

trading leads to endogenous relative wealth fluctuation, which in turn affects the equi-

librium asset prices. Second, the average belief of the two groups could differ from the

econometrician’s belief, and the erroneous average belief would affect equilibrium asset

price dynamics. Third, the investors’ posterior belief variance v̄i can differ from the

econometrician’s v̄. On the one hand, investors feel they have extracted useful infor-

mation from St, which reduces their posterior variance; On the other, their subjective

perception about the volatility of θt (as in equation (6)) may increase or decrease their

posterior variance depending on whether the parameter ki is larger or smaller than 1.

While the effects generated by the second and third channels are interesting in

their own right, one can capture these effects using a representative-agent framework.

We are primarily interested in the disagreement effects through the first channel. The

advantage of our specification in equations (5) and (6) is that it allows us to shut down

the second and third channels to isolate the effects from the first one by setting ki and

φi as follows

φA = −φB = φ, (13)

kA = kB =
1√

1− φ2
> 1. (14)

These conditions imply that the responses of group-A and -B investors to St are in

opposite directions but with the same magnitude. As a result, their beliefs diverge

in response to St. It is clear from equations (7) and (10) that condition (14) implies

that each investor has the same posterior variance as the econometrician because the

effect of his overestimation of the signal quality on the posterior variance is exactly

offset by that of his overestimation of the fundamental volatility of θt. Taken together,

conditions (13) and (14) imply that if the average of the two groups’ prior beliefs at

time 0 is equal to the econometrician’s, then in the future their average belief will

always keep track of the econometrician’s belief. We formally state these properties of

investors’ beliefs in the following proposition and provide a proof in Appendix A.1.
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Proposition 1 When conditions (13) and (14) are satisfied, the difference in the two

groups’ beliefs has the following process:

d
(
θ̂A

t −θ̂B
t

)
= −

(
λθ +

λ2
π

σ2
π

v̄

) (
θ̂A

t −θ̂B
t

)
dt +

2φσθ√
1− φ2

dSt.

Furthermore, if 1
2
(θ̂A

0 +θ̂B
0 ) =θ̂R

0 , then the average of the two groups’ beliefs about θt

always tracks the econometrician’s belief:

1

2
(θ̂A

t + θ̂B
t ) = θ̂R

t .

Proposition 1 shows we can isolate belief-dispersion effects from other learning

related effects, such as those caused by erroneous average belief and under-estimation

of risk, by choosing a particular set of parameter values in investors’ learning processes.

This result, to the best of our knowledge, is new to the literature. In the following, we

will derive the equilibrium based on the general learning specification of processes (5)

and (6). To highlight the belief-dispersion effects, we impose conditions (13) and (14)

in the baseline case of our calibration exercise.

2.3 Equilibrium

The difference in investors’ beliefs causes speculative trading among themselves. In-

vestors who are more optimistic about θt will bet on the rise of future inflation against

those more pessimistic investors. Note that, from each group’s perspective, there are

three sources of risks. For group-i investors, the shocks are dZD, dẐi
π, and dSt. Thus,

the markets are complete if investors can trade a risk-free asset and three risky assets

that span these three sources of risks. In reality, financial markets offer many securi-

ties, such as bonds with different maturities, for investors to construct their bets and to

complete the markets. We, hence, analyze an equilibrium with dynamically complete

financial markets. As is well known, the prices in a complete-markets equilibrium are

not affected by the structure of the financial markets. Therefore, for brevity, we omit

the exact financial securities that investors can trade in this section and leave more

details about those securities to Appendix A.2.

At time 0, group-i investors (i ∈ {A,B}) are endowed with αi fraction of the total

wealth of the economy, with αi ∈ (0, 1) and αA + αB = 1. The objective of group-i
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investors is to maximize their lifetime utility from consumption ci
t, according to their

belief and subject to their budget constraint:

max
ci
t

Ei

∫ ∞

0

e−ρtu(ci
t)dt,

where Ei is the expectation operator under their probability measure, and ρ their

time-preference parameter. All investors have logarithmic utility function

u(ci
t) = log(ci

t).

We use W i
t to denote group-i investors’ wealth at time t, and η(t) to denote the wealth

ratio between the two groups of investors:

η(t) ≡ WB
t

WA
t

.

In equilibrium, both groups of investors make their optimal consumption and portfolio

choices based on their beliefs, and all financial and good markets clear. We apply the

martingale technique (e.g., Cox and Huang (1989) and Karatzas, Lehoczky and Shreve

(1987)) to construct the equilibrium. Detailed derivation of the equilibrium is reported

in Appendix A.2 and we summarize the most relevant properties of the equilibrium in

the following theorem.

Theorem 1 For the economy defined above, the equilibrium nominal short rate is given

by:

rt = πt + ρ + µD − σ2
D; (15)

The logarithm of η(t) follows a diffusion process in the econometrician’s measure:

d ln (ηt) =
λπ

σπ

(
θ̂B

t − θ̂A
t

) (
θ̂R

t −
θ̂A

t + θ̂B
t

2

)
dt +

λπ

σπ

(
θ̂B

t − θ̂A
t

)
dẐR

π (t). (16)

Furthermore, the time-t nominal price of an asset, which provides a single nominal

payoff XT at time T , is given by

PX (t) = ωA
t PA

X (t) + ωB
t PB

X (t) , (17)

where ωi
t is the time-t wealth share of group-i investors, and P i

X (t) is the nominal price

of the asset in a hypothetical economy, in which only group-i investors are present.
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Theorem 1 highlights the fluctuation of the wealth distribution in the economy

and its on the equilibrium prices. Equation (15) shows that the nominal short rate is

determined by short term inflation πt and the parameters for investors’ time preference

and the endowment. Equation (16) highlights the impact of belief heterogeneity. In

the absence of disagreement, the complete financial markets allow investors to perfectly

share risk. Thus, the wealth ratio η(t) is constant. Perfect risk sharing becomes

impossible when the two groups disagree. As shown in equation (16), η(t) fluctuates

over time and is driven by the disagreement between the two groups, θ̂A
t − θ̂B

t . For

instance, if group-A investors hold a higher belief about θt (θ̂A
t > θ̂B

t ), they would bet

against group-B investors on the rise of future inflation. A positive shock to future

inflation dẐR
π would then favor group-A investors and cause wealth to flow from group-

B to group-A, i.e., η(t) decreases. Note that under conditions (13) and (14), from the

view point of the econometrician, the two groups’ wealth ratio does not converge to

either zero or infinity, i.e., no group is able to eventually dominate the economy in

the long run. This is because in our symmetric setting, neither group has a superior

learning model.4

Finally, equation (17) shows that the price of an asset can be decomposed into the

wealth-weighted average of each group’s valuation of the asset in a hypothetical ho-

mogeneous economy. This result allows us to represent asset prices in a heterogeneous

economy using prices in much simpler homogeneous economies. Thus, the equilibrium

is remarkably simple to characterize even in this complex environment with hetero-

geneous investors. While this price representation depends on investors’ logarithmic

preference, it is independent of the specific information structure in our model. Several

earlier models, e.g., Detemple and Murthy (1994) and Basak (2000), provide similar

decompositions of real prices under different information structures. Our model further

shows that such a decomposition works for both nominal and real prices.

2.4 The representative investor’s belief

As is well known, one can construct a representative investor to replicate the price

dynamics in a complete-markets equilibrium with heterogeneous investors. Does this

4See Kogan et al. (2006), Dumas, Kurshev and Uppal (2009), and Yan (2008) for detailed analysis
of irrational traders’ survival in asymmetric settings.
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mean that we can simply focus on the representative agent’s belief process and ignore

the heterogeneity between investors? The answer is no. To understand why, we con-

struct a representative investor for our model.5 If we restrict the representative investor

to having the same logarithmic preference as the group-A and group-B investors, we

can back out the implied belief of the representative agent so that we obtain the same

equilibrium dynamics as before. We summarize the result in the following proposition

with a proof in Appendix A.3.

Proposition 2 To replicate the competitive equilibrium derived in Theorem 1, we can

construct a representative agent who has the same logarithmic preference as those in-

vestors in the heterogeneous economy. At any point of time, the representative agent’s

belief about θt, denoted as θ̂N
t , has to be the wealth-weighted average belief of group-A

and group-B investors:

θ̂N
t = ωA

t θ̂A
t + ωB

t θ̂B
t . (18)

It is important to stress that the representative agent’s belief must equal the wealth-

weighted average belief, not only at one point of time, but also at all future points.

Thus, over time, the representative agent’s belief of the inflation target would change in

response not only to each group’s belief fluctuation, but also to the two groups’ relative

wealth fluctuation, which could be driven by factors that are unrelated to inflation.

This implies that in an economy with heterogeneous beliefs, the representative agent’s

belief does not follow a standard Bayesian learning process with a reasonable prior.

3 Effects of Heterogeneous Expectations on Bond

Markets

In this section, we analyze the effects of the two groups’ heterogeneous beliefs on bond

markets. Theorem 1 allows us to express the price of a bond as the wealth-weighted

average of the two groups’ bond valuations in homogeneous economies. Hence, we first

derive bond prices in homogeneous economies.

5See Jouini and Napp (2007) for a recent analysis of the existence of a “consensus” belief for the
representative agent in an exchange economy with agents holding heterogeneous beliefs.
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3.1 Bond prices in homogeneous economies

Bond prices in homogeneous economies are reported in the following proposition; the

proof is in Appendix A.4.

Proposition 3 If the economy defined in Section 2 is populated by group-i investors

only, the nominal price of a zero-coupon bond with a face value of $1 and a maturity

of τ years is determined by

BH
(
τ, πt, θ̂

i
t

)
= e−aπ(τ)πt−aθ(τ)θ̂i

t−b(τ), (19)

where

aπ(τ) =
1

λπ

(
1− e−λπτ

)
, (20)

aθ(τ) =
1

λθ

(
1− e−λθτ

)
+

1

λπ − λθ

(
e−λπτ − e−λθτ

)
, (21)

b(τ) =

τ∫

0

[λθθ̄aθ(s)− 1

2
σ2

πa2
π(s)− 1

2

(
k2

i σ
2
θ − 2λθv̄i

)
a2

θ(s)

−λπv̄iaπ(s)aθ(s) + ρ + µD − σ2
D

]
ds.

Proposition 3 implies that the yield of a τ -year bond in a homogeneous economy,

Y H
(
τ, πt, θ̂

i
t

)
= −1

τ
log

(
BH

)
=

aπ(τ)

τ
πt +

aθ(τ)

τ
θ̂i

t+
b(τ)

τ
,

is a linear function of two fundamental factors: πt and θ̂i
t, which represent the current

inflation rate and investors’ belief about the inflation target. This linear form belongs

to the general affine structure proposed by Duffie and Kan (1996).

The loading on factor πt, aπ(τ)/τ , has a value of 1 when the bond maturity τ is

zero and monotonically decreases to zero as the maturity increases, suggesting that

short-term yields are more exposed to the fluctuations in πt. This is because of the

mean reversion of the current inflation rate to its long-run mean θt.

Investors’ belief about θt determines their expectation of the future short rates.

The loading of the bond yield on θ̂i
t, aθ(τ)/τ , has a hump shape if θt mean-reverts

(λθ > 0).6 Since θt describes the long-run mean of πt, as the bond maturity increases

from 0, the bond yield becomes more sensitive to the belief about θt, that is, as the

6In the case where mean reversion is not present (λθ = 0), the factor loading aθ(τ)/τ is a mono-
tonically increasing function of bond maturity.
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bond maturity increases from 0 to an intermediate value, the loading aθ(τ)/τ increases.

As the bond maturity increases further, the loading aθ(τ)/τ falls. This is because of

the mean reversion of θt, which causes any shock to θt to eventually die out. This force

causes the yields of very long-term bonds to have low exposure to investors’ belief about

θt. This hump shape in the bond yield’s loading on θ̂i
t is important for understanding

later results such as the shape of the bond yield volatility curve and the factor for

predicting bond returns.

By combining Theorem 1 and Proposition 3, we can express the nominal price of a

τ -year zero-coupon bond at time t as

Bt = ωA
t BH

(
τ, πt, θ̂

A
t

)
+ ωB

t BH
(
τ, πt, θ̂

B
t

)
, (22)

where ωA
t and ωB

t are the two groups’ wealth shares in the economy, and BH
(
τ, πt, θ̂

i
t

)

is the bond price in a homogeneous economy in which only group-i investors are present.

The implied bond yield in this heterogeneous economy is

Yt(τ) =
aπ(τ)

τ
πt+

b(τ)

τ
− 1

τ
log

[
ωA

t e−aθ(τ)θ̂A
t + ωB

t e−aθ(τ)θ̂B
t

]
. (23)

Note that Yt is not a linear function of investors’ beliefs θ̂A
t and θ̂B

t . That is, bond yields

in this heterogeneous economy have a non-affine structure. This structure derives from

the market aggregation of investors’ heterogeneous valuations of the bond.

3.2 Volatility amplification

Heterogeneous expectations cause investors to take on speculative positions against

each other in the financial markets. These speculative positions generate fluctuations in

investors’ wealth shares, which amplify bond yield volatility. The intuition is as follows.

Bond yields are roughly determined by investors’ wealth-weighted average belief about

future interest rates, as in equation (23). Since investors who are more optimistic about

future rates bet on these rates rising against those more pessimistic investors, any

positive news about future rates would cause wealth to flow from pessimistic investors

to optimistic investors, giving the optimistic belief a greater weight in bond yields. The

relative-wealth fluctuation thus amplifies the impact of the initial news on bond yields.

As a result, a higher belief dispersion increases the relative-wealth fluctuation, which

in turn increases the bond yield volatility. We summarize this intuition in proposition

4 and provide a proof in Appendix A.5.
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Proposition 4 Bond yield volatility increases with the two groups’ belief dispersion.

This volatility amplification mechanism can help explain the “excess volatility puz-

zle” of bond yields. Shiller (1979) shows that the observed bond yield volatility exceeds

the upper limits implied by the expectations hypothesis and the observed persistence

in short rates. Gurkaynak, Sack and Swanson (2005) also document that bond yields

exhibit excess sensitivity to particular shocks, such as macroeconomic announcements.

Furthermore, Piazzesi and Schneider (2006) find that by estimating a representative-

agent based asset pricing model with recursive utility preferences and exogenous con-

sumption growth and inflation, the model explains a smaller fraction of the observed

volatility in long yields than in short yields. Relating to this literature, Proposition 4

shows that extending standard representative-agent models with heterogeneous expec-

tations can help account for the observed high bond yield volatility. In Section 3.4, we

provide a calibration exercise to illustrate the magnitude of this mechanism.

3.3 Time-varying risk premium

Fluctuations in investors’ belief dispersion and relative wealth also cause risk premia to

vary over time. To examine the time variation in risk premia, we derive the dynamics

of the stochastic discount factor in the following proposition, with a proof in Appendix

A.6.

Proposition 5 From the view point of the econometrician, the state price density for

real cash flow has the following process:

dMt

Mt

= −(ρ + µD − σ2
D)dt− σDdZD − λπ

σπ

(
θ̂R

t −
B∑

i=A

ωi
tθ̂

i
t

)
dẐR

π , (24)

where θ̂R
t is the econometrician’s belief about θt, and dẐR

π the information shock defined

in equation (9).

Proposition 5 shows that from the view point of the econometrician the market

price of risk (risk premium per unit of risk) for the aggregate endowment shock dZD

is σD, while the market price of risk for the information shock dẐR
π is proportional to

θ̂R
t −

∑B
i=A ωi

tθ̂
i
t, the difference between the econometrician’s belief about θt and the

two groups’ wealth-weighted average belief.
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In the benchmark case where investors are homogeneous and have the same belief

as the econometrician (θ̂A
t = θ̂B

t = θ̂R
t ), the risk premium for the information shock dẐR

π

is zero and the market only offers a constant price of risk for the aggregate endowment

shock dZD. When the two groups’ beliefs are different, however, there is a non-zero

risk premium for the information shock dẐR
π . Moreover, this premium varies over time

with the relative wealth fluctuation across the two groups of investors.

The intuition is as follows. Suppose the two groups’ wealth-weighted average belief

about θt is above the econometrician’s belief. Then, relative to the econometrician,

investors are more optimistic about the rise of πt in the future, and so more opti-

mistic about assets that are positively exposed to dẐR
π (i.e., those prices are positively

correlated with πt). From the econometrician’s point of view, those assets appear

“expensive” and have low risk premia. Similarly, those assets would have high risk

premia if the wealth-weighted average belief is below the econometrician’s belief. The

relative wealth fluctuation across the two groups affects the difference between their

wealth-weighted average belief and the econometrician’s belief and thus contributes to

the time variation in the risk premium.

In the next subsection, we provide a calibration exercise to show that a modest

amount of belief dispersion can generate sufficient time variation in the risk premium

to explain the failure of the expectations hypothesis, and that the time variation of the

risk premium is related to a tent-shaped linear combination of forward rates.

3.4 Calibration

This subsection illustrates the impact of investors’ heterogeneous expectations on bond

markets by simulating the heterogeneous economy based on a set of calibrated model

parameters. Theorem 1 implies that the nominal short rate follows

drt = −λπ[rt − (θt + ρ + µD − σ2
D)]dt + σπdZπ.

The short rate mean-reverts to a time-varying long-run mean θt+ρ+µD−σ2
D. Balduzzi,

Das and Foresi (1998) estimate a two-factor model of the short rate and its long-run

mean, with the same structure as ours. Based on the data between 1952 and 1993,

they find that the long-run mean of the short rate moves slowly with a mean-reversion

parameter of 0.07. Since this mean-reversion parameter corresponds to λθ in our model,
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we choose λθ to be 0.07, which implies that it takes ln(2)/λθ = 9.9 years for the effect

of a shock to the long-run mean of the short rate to die out by half. Balduzzi, Das

and Foresi also show that the mean-reversion parameter of the short rate (λπ in our

model) ranges from 0.2 to 3 in different sample periods. We choose λπ to be 1, which

implies that it takes ln(2)/λπ = 0.69 year for the difference between the short rate and

its long-run mean to die out by half.7

We choose σπ = 1.25% to match the short rate volatility in the data, and set

σθ = 1.2% so that the volatility of θt is 0.35% per month, the middle point of the range

from 0.1% to 0.6% estimated by Balduzzi, Das, and Foresi (1998). Furthermore, we

choose µD = 2% and σD = 2% to match the aggregate consumption growth rate and

volatility in the data. Investors’ time preference parameter ρ is set at 2%. We choose

the following initial conditions for our simulation. The two groups have an equal wealth

share at t = 0, i.e., ωA
0 = ωB

0 = 0.5; both π0 and θ0 start from their steady state value

θ̄, which we set at 2%; the two groups also share an identical prior belief about θ0

equal to the steady-state value θ̄: θ̂A
0 =θ̂B

0 =θ̄. Finally, we impose conditions (13) and

(14) on parameters φA, φB, kA, and kB so that the posterior variance of all investors

is the same as that of the econometrician and the average belief of the two groups of

investors coincides with the econometrician’s belief.

Parameter φ directly affects the amount of belief dispersion between the two groups.

We choose φ = 0.75 to generate a modest amount of belief dispersion: In our simulated

data, the average dispersion between the two groups, |θ̂A
t − θ̂B

t |, is only 1.70%. This

amount is rather modest compared with the typical dispersion observed in surveys

of professional economists’ inflation expectations (see footnote 1).8 All the model

parameters are summarized below:

λθ = 0.07, λπ = 1, σπ = 1.25%, σθ = 1.2%, µD = 2%, σD = 2%,

φ = 0.75, ωA
0 = ωB

0 = 0.5, π0 = θ0 = θ̂A
0 =θ̂B

0 = θ̄ = 2%, ρ = 2%. (25)

7These two mean-reversion parameters affect the magnitude of agents’ belief dispersion effect.
Intuitively, a larger λθ parameter causes θt to revert faster to its long run mean θ̄, therefore making
agents’ belief dispersion about θt less important for bond prices; a larger λπ parameter causes πt to
revert faster to θt, therefore making agents’ belief dispersion about θt more important for bond prices.

8This amount of belief dispersion also leads to an average wealth share volatility of 15% per year for
each group in the simulated data. While we are not aware of any formal estimate of the relative wealth
fluctuation between different investor groups in the economy, the 15% volatility appears feasible.
Moreover, in the mutual fund and hedge fund industry, it is common to see large swings in asset
under management among strategies (e.g., value versus growth strategies).
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Based on these model parameters, we simulate the economy for 50 years at daily

frequency and extract bond yields and forward rates for various maturities at the end

of each month. The length of 50 years roughly matches the sample duration used in

most empirical studies of the yield curve. The simulation is repeated 10,000 times.

To ensure that our calibration results are not driven by the specific parameter values

chosen in the list of parameters (25), we also perform a series of robustness checks by

varying the values of several key parameters: λθ, λπ, σθ, φ and k. These checks

show that our main results are robust to a wide range of parameter values. Only in

the extreme cases where the parameter combination implies little disagreement, some

results are weakened or disappear. For brevity, we do not report these robustness

checks in the paper and, instead, make the results available by request.

3.4.1 Yield volatility curve

Figure 1 plots the monthly bond yield volatility, defined as the standard deviation

of yield changes, for different maturities from zero to 10 years. The upper solid line

corresponds to the yield volatility in the heterogeneous economy. The two dashed

lines around the volatility curve provide the 95th and 5th percentile of the volatility

estimates across the 10,000 simulated paths. As the maturity increases from zero to

three years, the yield volatility increases from 36 to above 41 basis points per month.

As the maturity further increases, the yield volatility then starts to fall slightly. The

magnitude and shape of this volatility curve is similar to those estimated in Dai and

Singleton (2003).

To illustrate the volatility amplification effect discussed in Section 3.2, we also com-

pute the volatility curve in a hypothetical homogeneous economy in which all investors

hold the equal weighted average belief of the two groups in the above simulated hetero-

geneous economy (this average belief also coincides with the econometrician’s belief,

as shown in Proposition 1). Note that the average belief reflects the changes in the

two groups’ beliefs, but not their relative wealth fluctuation. As a result, the volatility

curve in the homogeneous economy does not capture the volatility amplification effect

caused by the two groups’ relative wealth fluctuation. The lower solid line in Figure

1 plots the volatility curve in this homogeneous economy. The volatility drops mono-

tonically from 36 to 25 basis points per month as the bond maturity increases from
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Figure 1: The term structure of bond yield volatility. Using parameters specified in
equation (25), the economy is simulated for 50 years to calculate bond yield volatility,
defined as the standard deviation of yield changes, for zero coupon bonds with matu-
rities ranging from zero to 10 years. The simulation is iterated 10,000 times and the
figure plots the average (solid line), 95th and 5th percentile (dashed lines) of the esti-
mated volatility across the 10,000 paths on bond maturity. Similar simulations are also
performed on a homogeneous economy with a representative agent holding the equal
weighted average belief of the two groups in the heterogeneous economy. The plots at
the bottom of the figure correspond to the average (solid line), 95th and 5th percentile
(dashed lines) of the estimated volatility across the 10,000 paths in the homogeneous
economy.

zero to 10 years. The difference between the two solid lines measures the volatility

amplification effect induced by wealth fluctuation. This effect is small at short matu-

rities but becomes substantial when bond maturity increases. For the 10 year bond,

this amplification effect is 12 basis points per month, or roughly one third of the total

bond yield volatility.

Why does the volatility curve have a hump shape in the heterogeneous case, but

a monotonically decreasing shape in the homogeneous case? In the homogenous case,

the bond yield is a linear combination of two factors:

Yt(τ) =
aπ(τ)

τ
πt +

aθ(τ)

τ
θ̂R

t +
b(τ)

τ
.

From our earlier discussion, the loading on the first factor πt,
aπ(τ)

τ
, decreases monoton-
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ically with τ, while the loading on the second factor θ̂R
t , aθ(τ)

τ
, has a hump shape. The

monotonically decreasing shape of the volatility curve reflects that the contribution of

the first factor to the bond yield volatility dominates that of the second factor.

To simplify our discussion of the heterogenous case, we approximate equation (23)

by a linear form:

Yt(τ) ≈ aπ(τ)

τ
πt +

aθ(τ)

τ

(
ωA

t θ̂A
t + ωB

t θ̂B
t

)
+

b(τ)

τ
.

Note that the second factor now becomes the wealth-weighted average belief ωA
t θ̂A

t +

ωB
t θ̂B

t , which is more volatile than the second factor in the homogeneous economy, θ̂R
t .

In other words, the wealth fluctuation effect makes the second factor more volatile.

The volatility curve displays a hump shape when the wealth fluctuation effect is strong

enough.

3.4.2 Campbell-Shiller bond yield regression

This section demonstrates that the time variation in the risk premium in our model can

help explain the failure of the expectations hypothesis. The expectations hypothesis

posits that an investor in the bond market should be indifferent about the investment in

the short rate or in a long-term bond over the same short period. Despite its intuitive

appeal, this prediction is rejected by many empirical studies, e.g., Fama and Bliss

(1987) and Campbell and Shiller (1991).

In particular, Campbell and Shiller (1991) run the following regression,

Yt+1(n− 1)− Yt(n) = αn + βn
Yt(n)− Yt(1)

n− 1
, (26)

where Yt(n) is the n-month yield at month t, αn is the regression constant, and βn is

the regression coefficient. They show that the expectations hypothesis is equivalent to

the following null hypothesis for regression (26):

βn = 1.

Intuitively, when the yield spread, Yt(n)− Yt(1), is positive, the long term bond yield

is expected to rise (or the long term bond price is expected to fall), because otherwise

an investor cannot be indifferent about investing in the long term bond or the short

rate.
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The regression results in Panel A of Table 1 are collected from Table 10.3 of Camp-

bell, Lo and MacKinlay (1997), which uses 40 years of U.S. treasury bond yield data

from 1952-1991. It shows that βn starts with a value of 0.003 for 2-month yield, and

then monotonically decreases as the bond maturity increases. βn eventually takes a

value of -4.226 for 10-year yield. All these coefficients are significantly different from 1

(the null), and the coefficient of 10-year yield is significantly negative. Taken together,

these regression results reject the expectations hypothesis: when the yield spread is

positive, the long term bond yield tends to fall, rather than rise.

This pattern, however, is a natural implication of our model: Suppose the wealth-

weighted average belief about the future short rates is higher than the econometrician’s

belief. On the one hand, this implies that investors discount long term bonds more

heavily, which leads to higher long term bond yields and so larger yield spreads; on

the other, it also implies that the long term bond prices appear “cheap” from the

econometrician’s point of view, i.e., the long term bond prices are expected to rise and

bond yields are expected to fall. Taken together, a high wealth-weighted average belief

implies both large yield spreads and falling long term bond yields in the future.

To examine whether this mechanism can explain the failure of the expectations

hypothesis, we simulate our economy 10,000 times using the parameters summarized

in (25). For each simulated path, we run regression (26) using our simulated bond

yield data. Panel B of Table 1 reports the average regression coefficients and their

standard errors. The average of the regression coefficients decreases monotonically

from -1.037 to -3.499 as bond maturity increases from 2 months to 10 years, with a

similar trend and magnitude to that in Panel A. These coefficients are also significantly

lower than 0 based on the standard errors across the 10,000 sample paths.9 Note that

the null hypothesis holds in a homogeneous economy with each investor holding the

same belief as the econometrician. Therefore, extending a standard asset pricing model

with modest heterogeneous expectations offers a potential explanation for the failure

of the expectations hypothesis in the data.

The literature often attributes the failure of the expectations hypothesis to time-

9By simulating 10,000 paths, we are able to control for simulation errors and show with sufficient
confidence that our model implications match with empirical findings. However, it may not be ap-
propriate to directly compare the standard errors computed from the cross-section of simulated paths
with those in empirical studies based on one path of data.
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n 2 3 6 12 24 48 120

A. Results from Campbell-Lo-MacKinlay
βn 0.003 −0.145 −0.835 −1.435 −1.448 −2.262 −4.226
s.e. (0.191) (0.282) (0.442) (0.599) (1.004) (1.458) (2.076)

B. Results from our simulation of a heterogeneous economy
βn −1.037 −1.104 −1.304 −1.699 −2.435 −3.231 −3.499
s.e. (0.516) (0.541) (0.620) (0.785) (1.110) (1.632) (1.986)

Table 1: The coefficients of yield change regressions. This table reports the estimates
of βn in (26) and their standard errors for bond maturities of n months. Panel A is
taken from Table 10.3 of Campbell, Lo and MacKinlay (1997), which uses U.S. treasury
bond yield data from 1952-1991. Panel B reports the mean and standard deviation of
the estimates of βn across the 10,000 simulated paths of the heterogeneous economy
with parameters from (25).

varying risk premia. Dai and Singleton (2002) find that certain classes of affine term

structure models with time-varying risk premia are able to match the aforementioned

bond yield regression results. However, the economic determinants of the time-varying

risk premia still remain elusive. A few recent studies argue for time-varying risk pref-

erence of the representative investor, e.g., Wachter (2006) and Buraschi and Jiltsov

(2007), and time-varying rare diaster risk, e.g., Gabaix (2008), while our model pro-

poses a new mechanism based on investors’ heterogeneous expectations.

3.4.3 Cochrane-Piazzesi bond return regression

Cochrane and Piazzesi (2005) find that a single factor based on a tent-shaped linear

combination of forward rates predicts excess returns on bonds with maturity ranging

from two to five years.10 Moreover, this single factor substantially improves the pre-

dictive power of the forward spread (an n-year forward rate minus a one-year spot

rate) in Fama and Bliss (1987), who regress excess returns of n-year bonds on n-year

forward spreads. Can our model explain this interesting phenomenon? To examine

this question, we run the regressions by Cochrane and Piazzesi (2005) and Fama and

Bliss(1987) using our simulated data.

Following Cochrane and Piazzesi, for each of the 10,000 simulated paths of our

heterogeneous economy, we regress excess bond returns on the one-year bond yield and

10See Dai, Singleton and Yang (2004) and Cochrane and Piazzesi (2004) for more discussions on
this result.
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three- and five-year forward rates:11

rxt+1(n) = β0 (n)+β1 (n) Yt (1)+β3 (n) Ft (3)+β5 (n) Ft (5)+ εt+1 (n) , n = 2, 3, 4, 5,

(27)

where rxt+1(n) is the one-year excess bond return defined by

rxt+1(n) ≡ log Bt+1(n− 1)− log Bt (n)− Yt (1) ,

Bt (n) is the time-t price of an n-year zero coupon bond, Yt (1) is the one-year bond

yield, and

Ft (n) ≡ log Bt(n− 1)− log Bt (n) ,

is the log forward rate at time t for loans to be made between time t+n− 1 and t+n.

The top panel of Figure 2 plots the average (across simulated paths) slope coeffi-

cients

[β1 (n) , β3 (n) , β5 (n)]

for different bond maturities (n = 2, 3, 4, 5) . The plot shows a pattern that is strik-

ingly similar to the finding of Cochrane and Piazzesi: A tent-shaped combination of

forward rates forecasts holding period returns of bonds at all maturities, with longer

maturity bonds having greater loadings on this factor. Panel A of Table 2 reports the

average coefficients, together with the standard errors and average regression R2. All

coefficients are statistically different from zero and the regression R2 is around 20% for

all maturities.

We also follow the two-stage regression in Cochrane and Piazzesi (2005) to describe

bond premia of all maturities by a single factor. First, we regress the average (across

maturity) excess return on the forward rates:

1

4

5∑
n=2

rxt+1(n) = γ0 + γ1Yt (1) + γ3Ft (3) + γ5Ft (5) + ε̄t+1

to identify the tent shaped factor TFt,

TFt = γ0 + γ1Yt (1) + γ3Ft (3) + γ5Ft (5) . (28)

Then, we regress the individual excess returns on the common factor identified in the

first step:

rxt+1(n) = b (n) TFt + εt+1 (n) , n = 2, 3, 4, 5. (29)

11To avoid collinearity problems, we do not include the 2- and 4-year forward rates in the regression.
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Figure 2: Coefficients in Cochrane-Piazzesi bond return regression. Using parameters
specified in equation (25), we simulate the heterogeneous economy for 50 years. For
each simulated path, we run Cochrane-Piazzesi regressions (27) and (29). We iterate
the simulation and regressions 10,000 times and this figure plots the the average regres-
sion coefficients across the simulated paths. The top panel is based on the unrestricted
coefficients [β1 (n) , β3 (n) , β5 (n)] in regression (27) for two through five-year bonds,
while the bottom panel is based on the restricted coefficients [b (n) γ1, b (n) γ3, b (n) γ5]
in regression (29).

As in Cochrane and Piazzesi (2005), we also impose 1/4
∑5

n=2 b(n) = 1 to separately

identify the values of γi (i = 0, 1, 3, 5) and b (n) (n = 2, 3, 4, 5). This two-stage regres-

sion puts the following restrictions on the slope coefficients of regression (27):

β1 (n) = b (n) γ1, β3 (n) = b (n) γ3, β5 (n) = b (n) γ5.

The bottom panel of Figure 2 plots the average (across the simulated paths) restricted

slope coefficients

[b (n) γ1, b (n) γ3, b (n) γ5]

for different bond maturities. The plot shows a clear tent-shaped pattern similar to

that in the unrestricted regressions, confirming that the same single factor predicts

returns of all bonds. Panel B of Table 2 reports the standard errors of these restricted
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A. Unrestricted B. Restricted

β1(n) β3(n) β5(n) R2 β1(n) β3(n) β5(n) R2

rx(2) −1.11 2.63 −1.42 20.8% −1.07 2.24 −1.03 20.7%
s.e. (0.05) (0.38) (0.38) (0.05) (0.40) (0.40)

rx(3) −2.18 4.91 −2.48 20.1% −2.13 4.48 −2.06 20.0%
s.e. (0.09) (0.79) (0.78) (0.09) (0.80) (0.79)

rx(4) −3.15 6.63 −3.05 19.5% −3.15 6.62 −3.05 19.5%
s.e. (0.14) (1.18) (1.18) (0.14) (1.18) (1.17)

rx(5) −4.02 7.82 −3.15 19.1% −4.11 8.64 −3.97 19.1%
s.e. (0.18) (1.56) (1.56) (0.18) (1.54) (1.53)

Table 2: Coefficients in Cochrane-Piazzesi bond return regression. Using parame-
ters specified in equation (25), we simulate the heterogeneous economy for 50 years.
For each simulated path, we run Cochrane-Piazzesi regressions (27) and (29). We
iterate the simulation and regressions 10,000 times and this table reports the aver-
age and standard errors of regression coefficients across the simulated paths. Panel
A reports the unrestricted coefficients [β1 (n) , β3 (n) , β5 (n)] and R2 for regression
(27) for two through five-year bonds, while Panel B reports the restricted coefficients
[b (n) γ1, b (n) γ3, b (n) γ5] and R2 for regression (29).

coefficients (across the simulated paths), together with the average coefficients, and

regression R2. All coefficients are statistically different from zero. The R2 of each

restricted regression is almost identical to the corresponding unrestricted regression

R2, suggesting that the single factor summarizes most of the predictive power in all

the forward rates.

We also run the Fama-Bliss regressions: regressing n-year bond excess returns on

n-year forward spreads. While the forward yields forecast bond premia, the predictive

power is substantially weaker: the regression R2 is less than 10% for all maturities.

This result is also consistent with the finding of Cochrane and Piazzesi (2005) that the

linear combination of forward rates has a stronger return predictive power than the

maturity-specific forward spreads.

The intuition behind these results can be summarized as follows. As discussed

earlier, a higher wealth-weighted average belief about the future short rates leads to

higher future bond returns. Moreover, as will be elaborated next, a higher wealth-

weighted average belief means a larger value of the tent-shaped factor TFt. As a

result, a larger value of the tent-shaped factor TFt predicts higher future bond returns.
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To understand why a higher wealth-weighted average belief means a larger value

of TFt, we first use equation (22) to derive the τ -year ahead forward rate at time t,

Ft (τ):

Ft (τ) = a′π(τ)πt + b′(τ) + a′θ(τ)θ̃t, (30)

where θ̃t is a weighted average of the two groups’ beliefs

θ̃t =
BH

(
τ, πt, θ̂

A
t

)

Bt

ωA
t θ̂A

t +
BH

(
τ, πt, θ̂

B
t

)

Bt

ωB
t θ̂B

t . (31)

Note that a′θ(τ), the forward rate’s loading on θ̃t, has a hump shape with respect to

τ. That is, the forward rates for the intermediate future are more sensitive to the

belief about θt than the forward rates for the near and very distant future. This is a

direct implication from the result, noted earlier in Section 3.1, that the intermediate

term bond yields are most sensitive to the belief about θt.
12 Under the parameters

specified in (25), a′θ(τ) attains its maximum at around τ = 3. That is, the three-year

forward rate is more sensitive to θ̃t than the one-year and five-year forward rates. Note

that θ̃t fluctuates with the wealth distribution of the two groups. As the optimistic

group’s wealth share goes up, θ̃t increases and so the hump-shape of a′θ(τ) implies that

the three-year forward rate increases more than the one-year and five-year forward

rates. This leads to a higher value of the tent-shaped factor since it has a high loading

on the three-year forward rate but low loadings on the one- and five-year forward

rates: According to the estimates of regression (28) from our simulated data, TFt =

−2.1− 2.6Yt (1) + 5.3Ft (3)− 2.3Ft (5).13

Interestingly, one of the key elements in our explanation—the hump shape of a′θ(τ)–

is consistent with the empirical finding of Gurkaynak, Sack and Swanson (2005) about

the response of forward rates to various macroeconomic shocks. These authors regress

daily changes in forward rates on the surprise component of various macroeconomic

data releases, including capacity utilization, consumer confidence, CPI (core), employ-

ment cost index, GDP (advance), initial claims, leading indicators, NAPM, new home

12Note that there is a no-arbitrage relationship between the spot rates and forward rates: the time-t
forward rate for a loan from t + τ1 to t + τ2 is: −(Yt(τ2)τ2 − Yt(τ1)τ1)/(τ2 − τ1). Hence, the fact that
the intermediate term bond yields are more sensitive to the beliefs about θt than the short term and
very long term yields implies that the intermediate forward rates have higher exposure to the beliefs
about θt than the forward rates in the near and distant future.

13The estimates of γ0 through γ5 are the average of the estimates across the 10,000 simulated paths,
and are all significantly different from zero.
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sales, non-farm payroll, PPI (core), retail sales, and unemployment rate. The surprise

component of each release is computed as the released value less the market expec-

tation, which is measured by the median market forecast as compiled and published

by Money Market Services. They find that 11 out of the 13 surprise variables have

significant impact on forward rates up to five years ahead. Of more relevance to our

study, Figure 2 of their paper shows that the impact of eight of these variables is most

pronounced on the three-year ahead forward rate. In other words, the response of the

forward curve has a hump shape with a peak around the three-year ahead forward rate.

To the extent that these surprise variables represent shocks to θ̃t in equation (31), this

finding suggests that, consistent with our calibrations, a′θ(τ) has a hump shape with a

peak at around 3 years.

3.5 Trading volume

Heterogeneous expectations cause investors to take on speculative positions against

each other in the financial markets. These speculative positions can cause fluctua-

tions in investors’ wealth shares upon the arrival of new information. Investors then

trade with each other to rebalance their positions. Intuitively, when belief dispersion

increases, the size of their speculative positions becomes larger. This in turn leads to

a higher volatility of investors’ wealth and therefore a larger trading volume in the

markets. Clearly, trading volume is affected by the structure of the financial securities

available to investors. In order to analyze trading volume, we consider a set of securities

whose return processes are given by equations (32)–(34) in the appendix. These secu-

rities’ returns have constant volatility and are independent of each other. Moreover,

these securities make the markets dynamically complete. We use the volatility of one

group’s position changes as a measure of trading volume.14 This measure corresponds

to the conventional volume measure in a discrete-time set up. We summarize the effect

of investors’ belief dispersion on trading volume in Proposition 6, and provide a formal

derivation and further discussion on our volume measure in Appendix 5.7.

14Note that trading volume is specific to the menu of securities available in the markets. In complete
markets, introducing a different menu of securities does not affect the equilibrium prices, but could
change trading volume. Nevertheless, analyzing trading volume can still lead to useful insights about
the market dynamics because it is easily measurable and the menu of securities available in the markets
does not change dramatically over time.
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Proposition 6 The trading volume of these securities (the fluctuation in investors’

speculative positions) increases with the belief dispersion between the two groups of

investors.

This proposition links trading volume to belief dispersion and hence provides impli-

cations on the joint dynamics of trading volume with other variables. For example, as

noted in Proposition 4, higher belief dispersion also leads to higher bond yield volatility.

Moreover, as shown in equation (19), BH
(
τ, πt, θ̂

i
t

)
is convex in θ̂i

t. Hence, applying

the Jensen’s inequality to equation (22) implies that higher belief dispersion leads to a

higher bond price, and therefore a lower bond yield. This effect disappears when bond

maturity goes to zero since the convexity in BH
(
τ, πt, θ̂

i
t

)
disappears when τ goes to

zero. That is, higher belief dispersion reduces long term bond yields, but has little

impact on the yields of short term bonds. Therefore, higher belief dispersion reduces

the slope of the yield curve. Taken together, our model provides a testable prediction

on the joint dynamics of trading volume and the yield curve: higher belief dispersion

simultaneously implies higher trading volume, higher bond yield volatility and lower

yield curve slope.

4 Conclusion

In this paper, we present a dynamic equilibrium model with two groups of investors

holding heterogeneous expectations about future economic conditions. The heteroge-

neous expectations cause investors to take on speculative positions against each other

and therefore generate endogenous relative wealth fluctuation. The relative wealth

fluctuation amplifies asset price volatility and contributes to the time variation in

equilibrium risk premia. We show that a modest amount of heterogeneous expecta-

tions can help resolve several challenges encountered by standard representative-agent

models, including the “excessive volatility” of bond yields, the failure of the expecta-

tions hypothesis, and the ability of a tent-shaped linear combination of forward rates

to predict bond returns.
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A Proofs

A.1 Proof of Proposition 1

From equations (11), (13) and (14), we take the difference of dθ̂A
t and dθ̂B

t :

dθ̂A
t − dθ̂B

t = −λθ(θ̂
A
t − θ̂B

t )dt +
λπ

σπ

v̄
[
dẐA

π (t)− dẐB
π (t)

]
+

2φσθ√
1− φ2

dSt

= −
(

λθ +
λ2

π

σ2
π

v̄

)
(θ̂A

t −θ̂B
t )dt+

2φσθ√
1− φ2

dSt.

Based on equations (11), (13) and (14) and the initial condition (θ̂A
0 +θ̂B

0 )/2 = θ̂R
0 , it is

direct to verify that (θ̂A
t +θ̂B

t )/2 = θ̂R
t .

A.2 Derivation of the equilibrium and proof of Theorem 1

We introduce three zero-net supply risky securities to complete the markets:

dpπ

pπ

= µπ(t)dt + dπt, (32)

dpS

pS

= µS(t)dt + dSt, (33)

dpc

pc

= µc(t)dt + dZD(t), (34)

which we refer to as security π, security S, and security C, respectively. One can

also introduce any other three securities that complete the markets, and the resulting

equilibrium is not affected. To group-i investors, the dynamics of πt is

dπt = −λπ(πt − θ̂i
t)dt + σπdẐi

π(t). (35)

Thus, equation (32) implies that the price dynamics of security π to group-i investors

is
dpπ

pπ

=
[
µπ(t)− λππt + λπθ̂i

t

]
dt + σπdẐi

π(t).

Therefore, group-i investors’ perceived expected return is µi
π(t) = µπ(t)− λππt + λπθ̂i

t.

Also note that all investors observe dSt and dZD(t). Hence, they agree on the expected

returns of securities S and C (i.e., µS(t) and µc(t)).

Market completeness implies the existence of a unique state price density process to

each group. We denote ξi(t) as state price density of group-i investors, which, according

to no arbitrage, is given by

dξi(t) = −ξi(t)[ιtdt + κi(t)dZ
i
t ] , (36)
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where ιt is the real short rate, κi(t) a vector of market prices, perceived by group-i

investors, of the three sources of risk Zi
t = [Ẑi

π(t), ZD(t), St]
ᵀ, and ξi(0) = 1.

Using the martingale technique of Cox and Huang (1989) and Karatzas, Lehoczky

and Shreve (1987), each group’s dynamic optimization problem can be rewritten as a

static one at time 0:

max
ci

Ei
0

[∫ ∞

0

e−ρtu(ci
t)dt

]
(37)

subject to Ei
0

[∫ ∞

0

ξi(t)c
i
tdt

]
≤ αiE

i
0

[∫ ∞

0

ξi(t)D(t)dt

]
, (38)

where the budget constraint is determined by the initial fraction of group-i’s endowment

αi. The necessary and sufficient conditions for the optimal consumption stream are

e−ρt 1

ci
t

= ςiξi(t), i = 1, 2, ..., N (39)

where ςi > 0 is the lagrange multiplier associated with the initial budget constraint.

By combining equation (39) and the binding budget constraint (equation (38) with

equality), we obtain the following condition for ςi:

ρςiαiE
i
0

[∫ ∞

0

ξi(t)D(t)dt

]
= 1. (40)

As is well known from Merton (1971), an investor with a logarithmic preference always

consumes his wealth at a constant rate equal to his time preference parameter: ci
t =

ρW i
t . This consumption policy and equation (39) imply that

η(t) =
cB
t

cA
t

=
ςAξA(t)

ςBξB(t)
. (41)

By applying Ito’s Lemma to the above expression, we obtain

dη(t)

η(t)
= (θ̂B

t − θ̂A
t )

λπ

σπ

dẐA
π , (42)

with the initial condition η(0) = ςA/ςB. Rewriting equation (42) in the econometrician’s

measure, we obtain equation (16).

Equation (41) and the market clearing condition cA
t + cB

t = Dt imply that

cA
t =

1

1 + ηt

Dt, (43)

cB
t =

ηt

1 + ηt

Dt. (44)

By substituting the consumption rules above into equation (39), we obtain an explicit

expression for the state price density ξi(t). Applying the Ito’s lemma to ξi(t), we obtain
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the real short rate ιt. Since rt = ιt + πt, we obtain equation (15). To prove equation

(17), we need the following lemma.

Lemma 1 If XT is a random variable to be realized at time T > t and EB[XT ] < ∞,

then EB
t [XT ] = EA

t

[
ηT

ηt
XT

]
.

Proof. For any random variable XT with EB[XT ] < ∞, we can define YT =
W B

T

W B
t

XT .

Suppose there is a financial security which is a claim to the cash flow YT . Then group-B

investors’ valuation of this security is

EB
t

[
e−ρ(T−t)u

′(cB
T )

u′(cB
t )

YT

]
= e−ρ(T−t)EB

t

[
cB
t

cB
T

YT

]
= e−ρ(T−t)EB

t

[
WB

t

WB
T

YT

]
= e−ρ(T−t)EB

t [XT ] ,

where the second equality follows from these investors’ consumption rule cB
t = ρWB

t .

Similarly, group-A investors’ valuation of this security is

EA
t

[
e−ρ(T−t)u

′(cA
T )

u′(cA
t )

YT

]
= e−ρ(T−t)EA

t

[
cA
t

cA
T

YT

]
= e−ρ(T−t)EA

t

[
WA

t

WA
T

YT

]
= e−ρ(T−t)EA

t

[
ηT

ηt

XT

]
.

Since group-A and group-B investors should have the same security valuation in equi-

librium, we must have

EB
t [XT ] = EA

t

[
ηT

ηt

XT

]
.

This lemma shows that the wealth ratio between the two groups can also act as the

Randon-Nikodyn derivative between the two groups’ probability measures. With this

lemma, we can now prove equation (17). The time-t nominal price of an asset, which

provides a single nominal payoff XT at time T , is given by

PX (t) = ptE
A
t

[
e−ρ(T−t) c

A
t

cA
T

XT

pT

]
.

Substituting the consumption share (43) into the above equation, after some algebra,

we obtain

PX (t) =
1

1 + ηt

ptE
A
t

[
e−ρ(T−t) Dt

DT

XT

pT

]
+

ηt

1 + ηt

ptE
A
t

[
ηT

ηt

e−ρ(T−t) Dt

DT

XT

pT

]

=
1

1 + ηt

ptE
A
t

[
e−ρ(T−t) Dt

DT

XT

pT

]
+

ηt

1 + ηt

ptE
B
t

[
e−ρ(T−t) Dt

DT

XT

pT

]
.

Note that 1
1+ηt

is group-A investors’ wealth share and ηt

1+ηt
is group-B investors’ wealth

share. Moreover, in a homogeneous economy with group-i (i ∈ {A,B}) investors only,

the nominal price of this security is ptE
i
t

[
e−ρ(T−t) Dt

DT

XT

pT

]
. Hence, we obtain equation

(17).

32



A.3 Proof of Proposition 2

To replicate the price dynamics in the heterogeneous-investor economy, the represen-

tative investor’s stochastic discount factor should be the same as that of investors in

each group (say, group A) after adjusting for the difference in the probability measures.

That is, the representative investor’s marginal utility have the following property in

any future state:

u′(cA
t ) = ηN

t u′(cN
t ), (45)

where u′(cA
t ) is group-A investors’ marginal utility, u′(cN

t ) is the representative agent’s

marginal utility, and ηN
t is the change of measure from the representative agent’s mea-

sure to group-A investors’ measure. Similar to equation (42), we now obtain

dηN
t

ηN
t

= (θ̂N
t − θ̂A

t )
λπ

σπ

dẐA
π . (46)

Note that investors with a logarithmic preference always consume their wealth at a

constant rate: cA = ρWA
t and cN = ρ(WA

t + WB
t ). By substiutting these into equation

(45) and after some algebra, we obtain

ηN
t = ηt + 1.

This further implies
dηN

t

ηN
t

=
ηt

ηN
t

dηt

ηt

=
ηt

1 + ηt

dηt

ηt

.

By substituting equations (42) and (46) into the above expression and after some

algebra, we obtain equation (18).

A.4 Proof of Proposition 3

The price of the bond in a homogeneous economy has the following function form:

Bi
t = BH

(
τ,πt, θ̂

i
t

)
. (47)

In the homogeneous economy with group-i investors only, the real bond return dBH/pt

BH/pt

has to satisfy the following relationship with the real state price density MH
t :

Ei
t

(
dBH/pt

BH/pt

)
+ Ei

t

(
dMH

t

MH
t

)
+ Ei

t

(
dBH/pt

BH/pt

dMH
t

MH
t

)
= 0. (48)

From (2) and (47), it is easy to see that

Ei
t

(
dBH/pt

BH/pt

)
= Ei

t

(
dBH

BH

)
− πtdt. (49)
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The real state price density in the homogeneous economy is

MH
t = e−ρt 1

Dt

.

Applying Ito’s lemma to the above expression, we obtain

dMH
t

MH
t

=
(−ρ− µD + σ2

D

)
dt− σDdZD.

We then have

Ei
t

(
dMH

t

MH
t

)
=

(−ρ− µD + σ2
D

)
dt, (50)

Ei
t

(
dBH/pt

BH/pt

dMH
t

MH
t

)
= 0. (51)

Applying Ito’s lemma to equation (47), we obtain

Ei
t

(
dBH

BH

)
=

{
−BH

τ

BH
− λπ(πt − θ̂i

t)
BH

π

BH
− λθ(θ̂

i
t − θ̄)

BH
θ

BH
+

1

2
σ2

π

BH
ππ

BH

+
1

2

(
k2

i σ
2
θ − 2λθv̄i

) BH
θθ

BH
+ λπv̄i

BH
πθ

BH

}
dt (52)

Substituting equations (49)–(52) equation (48), we obtain:

0 = −BH
τ

BH
− λπ(πt − θ̂i

t)
BH

π

BH
− λθ(θ̂

i
t − θ̄)

BH
θ

BH
+

1

2
σ2

π

BH
ππ

BH

1

2

(
k2

i σ
2
θ − 2λθv̄i

) BH
θθ

BH
+ λπv̄i

BH
πθ

BH
− πt − ρ− µD + σ2

D (53)

We conjecture the following solution

BH
(
τ, πt, θ̂

i
t

)
= e−aπ(τ)πt−aθ(τ)θ̂i

t−b(τ).

By substituting the conjectured solution into the differential equation in (53) and

collecting common terms, we obtain the following algebra equation:

0 = [a′π(τ) + λπaπ(τ)− 1] πt + [a′θ(τ)− λπaπ(τ) + λθaθ(τ)] θ̂i
t

+[b′(τ)− λθθ̄aθ(τ) +
1

2
σ2

πaπ(τ)2 +
1

2

(
k2

i σ
2
θ − 2λθv̄i

)
aθ(τ)2

+λπv̄iaπ(τ)aθ(τ)− ρ− µD + σ2
D].

Since this equation has to hold for any values of πt and θ̂i
t, their coefficients must be

zero. Thus, aπ(τ), aθ(τ), and b (τ) satisfy the following differential equations

a′π(τ) + λπaπ(τ)− 1 = 0,

a′θ(τ)− λπaπ(τ) + λθaθ(τ) = 0,

b′(τ)− λθθ̄aθ(τ) +
1

2
σ2

πa2
π(τ) +

1

2

(
k2

i σ
2
θ − 2λθv̄i

)
a2

θ(τ)

+λπv̄iaπ(τ)aθ(τ)− ρ− µD + σ2
D = 0,
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subject to the boundary conditions

aπ(0) = aθ(0) = b (0) = 0.

Solving these equations provides the bond price formula given in Proposition 3.

A.5 Proof of Proposition 4

Define gt ≡ θ̂A
t − θ̂B

t . Since bond yield Yt(τ) = − 1
τ

log(Bt), its volatility is

V ol[dY (τ)t] =
1

τ
V ol(dBt/Bt).

Applying Ito’s lemma to equation (22) in the econometrician’s probability measure

provides the following diffusion terms of dBt

Bt
:

−
[
aπ(τ)σπ + aθ(τ)λπσ−1

π v̄ − λπ

σπ

ηt

(1 + ηt)
2 gt

e−aθ(τ)gt/2 − eaθ(τ)gt/2

ηte−aθ(τ)gt/2 + eaθ(τ)gt/2

]
dẐR

π

−aθ(τ)
φσθ√
1− φ2

ηte
−aθ(τ)gt/2 − eaθ(τ)gt/2

ηte−aθ(τ)gt/2 + eaθ(τ)gt/2
dZS (t) .

Since the diffusion term in each row is independent to each other, we obtain

(
dBt

Bt

)2

=

[
aπ(τ)σπ + aθ(τ)λθσ

−1
π v̄ +

λπ

σπ

ηt

(ηt + 1)2K1(gt)

]2

dt+ a2
θ(τ)

φ2σ2
θ

(1− φ2)
K2(gt)dt

where

K1 (gt) = −gt
e−aθ(τ)gt/2 − eaθ(τ)gt/2

ηte−aθ(τ)gt/2 + eaθ(τ)gt/2
,

and

K2 (gt) =

[
ηte

−aθ(τ)gt/2 − eaθ(τ)gt/2

ηte−aθ(τ)gt/2 + eaθ(τ)gt/2

]2

.

Direct derivations of K1 and K2 provide that both of them increase as |gt| increases.

Thus, the conditional variance of the bond return increases in the belief dispersion.

A.6 Proof of Proposition 5

As noted in the proof of Theorem 1, group-B investors’ consumption is cB
t = ηt

1+ηt
Dt,

and hence his marginal utility is e−ρt 1+ηt

ηtDt
. By applying Ito’s lemma to it and substi-

tuting in equations (1) and (16), we obtain equation (24).
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5.7 Proof of Proposition 6

From Merton (1971), we know that group-i investors’ position in security π is

ni
π (t) = W i

t

µi
π (t)− rt

σ2
π

= Wtω
i
t

µπ(t)− λππt + λπθ̂i
t − rt

σ2
π

.

Imposing the market clearing condition nA
π (t) + nB

π (t) = 0, we obtain µπ(t). Denote

Wt ≡
(
WA

t + WB
t

)
. Substituting µπ(t) into the above expression, we obtain

nA
π (t) =

λπ

σ2
π

Wt
ηt

(ηt + 1)2 gt.

Note that group-A investors’ position in security π is proportional to gt. This implies

as the belief dispersion |gt| widens, group-A investors take a larger position in security

π. Note that there is no disagreemnet on the expected returns of securities S and

C. Hence, both groups have zero positions in those securities. Thus, we only need to

consider trading volume in security π.

The absolute value of the change in group-A investors’ position determines trading

volume. In our model, the change in investors’ position follows a diffusion process. It

is well known that diffusion processes have infinite variation over a given time interval.

However, since actual trading occurs in discrete time, it is reasonable to analyze trading

volume through the change in investors’ position across a finite time interval. Since the

absolute value of a realized position change across a finite but small interval is finite

and on average increases with the volatility of the position change, this motivates us

to use the volatility as a measure of trading volume.

We now examine the change in group-A investors’ position in security π, dnπ (t),

whose diffusion terms are

λπ

σ2
π

[
ηt

(ηt + 1)2 gtdWt −Wtgt
ηt − 1

(ηt + 1)3dηt + Wt
ηt

(ηt + 1)2dgt

]
.

By deriving the diffusion processes of dWt, dηt and dgt, and substituting them into the

equation above, we can derive an expression of the variance of the position change,

which increases with g2
t . Thus, trading volume increases with investors’ belief disper-

sion.
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