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Abstract

This paper presents a computationally feasible procedure for the optimal
control and stochastic simulation of large nonlinear models with rational
expectations under the assumption of certainty equivalence.

1 Introduction

There is a large literature on examining the stabilization effectiveness of different
interest rate rules. The general approach in this literature is to choose a rule and
then use a model of the economy to examine how the economy would have behaved
under the rulé. Sometimes optimal rules are derived by solving optimal control

problems? and these rules are compared to other rules.

*Cowles Foundation and International Center for Finance, Yale University, New Haven, CT
06520-8281. \oice: 203-432-3715; Fax: 203-432-6167; e-mail: ray.fair@yale.edu; website:
http://fairmodel.econ.yale.edu.

1See, for example, Feldstein and Stock (1993), Hall and Mankiw (1993), Judd and Motley
(1993), Clark (1994), Croushore and Stark (1994), Thorton (1995), Fair and Howrey (1996),
Rudebusch (1999), Fair (2000), and Clarida, Gali, and Gertler (2000). Taylor (1985, fn. 1, p. 61)
cites much of the literature prior to 1985.

2See, for example, Feldstein and Stock (1993), Fair and Howrey (1996), Rudebusch (1999),
and Fair (2000).



This literature requires that the stochastic features of the economy be accounted
for and that optimal control problems be solved. In addition, many of the eco-
nomic models used have rational expectations. Solving optimal control problems
for stochastic models with rational expectations is fairly involved, and almost all
the recent studies have used small linear models. For example, only one of the
studies in Taylor (1999)—Levin, Wieland, and Williams (1999) (LWW)—uses
large scale models, and LWW do not solve optimal control problems. They use
linearizations of the Federal Reserve model and the Taylor multicountry model
to compute unconditional second moments of the variables in the models. In the
recent study of Clarida, Gali, and Gertler (2000) a four equation calibrated model
is used. Finan and Tetlow (1999) discuss the optimal control of large models with
rational expectations, but their method is limited to linear models.

This paper discusses methods for the stochastic simulation and optimal control
of large nonlinear models with rational expectations. The methods are computer
intensive but computationally feasible given the current speed of computers. The
results show that the analysis of interest rate rules and optimal policy need not
be limited to the use of small linear models, even when the models have rational
expectations.

The key approximation in this paper is the use of certainty equivalence for
nonlinear models. It is argued below that this approximation seems good for
most macroeconometric models, and some ways of examining the accuracy of
the approximation are suggested. There undoubtedly are, however, applications in
which the use of certainty equivalence gives poor results, and for these applications

the methods in this paper are of little use.
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This paper is also based on the assumption of known coefficients. It does
not consider, for example, the possibility of unknown coefficients and learning.
Amman and Kendrick (1999) consider this case within the context of the linear
guadratic optimization problem for models with rational expectations. It would
be interesting in future work to consider the case of unknown coefficients with
learning in the more general setting of this paper.

For ease of reference, Table 1 lists some of the notation used in this paper.

2 TheModd

The model will be written as:

Jir ye—1, ooy Ye—ps Er—1yes Er—1yeg1, ooy B ayeyn, X, ) = uip (i=1,...,n)
(1)
wherey,; is ann—dimensional vector of endogenous variablesis a vector of
exogenous variableg;; 1 is the conditional expectations operator based on the
model and on information through period- 1, «; is a vector of parameters, and
u;; IS an error term with mean zero that may be correlated across equations but not
across time. The firsk equations are assumed to be stochastic, with the remaining
equations identities. The functiofi may be nonlinear in variables, parameters,

and expectations.

31t is straightforward to generalize the model to include serially correlated eruggs:=
piltir—1 + €;r. See Fair and Taylor (1983, 1990) for a discussion of this case.



Tablel
Notation in Alphabetical Order

maximum lead

number of DFP iterations needed for convergence

number of stochastic simulation repetitions

extra periods beyontl needed for convergence

number of function evaluations needed for line searching
number of entire path comptations needed for convergence
number of one-period passes needed for convergence
number of control variables

length of simulation period

length of optimal control horizon needed for first-period convergence
length of stochastic simulation period

length of optimal control period

Ny IR I INFTS~T

3 Solution

Consider the solution of the model for perindAssume that estimates of are
available, that current and future values of the exogenous variables are available,
and that all values for periods— 1 and back are known. If the current and future
values of theu;; error terms are set to zero (their expected values), the solution
of (1) is straightforward. A popular method is the extended path (EP) method in
Fair and Taylor (1983), which has been programmed into a number of computer
packages. The method iterates over solupaths. Values of the expectations for
periods through period + 4 +k + h are first guessed, whekies the maximum lead

in the model and is chosen as discussed below. Given these guesses, the model
can be solved for periodshrought + & + k in the usual ways (usually period by
period using the Gauss-Seidel technique). This solution provides new values for

the expectations through period- i + k, namely the solution values. Given these



new values, the model can be solved again for pendbdsoughs + 4 + k, which
provides new values for the expectations, and so on. Convergence is reached when
the predicted values for periodshroughr + i from one iteration to the next are
within some tolerance level of each other. (There is no guarantee of convergence,
but in most applications convergence is not a problem.)

In this process the guessed values of the expectations for perokls- k£ + 1
throughz + i + k + h (theh periods beyond the last period solved) have not been
changed. If the solution values for periadgrough: 4+ & depend in a nontrivial
way on these guesses, then overall convergence has not been achieved. To check
for this, the entire process can be repeatedkfone larger. If increasing by
one has a trivial effect (based on a tolerance criterion) on the solution values for
t throught + h, then overall convergence has been achieved; otheiwmsast
continue to be increased until the criterion is met. In practice what is usually done
is to experiment to find the value éfthat is large enough to make it unlikely that
further increases are necessary for any experiment that might be run and then do
no further checking using larger valueskof

The solution requires values fay throughx,,,+«, the current and future
values of the exogenous variables. These values are what the agents are assumed
to know or expect at the beginning of periadlf agents are assumed not to have
perfect foresight regarding, then after convergence as described above has been
achieved, one more step is needed. This step is to solve the model for period
using the computed expectations andabtal value ofx;, not the value that the
agents expected. This is just a standard Gauss-Seidel solution for pefimthe

extent that the expected valuexpfdiffers from the actual valuey;_1y; will differ
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from the final solution value foy,. The final solution value foy, is conditional on
1) the use of zero errors, 2) the actual valueofand 3) the values of; through
x:1n+k that are used by the agents.

So far only the solution for periodhas been described. In many cases one is
interested in a dynamic simulation over a number of periods, sag theriodst
throughr + Q — 1. Ifitis assumed that all exogenous variable values are known by
the agents, this simulation can be performed with just one use of the EP method,
where the path is from throughtr + Q — 1 4+ h + k rather than just through
t+h+k. With known exogenous variables, the solution values for the expectations
are the same as the overall solution values, and so if convergence is reached for
the expectations for periodghrought + Q — 1 + A, the model has been solved
for periodst throughs + Q — 1.

If the actual values of the exogenous variables differ from those used by the
agents, the® separate uses of the EP method are required to solyé&faughr +
Q—1. Itisnolonger the case, forexample, that ; y; 1 equalsE; y,+1 because the
information sets through periods- 1 and: differ. The latter includes knowledge
of x, and the former does not. For simplicity the rest of this paper will only consider
the case in which agents know the exogenous variables. It is straightforward but
somewhat tedious to incorporate the case in which the exogenous variables are not
known.

A useful way of estimating the computational cost of the EP method is to
calculate the number of “passes” through the model that are used. A pass using
the Gauss-Seidel technique is going through the equations of the model once for

a given period and computing the values of the left hand side variables given the
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values of the right hand side variables. Metlenote the number of passes that are
needed to obtain Gauss-Seidel convergence for a given period, andéstote the
number of times the entire path has to be computed to obtain overall convergence
(assuming that has been chosen large enough ahead of time). Then the total
number of passes that are needed to solve the model f@ {heriods: through
t+Q—1isN-M-(Q + h+ k), since the path consists ¢f + 4 + k periods.

If the model does not have rational expectations, the total number of passes is just

N-Q.

4 Optimal Control

The solution of optimal control problems for large scale models is fairly easy using
certainty equivalence. Assume that the period of interesthoughr + 7 — 1 (a
horizon of lengthT") and that the objective is to maximize the expected value of

W, whereW is

W:g(yt’""yt+T_17xt’""xt—‘l_T_l) (2)

In most applications the objective function is assumed to be additive across time,
which means that (2) can be written

t+T-1

W = Z gs()’s, xs) (3)

s=t
Let z; be ag—dimensional vector of control variables, whegeis a subset
of x;, and letz be theqg - (T + h + k)—dimensional vector of all the control

values:z = (z;, ..., zr+T+htk—1), Wherek is taken to be large enough for solution



convergence through period- 7 — 1.4 If all the error terms are set to zero, then
for each value ot one can compute a value @f by first solving the model for

yi» - - .» Vrr7—1@ndthenusing these values along with the valuesfor . , x; 71

to computeW in (2) or (3). Stated this way, the optimal control problem is choosing
variables (the elements gfto maximize arunconstrained nonlinear function. By
substitution, the constrained maximization problem is transformed into the problem

of maximizing an unconstrained function of the control variables:
W = ®(z) (4)

where® stands for the mapping —> y, ..., Vr47—1, Xty oo, Xpy7—-1 —> W.
Given this setup, the problem can be turned over to a nonlinear maximization
algorithm like DFP. For each iteration of the algorithm, the derivative$ ofith
respect to the elements gfwhich are needed by the algorithm, can be computed
numerically. An algorithm like DFP is generally quite good at finding the optimum
for a typical control problem.

Once the problem is solved;, the optimal vector of control values for period
t, is implemented. If, for example, the Fed is solving the control problem and
there is one control variable—the interest rate—then the Fed would implement
through open market operations the optimal value of the interest rate for period
t. In the process of computing the optimal values for periods+ 1 through
t+ T + h+ k — 1 are also computed. Agents are assumed to know these values

when they solve the model to form their expectations. For the Fed example, one

4Remember that the guessed values of the expectations for periods + i + k through
t+T+h+k+h—1are never changed in the solutidnhas to be large enough so that increasing
it by one has a trivial effect on the relevant solution values.

SSee Fair (1974) for various applications of this procedure.
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can think of the Fed implementing the periodalue of the interest rate and at the
same time announcing the planned future values.

After z; is implemented and periadbasses, the entire process can be repeated
beginning irr + 1. In the present deterministic case, however, the optimal value of
Z:+1 chosen at the beginning of+ 1 would be the same as the value chosen at the
beginning oft, and so there is no need to reoptimize. Reoptimization is needed in
the stochastic case, which is discussed in Section 6.

Each evaluation oW requiresN - M - (T + h + k) passes, since the path is of
lengthT + h + k. Each iteration of the DFP algorithm requirgs (T + h + k)
evaluations ofW to compute the derivatives numerically and then a few more
evaluations to do the line searching. Lletlenote the number of evaluations that
are needed for the line searching after the derivatives have been computed, and
let I denote the total number of iterations of the DFP algorithm that are needed
for convergence to the maximum. The total number of evaluation® of thus
I-(q-(T+h+k)+ L). Since from Section 3 the number of passes needed to
solve a model fofT periods isN - M - (T + h + k), the total number of passes

needed to computg isN -M - (T +h+k)-1-(q- (T +h+k)+L).

5 Stochastic Smulation

Forget optimal control for now and assume that some (not necessarily optimal)
controlrule is postulated. The stabilization features of a rule can be examined using
stochastic simulation. One first needs an estimate of typical shocks to the economy.

Shocks can be estimated in one of two ways. The firstis to use the estimated error



terms from the econometric model. If, for example, the estimation period is 160
quarters, there are 160 vectors of error terms. The stochastic simulation can be
set up so there is a probability of 1/160 of drawing any particular vector for any
particular period.

The second way is to draw error terms from an estimated distributionV Let
be an estimate of the covariance matvixof the u;, error terms ¥ and V are
m x m). If the error terms are assumed to be multivariate normal with zero means,
one can draw errors from th& (0, V) distribution. For large models there may
not be enough observations to estimate all the nonzero eleme¥itsot so zero
restrictions may have to be imposed. The advantage of drawing the historical error
vectors directly is that no distributional assumption has to be made and no zero
restrictions have to be imposed.

Assume that the periods of interest ateroughr + S — 1. The steps to estimate
the variances of the endogenous variables for these periods under the rule are as

follows:

1. Letuf, anm-dimensional vector, denote a particular draw of therror
terms for period. This draw can either be from a set of historically estimated
vectors or from an estimated distribution. Assume that agents know this draw
but use zero values of the errors for periods 1 and beyond. (This means
that the certainty equivalence assumption is still being used for agents for
future periods.) Then solve the model (with the rule included) for period
using the EP method. Record the solution values for petiod

2. Draw a vector of error terms for period- 1, uy ,, and use these errors and
the solution values for periadto solve the model for periocH 1 using the
EP method. For this solution agents are assumed to use zero values of the
errors for periods + 2 and beyond. Record the solution values for period
t+ 1.
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3. Repeat step 2 for periods+ 2 throughr + § — 1. This set of solution
values is one repetition. From this repetition one obtains a prediction of
each endogenous variable for periederoughr + S — 1.

4. Repeat steps 1 through/3imes forJ repetitions.

5. Letyl.jt denote the value on thgh repetition of variablé for periods. For
J repetitions, the stochastic simulation estimate of the expected value of
variablei for periodr, denotedi;,, is

1L .
s =5 )i (5)
j=1
Let . .
o) = (v, — fiin)? (6)

The stochastic simulation estimate of the variance of variafdeperiodt,

denoteds2, is then

J
57 = % Z Uiztj (7)
j=1
In practice it is usually the case with macroeconometric modelsithathe
estimate of the expected value pf, is quite close to the predicted value wf
based on setting all the error terms to zero (no stochastic simul&tidije main
reason for doing stochastic simulation is not to improve on the estimates of the
expected values but to compute variances.) If this is true for a particular model,
it suggests that the use of certainty equivalence may not be a bad approximation.
In other words, the expectations that agents compute using certainty equivalence

may not be too far from the expectations that they would compute if they did a

complete stochastic simulation. The closenesg;pto the certainty equivalence

6See, for example, Fair (1984), Section 7.3.4.
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prediction may thus serve as a rough guide for how much confidence to place in
the use of certainty equivalence, although this is by no means a rigorods test.

In the above steps agents are assumed to know the mfamhen solving
the model beginning in period to know the draw:;_, when solving the model
beginning in period + 1, and so on. The steps could be set up so that agents do
not know these draws and use zero errors instead. In this case the expectations
would be computed using all zero errors, and after this the model would be solved
using these computed expectations and the drawn error vector. For reasons that
will be clear in the next section, the focus here is on the case where the current
period draw is known.

The total number of passes that are needed fovthepetitionsis/ - S - N -

M - (h + k), since each path is of lengih+ k and there ard - S paths solved.

"It is difficult to find in the literature comparisons of truly optimal and certainty equivalent
solutions. One example is in Binder, Pesaran, and Samiei (2000), who examine the finite horizon
life cycle model of consumption under uncertainty. They consider the simple case of a negative
exponential utility function, a constant rate of interest, and labor income following an arithmetic
random walk. The following computations are based on the values: interest rate = .04, discount
factor = .98, negative exponential utility parameter = .01, initial and terminal values of wealth =
500, initial value of income = 200, standard deviation of random walk error = 5. For these values
the truly optimal and certainty equivalence solutions were computed. (I am indebted to Michael
Binder for providing me with the solution code.) Lgtdenote the truly optimal first-period value of
consumption, and lef* denote the value computed under the assumption of certainty equivalence.
For a life cycle horizon of 12 years; is .30 percent below;*. For 24 years it is .60 percent
below; for 36 years itis .87 percent below, and for 48 years it is 1.09 percent below. Although these
differences seem modest, it is not clear how much they can be generalized, given the specialized
nature of the model, and so it is really an open question as to the restrictiveness of the certainty
equivalence assumption for the general model in this paper.
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6 Stochastic Simulation and Optimal Control

In the optimal control case the control rule is dropped and an optimal control
problem is solved to determine the values of the control variables. The steps that
are needed to estimate the variances of the endogenous variables in this case are
similar to those in the previous section. The difference is that after each draw of the
error vector an optimal control problem has to be solved. As in Section 5, assume

that the periods of interest are¢hroughr + S — 1. The steps are:

1. Drawu; as in Section 5. Assume that both the control authority and the
agents know this draw but use zero values of the errors for periedsand
beyond. Given this draw and the zero future errors, solve the (deterministic)
control problem beginning in periadas in Section 4. This solution produces
z;, the optimal value of the control vector for perigavhich is implemented.
Record the solution values for period

2. Draw a vector of error terms for periadt 1, u;, ,, and use these errors
and the solution values for periodo solve the control problem beginning
in periods + 1. For this problem the control authority and the agents are
assumed to use zero values of the errors for perieel® and beyond. This
solution produces;, ;, the optimal value of the control vector for period
t + 1, which is implemented. Record the solution values for periedL.

3. Repeat step 2 for periodst 2 throughr + § — 1. This set of solution
values is one repetition. From this repetition one obtains the implemented
optimal valuesz;,...,z/, ¢_4, and a prediction of each endogenous variable
for periodst throughs 4+ S — 1 based on these values.

4. Repeat steps 1 through/3times forJ repetitions. ji;; and&ft can then be
computed as in Section 5.

The variances computed in this section using optimal control can be compared
to the variances computed in Section 5 using other rules. The steps are set up so

that both procedures assume that agents know the current period draw of the error
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terms. In addition, any rule used in Section 5 in effect knows the draw, as does
the control authority in this section. The information sets are thus the same for the
comparisons.

In step 1 a control problem is solved beginning in perodn Section 4 the
horizon of the control authority regarding the objective function was taken to be
lengthT and values of the control variables were computed for peridkdough
t+ T+ h+k— 1. Instep 1, however, it may be possible to shorten the horizon.
What step 1 needs are only the solution values for per{attludingz;), and the
horizon only needs to be taken long enough so that increasing it further has a trivial
effect (based on a tolerance criterion) on the values for peri@he can initially
experiment with different values of the horizon to see how large it has to be to meet
the tolerance criterion. LeR denote this length. This value & can be used in
step 2 for the control problem beginning in periogt 1, and so on.

The overall procedure requires ttsatontrol problems be solved per repetition,
and so with/ repetitions there arg- S control problem solved, each with a horizon
of lengthR. The total number of passes in this case isthusS - N - M - (R +
h+k)-I-(qg-(R+h+k)+ L). Ifthe number of trials () is 20, the number
of periods §) is 16, the number of passes needed for convergeNges(5, the
number of solution paths needed for convergedégi€ 5, the necessary horizon
for the control problemR) is 10, the lead length: is 3, the necessary value bf
is 8, the number of DFP iterations needed for convergehcis 8, the number of
control variablesq) is 1, and the number of line searches needed per DFP iteration
(L) is 10, then the total number of passes needed is 41,664,000. At 11,573 passes

per second, this could be done in 1 hour; at 5,787 passes per second, it could be
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done in 2 hours; and so on.

In term of speed it is obviously important that efficient code be written for
passing through the model, since most of the time is spent passing through. A
practical way to proceed after the code is written is to set limitsvGonV/, 1,
andJ that are small enough to make the problem computationally feasible (like
completion within an hour or two). Once the bugs are out and the (preliminary)
results seem sensible, the limits can be gradually increased to gain more accuracy.
If two cases are being compared using stochastic simulation, such as a simple rule
versus an optimal control procedure, the same draws of the errors should be used
for both cases. This can considerably lessen stochastic simulation error for the
comparisons.

The number of passes needed is much smaller if the model is not a rational
expectations model. In this cas¢ is 1 andh andk are zero, and in the above
example the number of passes is 2,560,000. This is about 1/16th the number of
passes for the rational expectations case.

The appendix presents an example of the use of the procedure in this section

for a large nonlinear model with rational expectations.

7 Conclusion

This study has shown that it is computationally feasible to solve stochastic sim-
ulation and optimal control problems for large nonlinear models with rational
expectations if certainty equivalence is used. The analysis of monetary and fiscal

policies need not be restricted to the use of small models or linear models.
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What is lost by the use of the open loop procedure of certainty equivalence
and reoptimization in Section 6? Agents know when they solve the model to
form their expectations the current period values of the control variables that are
implemented and the announced planned future values. They take the planned
future values as deterministic rather than stochastic, and they take the future error
terms to be deterministic, namely zero. Agents do not take into account the fact
that everything will be redone at the beginning of each period after the error terms
for that period are realized and known. The overall procedure is thus not fully
optimal. As mentioned in Section 1, in some cases this may be a serious problem,

and in these cases the procedure in Section 6 is of little use.
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Appendix

Coding

As noted in the text, it is important that efficient code be written to pass through
the equations of a model. Let PASS(r) denote a subroutine written to pass through
the model once for period r. Let SOLVE(s,Q) denote a subroutine written to solve
a rational expectations model for periods s thiogg+ Q -1using the extended

path method. SOLVE(s,Q) calls PASS(r) many times for r equal to s threggQ

-1+ h + k,where h is the maximum lead and k is chosen as discussed in the text.
Let DFP(s,R) denote a subroutine written to solve an optimal control problem with
beginning period s and necessary horizon R (as discussed in Section 6). DFP(s,R)
calls SOLVE(s,R) one time per evaluation of the objective funcanFinally, let
DRAW(s) denote a subroutine written to draw a vector of error terms for period s.

The outline of the program to do stochastic simulation and optimal control as in

Section 6 is:
DO 100 j =1, J
DO 200 s =t, t+S-1
CALL DRAW(S)

CALL DFP(s, R
Calls SOLVE(s,R) once per evaluation of W
Calls PASS(r) many times for r = s, s+R- 1+h+k.
Record predicted values on trial j for period s.
200 CONTI NUE
100 CONTI NUE

17



An Example

One of the models used for the results in Fair (2000) is a model of the United
States with rational expectations. There are 31 stochastic equations and about 100
identities in this model. The model is nonlinear, and the maximum lead length
(h) is 7. The model is estimated for the 1954:1-1999:2 period, which gives 182
vectors of historical error terms. Stochastic simulation was done for this model
in Fair (2000), but optimal control experiments were not performed. For the
example below both stochastic simulation and optimal control were done using the
procedure in Section 6. Stochastic simulation was done by drawing for a given
period one of the 182 vectors of error terms with probability 1/182.

The period was 1993:1-1995:8 & 12); the number of trialsA) was 20;k
was taken to be 12; and the DFP iteration lini} (vas taken to be 6. No limits
were imposed oV and M. The tolerance criterion for a Gauss-Seidel iteration
was 0.1 percent, and the tolerance criterion for extended path convergence was 0.2
percent.

The example was run using the Fair-Parke (1995) program. The program is
written in FORTRAN and includes all the necessary subroutines. The computer
used was a Dell Pro 200 (which uses an early Pentium chip), purchased in May
1996. Computer chips have gotten much faster since this purchase date, and so the
time given below would be considerably smaller on newer computers.

The time taken for this example was about 11 hours. The average number of
passes per Gauss-Seidel iteration was about 5, and the average number of passes

for extended path convergence was about 2. The DFP iteration limit of 6 was
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binding in that in most cases it appeared that more iterations would be needed to
achieve acceptable accuracy. If the number of iterations were doubled, the time
would also roughly double.

This time of 11 hours on a fairly old computer shows that the procedure in
Section 6 is in the realm of computational feasibility even for a nonlinear model
of over 100 equations with a nontrivial lead length (i.e., 7). As mentioned in
the text, a good approach is to set fairly small limits on the relevant parameters
and then increase the limits to gain more accuracy after the bugs are worked out.
One programming issue that is important is setting the step size for the numeric
derivatives used by the DFP algorithm. The step size must be larger than the
solution tolerance criteria in order for the computed derivatives to be any good.

Some experimentation is usually needed to get this right.
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