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Is Noise Trading Cancelled Out by
Aggregation?

Abstract

Conventional wisdom suggests that investors’ independent biases should cancel each

other out and have little impact on equilibrium at the aggregate level. In contrast to

this intuition, this paper analyzes models with biased investors and finds that biases

often have a significant impact on the equilibrium even if they are independent across

investors. First, independent biases affect the equilibrium asset price if investor demand

for the asset is a nonlinear function of the bias. Second, even if the demand function

is linear in the bias, it may still have a significant impact on the equilibrium due to

the fluctuation of the wealth distribution. An initial run-up of the stock price makes

optimistic investors richer, which then further pushes the stock price up and leads to

lower future returns. This effect can lead to price overshooting, i.e., a negative expected

future return. Similarly, an initial drop of the stock price leads to higher future returns.

Simple calibrations show that a modest amount of biases can have a large impact on

the equilibrium.
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1 Introduction

Although it is almost beyond debate that individual investors have biases, there is less

consensus as to whether these biases have a significant impact on equilibrium at the

aggregate level. One prevalent argument is that if biases are independent across in-

vestors, they generally should not have a large impact on equilibrium since they would

cancel each other out. Although, to my knowledge, the reasoning behind this aggre-

gation argument has never been formally spelled out in the literature, the argument

is so intuitively appealing that it is not only often quoted casually in seminars and

at conferences, but also frequently referred to in the literature (see Shleifer (2000),

Hirshleifer (2001), Jeanee and Rose (2002), Ross (2004), Fehr and Tyran (2005), to

name a few).

This aggregation argument has shaped our research discipline: If this argument

holds, then to analyze equilibrium aggregate quantities and asset prices, economists

can safely ignore individual biases, at least independent biases. This indeed is the

premise of the mainstream asset-pricing literature. More interestingly, this argument

is also the premise of the growing behavioral finance literature, which argues that

individual biases tend to be correlated and so cannot be cancelled out by aggregation

(see, e.g., Shleifer (2000), Hirshleifer (2001)).

Despite its importance, this aggregation argument has been taken for granted by

both the traditional rational expectations paradigm and the recent behavioral literature.

My paper fills this gap by directly examining this aggregation argument. My findings

suggest that individual biases often have a significant impact on equilibrium even if

they are independent across investors and the population average belief is unbiased.

To understand the intuition behind these results, let me first recall the conventional

aggregation argument. Suppose an unbiased investor’s demand for a stock is D, which

presumably is derived from utility maximization and depends on the price of the stock
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and some other parameters. There are N investors, and investor i’s demand is Di =

D + ϵi, where investor i’s bias ϵi is a realization from ϵ̃, a random variable with a

mean of 0. If ϵ1, ϵ2,...,ϵN are independent realizations and N is large, then the average

demand is approximately D, which is the average demand in the case without biases.

As a result, these biases have little impact on the equilibrium stock price.

There are two cases where this argument fails. First, the argument implicitly as-

sumes that the bias affects demand in a linear way, i.e., that Di is a linear function of ϵi.

The aggregation argument fails when the demand function is nonlinear in the bias. If,

for example, each investor’s demand is a convex function of his bias, then these biases

increase the aggregate demand and so increase the stock price, even if the biases are

independent across investors and the population average belief is unbiased. Similarly,

biases decrease the stock price if each investor’s demand function is concave in his bias.

This is analogous to Jensen’s inequality: if x is a random variable and f is a convex

function, then E[f(x)] > f [E(x)]; if f is a concave function, then E[f(x)] < f [E(x)].

In order to elaborate further on the above intuition and to evaluate its implications

quantitatively, this paper also analyzes three examples based on a typical demand

function. The impact of independent biases is shown to be substantial and critically

depends on the variable that investors are biased about: Suppose the demand function

is linear in x. If investors’ biases are about x, then the traditional aggregation argument

would work since these biases enter the demand function in a linear way. If investors’

biases are about 1/x, however, the traditional aggregation argument would fail. This

result makes some seemingly trivial questions extremely important. For example, do

bond traders think in terms of prices or yields? This may seem trivial since there is

a one-to-one relation between bond price and bond yield. However, in my model, the

answer to this question can be very important: independent biases may have a large

impact in one case but not the other.1 The argument in the analysis in this case is

1In a recent study, Goldreich (2005) convincingly demonstrates that large dealers in U.S. Treasury
auctions appear to be thinking in terms of yields rather than prices when they submit their bidding.
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straightforward. However, the importance of this analysis is that it demonstrates that

the impact of independent biases can be quantitatively large.

Second, even if biases affect demand in a linear way, they may still have a significant

impact on the equilibrium as the wealth distribution fluctuates. The intuition is as

follows. Suppose that there are two investors, A and B, and that both have the

same initial wealth. A is optimistic about a stock and B pessimistic. At the initial

date, relative to an unbiased investor, A holds more of the stock, and B less. If each

investor’s demand is a linear function of his bias, then one would expect that the

biases do not affect the total demand from A and B and that the equilibrium stock

price is not affected by these biases. This is essentially the traditional aggregation

argument. However, this argument fails to hold in a dynamic setting. Suppose, after

one period, the stock price goes up, say, due to some good news about the stock. Then

the optimistic investor A has a larger wealth share relative to B, since A chose to hold

more stock in the previous period. This fluctuation of the wealth distribution affects

the equilibrium, and this effect is absent in models without biases.

The fluctuation of the wealth distribution causes stock return predictability. An

initial run-up of the stock price makes optimistic investors richer, which then pushes

the stock price further up and leads to lower future returns. Similarly, an initial drop

of the stock price leads to higher future returns. As a result, these biases induce mean

reversion in stock returns, and the fluctuations of the wealth distribution also amplify

the shocks and lead to high volatility.2

It is interesting to compare this paper with the literature on short sale constraint

and differences of opinion (e.g., Miller (1977), Harrison and Kreps (1978), Scheinkman

and Xiong (2003)). This literature implies that short sale constraints generally lead

2The literature has documented evidence of short-run momentum and long-run reversal (e.g., De
Bondt and Thaler (1985), Jegadeesh and Titman (1993)). The mean-reversion implication from my
model might have contributed to the long-run reversal. This conjecture can be empirically tested in
a panel data set of investors’ disaggregate holdings.
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to overvaluation but not undervaluation. This is in contrast to the implication in my

model: idiosyncratic biases can amplify the fluctuations and induce mean reversion

in stock returns. That is, idiosyncratic biases can lead to both overvaluation and

undervaluation, depending on the past stock price movements.

Note also that, in my model, idiosyncratic biases can lead to stock price overshoot-

ing in the sense that the expected future return is negative. This is in sharp contrast to

the literature on wealth fluctuation induced by heterogeneous preferences (e.g., Dumas

(1989)) because in settings with rational expectations, preference heterogeneity alone

cannot cause overshooting. It is also interesting to note that stock price overshooting

arises without short sales constraints. A negative expected return is sustained in equi-

librium: Optimistic investors are willing to take long positions in the stock because

their perceived expected return is still positive. Pessimistic investors take short posi-

tions; however, due to risk aversion, their positions are limited. After a big increase

in the stock price, the optimistic investors have most of the wealth in the economy,

and so their influence dominates in equilibrium and leads to stock price overshooting.

A simple calibration exercise shows that a modest amount of independent biases can

have a large impact on the equilibrium and cause stock price overshooting.

The impact of wealth fluctuation has long been studied in the literature (e.g., Dumas

(1989)). The contribution of the current paper is to show that this familiar mechanism

in the literature actually provides a strong argument against the commonly held view

on the impact of independent biases, an issue that is fundamental to economics and

finance.

A number of empirical studies have shown that individual investors’ trades are cor-

related, and documenting the impact of these trades on asset prices (see, e.g., Barber,

Odean and Zhu (2006, 2009), Kaniel, Saar and Titman (2008), among others). These

studies indicate that investors’ biases are not independent, and the correlated biases

might have a large impact on asset prices. My paper complements this literature by
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pointing out the flaws in the conventional aggregation argument and demonstrating

that biases can have a significant impact on asset prices even if they are independent

across investors. Moreover, the underlying argument can be taken further to analyze

asset price dynamics. For example, Xiong and Yan (2009) analyze a model in which

investors have biased beliefs but their average belief coincides with the rational belief.

The wealth fluctuation induced by biases can explain a number of stylized facts about

bond prices (e.g., the high volatility of long-term bond yields and the strong time vari-

ation in bond return premium). More recently, Jouini and Napp (2010) substantially

generalize my continuous-time model in the appendix to study the impact on state

price density.

The rest of the paper is organized as follows. Section 2 presents a one-period model

to illustrate that the aggregation argument may fail if investors’ demand functions are

nonlinear in the bias. Section 3 presents a two-period model to illustrate that even if

investors’ demand functions are linear in the bias, the aggregation argument may still

fail due to the wealth share fluctuation. Section 4 concludes. Appendix A reports the

proofs, and Appendix B presents a continuous-time version of the model in Section 3

to illustrate robustness.

2 A Static Model

My goal is to set up models with biased investors to formalize the intuition outlined in

the introduction. As pointed out in Barberis and Thaler (2003), there are two major

approaches in modeling biases: the preference-based approach and the belief-based

approach. In the preference-based approach, the investors are assumed to have non-

standard preferences to reflect their biased behavior. In the belief-based approach,

however, biased behavior is captured by assuming that investors have biased beliefs.

Despite the stark difference in modeling, these two approaches can lead to similar

predictions (see, e.g., Basak and Yan (2007, 2009)). In this paper, I adopt the belief-
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based formulation of biases. One advantage of this approach is that it allows me

to adopt the modeling tools developed in the heterogenous beliefs literature. This

advantage is especially clear in the dynamic model in Section 3.

Consider a one-period (two dates) model with t = 0, 1. There are two assets in

the economy: a riskless bond and a stock. Given that the focus of this paper is

on the impact of noise trading on the stock market, the riskless bond is assumed to

be in perfectly elastic supply and the interest rate rf is set exogenously. The stock,

which is normalized to one share, is a claim to a positive dividend v at t = 1. There

are N investors, and each is endowed with 1/N share of the stock and no bond. At

t = 0, investors make portfolio decisions and the stock price P0 is determined in the

equilibrium by equating the aggregate demand for the stock to the supply.

Investor i is assumed to allocate a fraction θi of his wealth to the stock market:

θi = θ (P0,Ψ, ϵi) , (1)

where Ψ includes parameters such as those for the investor’s preference and the distri-

bution of v1, ϵi denotes investor i’s bias, and ϵi = 0 corresponds to the case in which

investor i is unbiased. The unbiased investor’s decision rule θ (P0,Ψ, 0) can be inter-

preted as the one that maximizes his expected utility. θ (P0,Ψ, ϵi) can be interpreted

as the optimal decision from the perspective of an investor with a bias ϵi. That is, all

investors are identical, except that due to each one’s idiosyncratic bias ϵi, their demand

for the stock has an idiosyncratic component.

The demand function θ is assumed to satisfy the following conditions:

∂θ

∂P0

< 0, (2)

lim
P0→∞

θ = −∞, (3)

lim
P0→0

θ = ∞. (4)

The above condition (2) implies that investors demand less stock if the stock price is

higher. For simplicity, technical conditions (3) and (4) are made to ensure the existence
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and uniqueness of the equilibrium.

Investors’ biases, ϵi for i = 1, ..., N , are independent realizations from ϵ̃, which is a

random variable with

E [ϵ̃] = 0, (5)

E [θ (P0,Ψ, ϵ̃)] < ∞. (6)

Intuitively, this assumes that the biases are independent across investors, and equation

(5) implies that the population on average is unbiased. Technical condition (6) is

to make sure the average demand is well behaved. Finally, instead of exogenously

specifying a demand function, one can specify a preference and derive the demand

function endogenously by maximizing expected utility. This approach leads to similar

results, while the analysis becomes more cumbersome.

Consider first the benchmark case in which all investors are unbiased, i.e., ϵi = 0 for

i = 1, ..., N . In this case, it is straightforward to see that the market clearing condition

implies that the equilibrium stock price P ∗
0 satisfies

θ (P ∗
0 ,Ψ, 0) = 1. (7)

Let’s now consider the case with biased investors. It is natural to say that the

conventional aggregation argument works and biases have no impact on the price if the

equilibrium price in this economy with biased investors is still P ∗
0 . As formalized in

the following proposition, however, this conventional aggregation argument holds only

under a stringent condition.

Proposition 1 In the economy described above, when the number of investors, N ,

goes to infinity, idiosyncratic biases have no impact on the stock price if and only if

E[θ (P ∗
0 ,Ψ, ϵ̃)] = 1. (8)
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The above proposition shows that the conventional aggregation argument requires the

strict condition (8), which, combined with (7), can be rewritten as

E[θ (P ∗
0 ,Ψ, ϵ̃)] = θ (P ∗

0 ,Ψ, E[ϵ̃]) .

That is, the aggregation argument works if the bias ϵ̃ enters the demand function θ(·)

in a special form so that E[θ(ϵ̃)] = θ(E[ϵ̃]). This condition is quite stringent and

generally does not hold. In the special case where θ(·) is linear in ϵ̃, condition (8)

holds and the traditional aggregation argument holds. If θ(·) is convex in ϵ̃, however,

E[θ (P ∗
0 ,Ψ, ϵ̃)] > θ (P ∗

0 ,Ψ, 0) . That is, the biases increase the overall demand, and

so increase the stock price. Similarly, if θ(·) is concave in ϵ̃, the biases decrease the

overall demand and the stock price. Finally, note that although θ(·) being linear in ϵ̃

is sufficient for the aggregation argument to hold, it is not a necessary condition. One

can imagine that if θ(·) is concave in ϵ̃ in some domains, but convex in some other

domains, it is possible to have the knife-edge case where condition (8) holds.

2.1 Examples

In order to quantitatively illustrate the impact from independent biases, let’s now

consider several examples by specifying the demand function (1). The dividend from

the stock, v, is now assumed to be lognormally distributed: ln v ∼ N (v̄, σ2). Denote

the realized stock return as r ≡ ln v
P0
.

An unbiased investor’s demand function for the stock is assumed to be

θ =
E [r]− rf

σ2
+

1

2
, (9)

where E [r] denotes the expected stock return. The decision rule (9) is approximately

optimal for an investor with logarithmic preference (see Campbell and Viceira (1999)).

Let’s first consider the case without bias. If all investors follow decision rule (9),

one can easily obtain from the market clearing condition that the stock price at t = 0
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is given by

P ∗
0 = exp

(
v̄ − rf −

1

2
σ2

)
, (10)

and the expected stock return is

E[r∗] = rf +
1

2
σ2. (11)

To illustrate the impact of individual biases, this paper analyzes three examples in

which investors are biased about the parameters of the dividend: v̄ and σ.

2.1.A Example 1

In this example, investors are assumed to be biased about v̄. Hence, investors are

biased about the expected stock return:

Ei[r] = E[r] + ϕϵi,

that is, investor i thinks the expected return is E[r] + ϕϵi, where ϕ ≥ 0, and ϵi, for

i = 1, ..., N , are independent realizations from ϵ̃, which is uniformly distributed on

[−1, 1]. That is, investors have independent biases and the population average belief is

unbiased. The most optimistic investor overestimates the expected return by ϕ while

the most pessimistic investor underestimates the expected return by ϕ. Due to his

bias, investor i allocates a fraction θi of his wealth to the stock market:

θi =
Ei[r]− rf

σ2
+

1

2
. (12)

Note that each investor’s demand function (12) is linear in the bias. Hence, when

N is large, individual biases are cancelled out by aggregation, and the stock price is

still given by (10). Although the biases have no impact on equilibrium at the aggregate

level, they may affect each investor’s wealth: investor i’s wealth at t = 1 is given by

Wi =
v

N
+

ϕP ∗
0

Nσ2
(er − erf ) ϵi. (13)
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If an investor is unbiased (i.e., ϵi = 0) his wealth at t = 1 is v/N . A biased investor’s

wealth is generally different unless the stock return happens to be the same as the bond

return (i.e., r = rf ). In particular, if the stock outperforms the bond, the optimistic

investors are richer relative to pessimistic investors. Similarly, the pessimistic investors

become relatively richer if the bond outperforms the stock.

2.1.B Example 2

In this example, investors are assumed to be biased about σ: investor i thinks the

standard deviation of the stock return is

σi = σ + ϕϵi,

where 0 ≤ ϕ < σ, ϵi for i = 1, ..., N , are independent realizations from ϵ̃, which is

uniformly distributed on [−1, 1]. The biases are independent across investors, and the

most optimistic investor underestimates the standard deviation by ϕ, while the most

pessimistic investor overestimates the standard deviation by ϕ. As a result, investor i

allocates a fraction θi of his wealth to the stock market:

θi =
E[r]− rf

σ2
i

+
1

2
. (14)

The conventional aggregation argument fails here because the demand (14) is convex

in the bias. These biases increase the aggregate demand and so increase the equilibrium

stock price and decrease the expected future return: if investors follow the decision rule

(14), the expected stock return is given by

E[r] = rf +
1

2
σ2 − 1

2
ϕ2. (15)

Compared with equation (11), the above expression shows that the biases reduce the

expected stock return by 1
2
ϕ2. Suppose σ = 0.25 and ϕ = 0.1, that is, the true volatility

is 25% and investors’ beliefs range from 15% to 35%. Then these biases reduce the

expected stock return by 0.5%.
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Merton (1980) points out that with high-frequency data one can estimate volatility

accurately. This argument does not nullify Example 2, which assumes investors are

biased about the standard deviation of the stock return. Rather, it helps to identify

situations where this argument is relatively more important. For example, in new

industries where there is not much data, one might conjecture that people will have

different opinions about volatility. Moreover, people may have different opinions about

the volatility of an industry if the uncertainty of the industry tends to change dramat-

ically. Therefore, Example 2 might be more relevant for these industries. Moreover,

even when the bias for volatility is small, its impact may still be amplified by the in-

teraction between the bias for expected return and the bias for volatility, as illustrated

in the next example.

2.1.C Example 3

Suppose investors are biased about both the expected return and the standard deviation

of the stock:

Ei[r] = E[r] + ϕ1

(√
1− ρ2ϵ1i + ρϵ2i

)
, (16)

σi = σ + ϕ2ϵ2i, (17)

where 0 ≤ ϕ1, 0 ≤ ϕ2 < σ. For i = 1, ..., N , ϵ1i are independent realizations from ϵ̃1,

and ϵ2i are independent realizations from ϵ̃2. ϵ̃1 and ϵ̃2 are independent and uniformly

distributed on [−1, 1]. ρ captures the correlation between an investor’s bias on the

expected return and his own bias on the volatility. That is, investor i thinks the

expected stock return is Ei[r] and the standard deviation is σi. These biases are

independent across investors. But for each investor, his two biases might be correlated.

In the case of ρ > 0, for example, if an investor overestimates the volatility, then he

also tends to overestimate the expected return. The biases in (16)–(17) imply that
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investor i allocates a fraction θi of his wealth to the stock market:

θi =
Ei[r1]− rf

σ2
i

+
1

2
. (18)

If investors follow the decision rule (18), the expected stock return is given by

E[r] = rf +
1

2

(
σ2 − ϕ2

2

)
+ ρϕ1

(
σ

ϕ2

+
σ2 − ϕ2

2

2ϕ2
2

log
σ − ϕ2

σ + ϕ2

)
. (19)

The above result includes Examples 1–2 as two special cases: one can obtain the

result in Example 1 by letting ϕ2 go to 0 and obtain the result in Example 2 by setting

ϕ1 = 0. If investors’ biases on expected return are independent from their biases

on volatility (i.e., ρ = 0) only the biases on volatility affect the stock price and the

equilibrium is the same as that in Example 2.

More interesting results arise when the biases on expected return and the biases on

volatility are correlated. Suppose σ = 0.25, ϕ2 = 0.2. That is, investors’ beliefs about

the volatility range from 5% to 45% when the true volatility is 25%. Figure 1 plots the

expected stock return against the correlation ρ. It shows that the expected stock return

increases substantially with respect to ρ. Suppose ϕ1 = 5%, that is, investors’ biases

about the expected return range from an underestimation of 5% to an overestimation

of 5%. The expected stock return increases from around 0% to 6.3% when ρ increases

from −1 to 1. The impact of the correlation ρ is more significant when the biases

about the expected return are larger. For example, in the case of ϕ1 = 10%, when ρ

increases from −1 to 1, the expected stock return increases from −3.2% to 9.3%. It

is interesting to note that the expected stock return is negative when ρ < −0.5, even

though there is no short sales constraint.

The underlying driving force here is similar to that in Example 2. If ρ < 0, θi is

a convex function of ϵ2i and the convexity increases the stock price and decreases the

expected stock return. When this impact is strong enough, it can lead to a negative

expected return. The economic intuition is also straightforward. In the case of ρ <
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Figure 1: The expected stock return and the correlation. This figure plots
the expected stock return, E[r], against ρ, the correlation between the biases on the
expected stock return and the biases on the volatility. For example, ρ > 0 implies
that investors who overestimate the expected stock return also tend to overestimate
the stock return volatility. Parameter values: rf = 2%, σ = 0.25, ϕ2 = 0.2.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

ρ

E
[r

]

 

 
φ

1
=0.05

φ
1
=0.10

0, for example, if an investor overestimates the expected stock return, he tends to

underestimate the volatility. Hence this investor has a high demand for the stock.

In contrast, if an investor underestimates the expected return, he may want to short

the stock. However, his short position is limited since he also tends to overestimate

the volatility and so feels the short position is risky. Therefore, the biases increase

the aggregate demand and lead to a lower, or even negative, expected stock return.

The negative expected stock return arises here in the equilibrium without short sales

constraints. The pessimistic investors choose to limit their short position because they

feel it is risky, not because it is prohibited.
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Note also that the convexity decreases with respect to ρ, and hence the expected

stock return increases with respect to ρ. Finally, θi may become concave in ϵ2i when

ρ is high enough, which explains why the biases can even increase the expected stock

return when ρ is high enough: The expected stock return is 5.1% when all investors

are unbiased. In the case of ϕ1 = 10%, for example, the expected stock return is higher

than 5.1% if ρ > 0.32.

2.2 Discussions of the static model

Examples 1–3 demonstrate that biases can have a substantial impact on equilibria even

if they are independent across investors and the population average belief is unbiased.

Moreover, the impact critically depends on the variable that investors are biased about.

The argument here is straightforward, but the importance of these examples is that they

show the impact of independent biases can be quantitatively large. These results suggest

that the traditional aggregation argument might have understated the importance of

individual biases for asset pricing.

Examples 1–3 have implications for cross-sectional stock returns. If investors are

biased only about volatility, a stock’s expected return tends to be lower if the biases

are stronger. Moreover, if investors are biased about both the expected return and the

volatility, the correlation between these two biases plays a key role in determining the

expected return. Holding everything else constant, the higher the correlation between

these two biases, the higher the expected stock return.

The main point of this section is to show that independent biases can have a large

impact on the equilibrium if they enter demand functions in a nonlinear way. There-

fore, the traditional aggregation argument should not be taken for granted. It is an

important empirical question to examine which variable investors’ decisions are based

on and the correlation of across biases of a given investor, since as made clear in these

examples, the impact of independent biases critically depends on the variable that
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investors are biased about: Suppose the demand function is linear in x. If investors’

biases are about x, then the traditional aggregation argument would work. If investors’

biases are about 1/x, however, the traditional aggregation argument would fail. This

result makes some seemingly trivial questions extremely important. For example, do

bond traders think in terms of prices or yields? This question may seem trivial since

there is a one-to-one relation between bond price and bond yield. However, price and

yield may enter the demand function in different forms. As shown in my analysis, this

can be very important: independent biases may have a large impact in one case but

not the other. In a recent study, Goldreich (2005) convincingly demonstrates that large

dealers in U.S. Treasury auctions appear to be thinking in terms of yields rather than

prices when they submit their bidding. In the context of my model, empirical evidence

like this can have a significant impact on prices.

In the above examples, the traditional aggregation argument works only if the biases

enter investors’ demand function in a linear way. The next section shows, however,

that even these “linear” biases can significantly affect the stock price in a dynamic

setting. As will become clear, this can be viewed as another example in which (8) is

violated: through their impact on investors’ wealth level, biases effectively enter the

demand function in a nonlinear form and significantly affect the equilibrium prices.

3 A Dynamic Model

To make the intuition transparent, this section provides a two-period model. A continuous-

time version of this model, while making the analysis rigorous, delivers similar results

and is reported in Appendix B.

Consider an endowment economy with two periods (three dates) t = 0, 1, 2. The

exogenous aggregate consumption supply at time t is given by Ct, with C0 > 0, and
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for t = 1, 2

lnCt = lnCt−1 + gct ,

where gc1 and gc2 are i.i.d. N(µc, σ
2
c ). Although the literature traditionally treats the

stock dividend process the same as the aggregate consumption process, there is a

clear motivation to model them separately: in the U.S., for example, the correlation

between quarterly real consumption growth and real dividend growth is only 0.05 (see

Campbell (2003)). Thus, the stock is modelled as follows: there is a dividend stream

Dt, t = 0, 1, 2. For t = 1, 2

lnDt = lnDt−1 + gD

t ,

where gD
1 and gD

2 are i.i.d. N(µD, σ
2
D) andD0 = 1. The stock, normalized to one share, is

a claim to two dividends D1 and D2. One interpretation is that the stock is in positive

supply: the dividend Dt is a fraction of the aggregate consumption Ct, and the rest of

the economy produces Ct −Dt each period. An alternative interpretation is that the

stock is in zero net supply. The analysis remains the same for both interpretations.

For simplicity, the shocks to dividends, gD
t , and the shocks to consumption, gct , are

assumed to be independent. It is straightforward to introduce correlations, and this

will not affect the discussions below.

There are 2N+1 investors who are numbered as −N,−N+1, ...,−2,−1, 0, 1, 2, ...N .

These investors have independent biases about the dividend growth rate gD
t : For i =

−N, ..., N , investor i thinks the growth rate is µi
D

µi
D = µD +

i

N
ϕ. (20)

That is, investors’ beliefs spread evenly across [µD − ϕ, µD + ϕ], and investor 0 has

the correct belief. This can be interpreted as investor i thinking the growth rate is

µi
D = µD + ϵi, where ϵi is an independent realization of a uniformly distributed random

variable on [−ϕ, ϕ]. When N is large, investors’ biases spread evenly across [−ϕ, ϕ].

So, specification (20) is chosen for expositional simplicity. Moreover, the assumption
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that investors are not biased about the aggregate consumption simplifies analysis and

is not essential.

Assume there exists a complete set of Arrow-Debreu securities. At time 0, wealth is

evenly distributed among investors: each investor is endowed with 1/(2N +1) share of

the aggregate wealth, i.e., the claim to the aggregate consumption. For i = −N, ..., N ,

investor i has the following objective function

maxEi

[
2∑

t=0

βt ln cit

]
,

where cit is his consumption at t, β is the patience parameter 0 < β ≤ 1, and Ei[·]

means the expectation is taken from investor i’s point of view.

The definition of a competitive equilibrium is standard: In the equilibrium, each

investor maximizes his objective function and the good and financial markets clear.

Denote the equilibrium stock price at t (t = 0, 1) as Pt; then the stock return for the

first period is

r1 ≡ ln
D1 + P1

P0

,

and the stock return for the second period is

r2 ≡ ln
D2

P1

.

3.1 The case with one investor

Let’s first analyze the case where the economy is populated by investor i only. In this

case, investor i consumes the aggregate consumption. The standard consumption-based

asset-pricing formula implies that the gross riskless interest rates are given by

Rt = β−1 exp

(
µc −

1

2
σ2
c

)
, for t = 0 and t = 1, (21)

and the stock prices are given by

P i
0 = D0

(
ki + k2

i

)
, (22)

P i
1 = D1ki, (23)
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where

ki = β exp

(
µi

D − µc +
σ2

D + σ2
c

2

)
. (24)

The riskless interest rate increases in µc and decreases in σ2
c (equation (21)). Intu-

itively, a higher consumption growth rate µc implies lower marginal utility in the future

and so makes bonds, which are claims to future consumption, less valuable. Hence,

the interest rate increases in µc. Moreover, higher σ2
c increases the precautionary sav-

ing motive and so decreases the interest rates. Note also that ki increases in µi
D and

decreases in µc (equation (24)). Therefore, the stock price increases in the expected

dividend growth rate but decreases in the aggregate consumption growth rate. This is

intuitive: the stock price should be higher when higher future dividends are expected.

Moreover, a higher consumption growth rate leads to higher discount rates for future

consumption, and so decreases the stock price.

3.2 The case with many biased investors

Let’s now move on to analyze the impact of the biases specified in (20). The equilibrium

is solved in the appendix, and the following proposition reports the stock prices and

the riskless interest rates.

Proposition 2 In the economy with biases, the equilibrium stock price is given by

Pt =
N∑

i=−N

ωi
tP

i
t , for t = 0 and t = 1, (25)

where P i
t , given by (22) and (23), is the stock price that would prevail in an economy

with investor i only, and ωi
t is investor i’s wealth share and is given by

ωi
0 =

1

2N + 1
, (26)

ωi
1 =

λi∑N
j=−N λj

, (27)

lnλi =
µi

D − µD

σ2
D

(
ln

D1

D0

− µD

)
− (µi

D − µD)
2

2σ2
D

. (28)
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The interest rates are given by (21).

Proof. See Appendix A.

This proposition illustrates that biases induce fluctuations in the wealth distribution

and so affect the equilibrium. In particular, the stock price is the wealth share-weighted

average of the stock prices that would prevail in economies in each of which there is

only one investor (equation (25)). A similar result was obtained in the literature

(e.g., Detemple and Murthy (1994), Xiong and Yan (2009)). However, these studies

restrict asset returns to diffusion processes. That is, the asset returns are restricted to

be conditionally normal. One contribution of my model is to show that the wealth-

weighted average structure also holds for general distributions of asset returns.3

By assumption, investors have the same wealth share at t = 0 (equation (26)).

The wealth shares at t = 1, however, are generally determined by the performance

of the stock market. As illustrated in (27) and (28), an investor’s wealth share tends

to increase if he happens to be right ex post. For example, if an investor is optimistic

(µi
D > µD) and the stock’s performance happens to be better than average (ln D1

D0
> µD),

the first term of the right-hand side of equation (28),
µi
D−µD

σ2
D

(
ln D1

D0
− µD

)
, implies that

his wealth share tends to increase since he chose to hold more stock. Similarly, a

pessimistic investor’s wealth share tends to rise when the stock’s performance happens

to be worse than average.4

The wealth fluctuation leads to stock return predictability. Intuitively, after a

high stock return in the first period, optimistic investors have larger wealth shares

at t = 1. Hence, the wealth share-weighted average belief becomes optimistic, which

further pushes up the stock price and leads to lower future returns. Similarly, a low

3Note that from equation (25), the stock return between t = 0 and t = 1 is not normally distributed.

4The last term in equation (28), − (µi
D−µD)

2

σ2
D

, reveals that biased investors’ wealth shares tend to

decrease on average because these investors’ decisions are inferior to those of rational investors. Even
though the investor with the correct belief would dominate the economy in the long run, the literature
has shown that this process is extremely slow (see Yan (2008), Dumas, Kurshev and Uppal (2008)).
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return in the first period implies that pessimistic investors have larger wealth shares

at t = 1. Hence, the wealth share-weighted average belief becomes pessimistic, which

further presses down the stock price and leads to higher future returns. This intuition

is formalized in the proposition: The stock price at t = 1 is the wealth share-weighted

average of each investor’s valuation P i
1 (equation (25)). Note that P i

1 increases in µi
D,

that is, optimistic investors’ valuations are higher (equations (23)– (24)). A positive

shock to the stock market increases the weights of optimistic investors who have higher

valuations, and a negative shock increases the weights of pessimistic investors who have

lower valuations. Hence, the wealth fluctuation further amplifies shocks to the stock

market and increases stock return volatility.

Biases also induce mean reversion in stock returns. It is easy to see that when there

is no bias, the expected stock return for the second period is a constant:

E1 [r2] = − ln β + µc −
σ2
c + σ2

D

2
. (29)

That is, the realized stock return in the first period has no impact on the expected

future return. When there are biases, however, Proposition 1 implies that, from an

unbiased investor’s point of view, the expected stock return in the second period is

E1 [r2] = ln
1∑N

i=−N ωi
1ki

+ µD. (30)

It is worth emphasizing that the expected return E1 [r2] refers to the expectation from

an unbiased investor’s point of view. That is, this is the average return that an econo-

metrician would obtain if he had a long series of data.

Equation (30) reveals that the realization of the first period return affects the wealth

distribution ωi
1, and so affects the expected stock return for the second period. The

magnitude of this effect is illustrated in the following calibration exercise. The model

parameters are chosen as follows: µD = 2%, σD = 15%, µc = 2%, σc = 2%. These

parameters are close to the estimates from the U.S. data (see, e.g., Campbell (2003)).

Finally, the patience parameter β = 0.98 (i.e., one discounts next year’s utility by
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2%) and N = 100 (i.e., there are 201 investors in the economy). Varying these two

parameters has little impact on the results below.

Figure 2: The expected future return and the past return. This figure plots
the expected stock return in the second period, E1[r2], against the realized stock return
in the first period, r1, for various values for ϕ. Parameter values: µD = 2%, σD = 15%,
µc = 2%, σc = 2%, β = 0.98, and N = 100.
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The stock return predictability is illustrated in Figure 2, which plots the expected

stock return in the second period, E1[r2], against the realized stock return in the

first period r1. In the presence of noise trading (i.e., ϕ > 0), the realized return in

the first period can predict the second period return. The plots are downward sloping,

suggesting that a higher realized stock return in the first period implies a lower expected

stock return in the second period. In the case of ϕ = 0.1, for example, the plot shows

that when the stock return in the first period increases from 0 to 20%, the expected

stock return in the second period decreases from 2.9% to 0.5%. It is interesting to

note that this mechanism can lead to stock price overshooting: if the stock return
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in the first period is higher than 24%, then the expected stock return in the second

period becomes negative. Note that the negative expected return arises in equilibrium

without short sales constraints. This is because the large run-up in the stock price

makes the optimistic investors so rich, which further pushes up the stock price so much

that the expected future return becomes negative. The comparison of the four cases

in the figure shows that when the degree of biases increases (i.e., ϕ increases), the

predictability becomes stronger (i.e., the plot becomes more downward sloping). In

the case of ϕ = 0.2, for example, when the stock return in the first period increases

from 0 to 20%, the expected stock return for the second period decreases from 2.7% to

−4.3%. Moreover, as suggested by equation (29), the plot for the case of ϕ = 0 is flat,

implying that the realized stock return for the first period does not predict the return

for the second period. Finally, to get a sense of the degree of these biases, note that

even in the case of ϕ = 0.2, the most biased investors’ biases are within two standard

deviations of the dividend growth rate.

These biases also lead to a negative autocorrelation in stock returns. This is illus-

trated in Figure 3, which plots the autocorrelation of stock returns against the degree

of bias ϕ. The economy is simulated 10,000 times, and the estimates of the autocor-

relation coefficient are obtained by computing the correlation coefficient between the

returns in the two periods across the 10,000 paths. The solid line plots the estimated

autocorrelation coefficients, and the dotted lines are the lower and upper bounds for a

95% confidence interval for the estimates. The plot shows that these biases induce a

negative correlation, and that the magnitude of the autocorrelation increases with the

degree of bias. When there is no bias (i.e., ϕ = 0), the autocorrelation is indifferent

from 0. In the case of ϕ = 0.1, however, the autocorrelation of stock returns is −0.13,

highly significantly different from 0. The autocorrelation becomes as low as −0.38

when ϕ = 0.2.
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Figure 3: The autocorrelation in stock returns and biases. This figure plots
the autocorrelation of stock returns against the degree of bias, ϕ. The economy is
simulated 10,000 times, and the estimates of the autocorrelation coefficient are obtained
by computing the correlation coefficient between the returns in the two periods across
the 10,000 paths. The solid line plots the estimated autocorrelation coefficients, and
the dashed lines are the lower and upper bounds for a 95% confidence interval for the
estimates. Parameter values: µD = 2%, σD = 15%, µc = 2%, σc = 2%, β = 0.98, and
N = 100.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

φ

au
to

co
rr

el
at

io
n

Biases naturally lead to trading among investors, which can shed some light on the

joint behavior of the asset prices and trading volume. For example, stronger biases (i.e.,

higher ϕ) make investors trade more. Hence, a higher ϕ leads to higher trading volume,

higher volatility, and a stronger negative autocorrelation. This implication potentially

provides a way to test the model. Given the difficulty in measuring ϕ directly, trading

volume is a particularly useful instrument in measuring ϕ indirectly.

Finally, this proposition also shows that the biases have no impact on the riskless

interest rate. This is due to the assumption that investors are not biased about the

aggregate consumption growth rate. If biases about the aggregate consumption growth
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were introduced, they would induce interesting dynamics of the interest rates. See

Xiong and Yan (2009) for a recent analysis of the impact of disagreement on the term

structure of interest rates.

3.3 Discussion of the dynamic model

One notable feature of the model is that investors’ beliefs do not change over time.

In other words, it assumes that an investor’s bias at t = 0 is the same as his bias at

t = 1. This assumption is made for simplicity and can be relaxed. The implications

discussed above still hold as long as investors’ biases are persistent over time, that is,

if one investor is optimistic at t = 0, he tends to be optimistic at t = 1 as well. The

intuition is still the same: if some investors are optimistic at t = 0, then the run-up in

stock price makes them richer at t = 1. Since these investors tend to be optimistic at

t = 1, this further pushes up the stock price. Similarly, the aggregation argument also

fails if investors’ biases are negatively correlated over time: if one investor is optimistic

at t = 0, he tends to be pessimistic at t = 1. Which case is more empirically plausible?

Although the aggregation argument fails in both cases, the exact empirical implications

are quite different. A detailed panel data set of investors’ trading records might be able

to offer an opportunity to measure the biases and shed some light on this question.

My dynamic model is related to the literature on the impact of the fluctuation of

wealth distribution, induced by the heterogeneity in risk aversion (e.g., Dumas (1989),

Wang (1996), Chan and Kogan (2002), Garleanu and Panageas (2007)). My paper,

however, points out that this familiar mechanism in the literature actually provides a

strong argument against the commonly held view on the impact of independent biases,

an issue that is fundamental to economics and finance. Moreover, one salient feature of

my model is about price overshooting: due to biased beliefs, the expected stock return

in my model may become negative, while this does not happen in models with only

heterogeneity in risk aversion.
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Shefrin (2005) and Yan (2008) analyze dynamic models with biased investors with

power utility functions and find that due to wealth share fluctuations, biases generally

affect the pricing kernel. The current paper shows that the stock price is generally

affected by independent biases and derives testable predictions from wealth share fluc-

tuations. It is interesting to note that the fact that biases affect the pricing kernel

does not necessarily imply that biases would affect the stock price. For example, if the

dividend process is assumed to be the same as the aggregate consumption process, as

the literature traditionally does, biases about the dividend growth rate would affect

the pricing kernel but not the stock price if all investors have logarithmic preferences

(see, e.g., Yan (2008)). Moreover, this paper also demonstrates that biases’ impact on

the equilibrium depends critically on the variable that investors are biased about.

4 Conclusion

One conventional argument suggests that if biases are independent across investors,

they should not have a large impact on equilibrium at the aggregate level since they

would cancel each other out. Perhaps partly due to this intuition, the recent behavioral

finance literature has made substantial effort to document that investors’ biases are

often not independent and have a significant impact on prices. My paper complements

this literature by showing that the effectiveness of this aggregation argument may be

more limited than the literature has suggested. In particular, the aggregation argument

fails for the following two main reasons. First, if biases affect investor demand in a

nonlinear way, they may have a significant impact on the equilibrium even if the biases

are independent across investors and the population average belief is unbiased. Second,

even if the biases affect investor demand linearly, the aggregation argument may still

fail due to the fluctuation of the wealth distribution in a dynamic setting. In particular,

an initial run-up of the stock price makes optimistic investors richer, which then further

pushes the stock price up and leads to lower future returns. Similarly, an initial drop of

25



the stock price leads to higher future returns. That is, idiosyncratic biases can amplify

the fluctuations and induce mean reversion in stock returns. This is in contrast to the

effect from the combination of differences in opinion and short sale constraint, which

generally implies overvaluation but not undervaluation.

The main theme of this paper is to demonstrate the flaws in the conventional

intuition on aggregation. However, the underlying argument can also be taken further

to analyze asset price dynamics. For example, Xiong and Yan (2009) show that the

impact of independent biases can shed light on a series of stylized facts on the bond

price behavior. Moreover, the mean-reversion implication from my model might have

contributed to the long-run reversal in stock returns that has been documented in De

Bondt and Thaler (1985). This conjecture can be empirically tested if one can measure

investors’ perceptions from their portfolio holdings.
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Appendix

Proof of Proposition 1

Because each investor has 1/N share, for a given price P0, the wealth of each investor

is P0/N . Since investor i allocates a fraction θi of his wealth to the stock, his demand

for the stock is P0θi/N . Equating the aggregate demand and supply for the stock, we

obtain
N∑
i=1

P0

N
θi = P0.

This implies

1

N

N∑
i=1

θi = 1.

When N goes to infinity, the above expression becomes

E [θ (P0,Ψ, ϵ̃)] = 1. (31)

That is, the equilibrium price in this economy with biased investors satisfies equation

(31). Due to the assumptions in (2)–(4), equation (31) has a unique solution, P ∗∗
0 . The

aggregation argument works if and only if P ∗
0 = P ∗∗

0 , which holds if and only if (8)

holds.

A. Proof of Proposition 2

Following Cox and Huang (1989) and Karatzas et al. (1987), market completeness

implies that investor i’s dynamic budget constraint can be written as a static one, and

his optimization problem can be written as

max ln ci0 + βE0

[
ln ci1

]
+ β2E0

[
ln ci2

]
s.t. W i

0 = ci0 + E0

[
M i

1c
i
1

]
+ E0

[
M i

2c
i
2

]
,

where cit (t = 0, 1, 2) is investor i’s consumption at t, W i
0 is his wealth at t = 0, M i

1

and M i
2 are his stochastic discount factors for payoffs at t = 1 and t = 2, respectively.
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Consistency conditions (investors have to agree on the prices of the securities in the

market) imply that for t = 1, 2,

M0
t

M i
t

=
ni(lnDt)

n0(lnDt)
, (32)

where ni(lnDt) is investor i’s probability density function of lnDt. Applying the stan-

dard Lagrange method to solve the maximization problem, we obtain

ci0 =
1

1 + β + β2
W i

0, (33)

ci1 =
β

M i
1

W i
0

1 + β + β2
, (34)

ci2 =
β2

M i
2

W i
0

1 + β + β2
.

Equation (33) shows that the investor’s consumption is proportional to his wealth and

is not related to his belief. As a result, investor i’s consumption share is the same as

his wealth share at t = 0. By similar argument, this is also true for t = 1, and t = 2.

That is, we have, for t = 0, 1, 2,

W i
t

W 0
t

=
cit
c0t
. (35)

Define

λi ≡
ci1
c01
. (36)

Equation (34) leads to
ci1
c01

=
M0

1

M i
1

. (37)

Equations (32), (35), (36) and (37) imply (27), (28) and

λi =
ni(lnDt)

n0(lnDt)
. (38)

Note that (26) directly follows from the assumption that wealth is evenly distributed

among investors at t = 0.
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We can now prove (25). Suppose a security pays K at t = 1. Then the price of this

security at t = 0 can be calculated from investor 0’s marginal rate of substitution:

S = E0

[
β
c00
c01
K

]
. (39)

Since all investors have the same wealth share at t = 0, they also have the same con-

sumption share. Since the aggregate consumption at t = 0 is C0 (i.e., C0 =
∑i=N

i=−N ci0),

we obtain

c00 =
1

2N + 1
C0. (40)

The definition of λi in (36) implies

c01 =
1∑i=N

i=−N λi

C1, (41)

because the aggregate consumption at t = 1 is C1 (i.e., C1 =
∑i=N

i=−N ci1). Substituting

(40) and (41) into (39), after some algebra, we obtain

S =
1

2N + 1

i=N∑
i=−N

E0

[
λiβ

C0

C1

K

]
.

Substituting (38) into the above expression, we obtain

S =
i=N∑
i=−N

1

2N + 1
Si,

where Si = Ei
[
β C0

C1
K
]
is the price of this security in a hypothetical economy with

investor i only. By similar arguments, we obtain that the price of any security with a

finite price can be decomposed into this wealth share-weighted average structure, and

(25) is just a special case for the stock price.

B. A continuous-time model

This section presents a continuous-time version of the model in Section 3. This

continuous-time model further demonstrates the robustness of the simple two-period

model in Section 3.

29



Consider a pure-exchange economy with a finite horizon [0, T ]. The exogenous

aggregate consumption supply process Ct > 0 follows

dCt

Ct

= µcdt+ σcdZc,

where µc and σc are constants and σc > 0, and Zc a one-dimensional Brownian motion.

The stock is a claim to a dividend process Dt, which follows

dDt

Dt

= µDdt+ σDdZD,

where µD and σD are constants and σD > 0, C0 > 0, and ZD a one-dimensional

Brownian motion. For simplicity, let’s assume dZc and dZD are independent, and it is

straightforward to introduce correlation between dZc and dZD.

There are 2N+1 investors who are numbered as −N,−N+1, ...,−2,−1, 0, 1, 2, ...N .

Investors are biased about the dividend process, but not biased about the aggregate

consumption process. More specifically, investors know µc, σc and σD but have different

beliefs about µD. For i = −N, ..., N , investors i’s belief µi
D is

µi
D = µD +

i

N
ϕ. (42)

That is, investors’ beliefs are evenly spread across [µD − ϕ, µD + ϕ], and investor 0 has

the correct belief. This can be interpreted as that investor i thinks the growth rate is

µi
D = µD + ϵi, where ϵi is an independent realization of a uniformly distributed random

variable on [−ϕ, ϕ]. When N is large, investors’ biases spread evenly across [−ϕ, ϕ].

Specification (42) is chosen for simplicity. Moreover, it is not essential that investors

are not biased about the aggregate consumption. As will become clear, this assumption

implies that the biases have no impact on the equilibrium interest rate. Introducing

biases about the aggregate consumption would lead to interesting dynamics in the term

structure, as analyzed in Xiong and Yan (2009).

From investor i’s (i = −N, ..., N ,) point of view, the dividend follows

dDt

Dt

= µi
Ddt+ σDdZ

i
D,
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where

dZi
D = dZD − δidt,

δi =
µi

D − µD

σD

,

and Z i
D is a Brownian motion from investor i’s point of view. Markets are assumed to

be complete: investors can continuously trade a riskless bond and two risky securities.

All securities are in zero net supply. The bond price Bt, which is normalized so that

B0 = 1, and risky security prices S1t, S2t have the following dynamics:

dBt = Btrtdt,

dS1t

S1t

= µ1t dt+ σ1t dZc,

dS2t

S2t

= µ2t dt+ σ2t dZD.

This specific assumption on the financial markets is innocuous. Any three non-redundant

securities complete the markets and lead to the same equilibrium.

At time 0, each investor is endowed with 1/(2N + 1) share of the aggregate con-

sumption. He chooses a nonnegative consumption process cit and holds θijt share of the

risky securities Sjt (for j = 1, 2), and so his financial wealth process W i
t is

dW i
t = W i

t rtdt− citdt+
2∑

j=1

θijtSjt (µjt − rt) dt+ θi1tS1tσ1tdZc + θi2tS2tσ2tdZD. (43)

All investors have the same logarithm preference: investor i’s dynamic optimization

problem is

max
ci

Ei
t

[∫ T

t

e−ρ(s−t) log cisds

]
, (44)

subject to the dynamic budget constraint (43), where ρ is the time discount rate and

Ei
t [·] is the conditional expectation from investor i’s perspective, conditional on the

information up to time t.

The definition of equilibrium is standard: a competitive equilibrium is a price sys-

tem (rt, S1t, S2t) and each investor’s consumption-portfolio processes (cit, θ1t, θ2t) such
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that investors choose their optimal consumption-portfolio strategies given their per-

ceived price processes, and good and security markets clear.

Let’s first compute the equilibrium in a homogeneous economy. Suppose the econ-

omy is populated by investor i only. From the standard consumption asset-pricing

formula, the riskless interest rate rit and stock price P i
t are given by

rit = ρ+ µc − σ2
c , (45)

P i
t =

1− e−(ρ−µi
D+µc−σ2

c)(T−t)

ρ− µi
D + µc − σ2

c

Dt. (46)

As shown in Basak (2000), in economies with heterogeneous beliefs, the equilibrium

can be attained conveniently by constructing a representative investor with stochas-

tic weighting processes, where the weighting processes capture the difference among

investors’ beliefs. Specifically, define a representative investor with utility function

U(ct;λt) ≡ max∑
cit=Ct

N∑
i=−N

λi
te

−ρt log cit, (47)

where λi
t > 0 may be stochastic. With this representative investor formulation, one

can easily construct the equilibrium.

Proposition 3 In the economy described above, the equilibrium stock price is given by

Pt =
N∑

i=−N

ωi
tP

i
t , (48)

where ωi
t is investor i’s wealth share, which is the same as his consumption share and

is given by

ωi
t =

λi
t∑N

j=−N λj
t

, (49)

where λi
0 = 1 and λi

t satisfies

dλi
t = λi

tδidZD, (50)

P i
t is the stock price that would prevail in an economy populated by investor i only, and

is given by (46). The short interest rate is given by (45).
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Proof. The following is a brief proof. See Yan (2008) for more details. The λi
t process

can be determined by investor i’s belief and consistency conditions. Since investor 0

has the correct belief, we obtain that λ0
t is a constant, and we can normalize it so that

λ0
t = 1. Moreover, the construction (47) implies that λi

t is the ratio of investor 0’s

marginal utility to that of investor i. For logarithm preference, it implies λi
t = cit/c

0
t .

This, together with the market clearing condition
∑N

i=−N cit = Ct and the optimality

condition for (44), implies (49) and (50). For logarithmic investors with the same

time discount rate, an investor’s consumption share is the same as his wealth share.

Note that since investors are biased only about the dividend growth, the wealth share is

driven only by the dividend shock dZD and is independent of the aggregate consumption

shock dZc. Investors’ initial wealth distribution implies that λi
0 = 1 for i = −N, ..., N .

One can compute the stock price by the standard formula

Pt = Ei
t

[∫ T

t

e−ρ(s−t) c
i
t

cis
Dsds

]
.

Substituting cit into the above expression, after some algebra, we obtain (48). Similarly,

a bond price can be decomposed into the wealth share-weighted average structure as

in (48). However, since there is no bias about the consumption supply process, all

investors have the same valuation. As a result, the biases here have no impact on

interest rates, and the short rate in this heterogeneous economy is given by (45).
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