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Abstract

This paper presents a computationally feasible procedure for the optimal
control and stochastic simulation of large nonlinear models with rational
expectations under the assumption of certainty equivalence.

1 Introduction

There is a large literature on examining the stabilization effectiveness of different

interest rate rules. The general approach in this literature is to choose a rule and

then use a model of the economy to examine how the economy would have behaved

under the rule.1 Sometimes optimal rules are derived by solving optimal control

problems,2 and these rules are compared to other rules.
∗Cowles Foundation and International Center for Finance, Yale University, New Haven, CT

06520-8281. Voice: 203-432-3715; Fax: 203-432-6167; e-mail: ray.fair@yale.edu; website:
http://fairmodel.econ.yale.edu.

1See, for example, Feldstein and Stock (1993), Hall and Mankiw (1993), Judd and Motley
(1993), Clark (1994), Croushore and Stark (1994), Thorton (1995), Fair and Howrey (1996),
Rudebusch (1999), Fair (2000), and Clarida, Galí, and Gertler (2000). Taylor (1985, fn. 1, p. 61)
cites much of the literature prior to 1985.

2See, for example, Feldstein and Stock (1993), Fair and Howrey (1996), Rudebusch (1999),
and Fair (2000).



This literature requires that the stochastic features of the economy be accounted

for and that optimal control problems be solved. In addition, many of the eco-

nomic models used have rational expectations. Solving optimal control problems

for stochastic models with rational expectations is fairly involved, and almost all

the recent studies have used small linear models. For example, only one of the

studies in Taylor (1999)—Levin, Wieland, and Williams (1999) (LWW)—uses

large scale models, and LWW do not solve optimal control problems. They use

linearizations of the Federal Reserve model and the Taylor multicountry model

to compute unconditional second moments of the variables in the models. In the

recent study of Clarida, Galí, and Gertler (2000) a four equation calibrated model

is used. Finan and Tetlow (1999) discuss the optimal control of large models with

rational expectations, but their method is limited to linear models.

This paper discusses methods for the stochastic simulation and optimal control

of large nonlinear models with rational expectations. The methods are computer

intensive but computationally feasible given the current speed of computers. The

results show that the analysis of interest rate rules and optimal policy need not

be limited to the use of small linear models, even when the models have rational

expectations.

The key approximation in this paper is the use of certainty equivalence for

nonlinear models. It is argued below that this approximation seems good for

most macroeconometric models, and some ways of examining the accuracy of

the approximation are suggested. There undoubtedly are, however, applications in

which the use of certainty equivalence gives poor results, and for these applications

the methods in this paper are of little use.
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This paper is also based on the assumption of known coefficients. It does

not consider, for example, the possibility of unknown coefficients and learning.

Amman and Kendrick (1999) consider this case within the context of the linear

quadratic optimization problem for models with rational expectations. It would

be interesting in future work to consider the case of unknown coefficients with

learning in the more general setting of this paper.

For ease of reference, Table 1 lists some of the notation used in this paper.

2 The Model

The model will be written as:3

fi(yt , yt−1, . . . , yt−p,Et−1yt , Et−1yt+1, . . . , Et−1yt+h, xt , αi) = uit (i = 1, . . . , n)

(1)

whereyt is ann–dimensional vector of endogenous variables,xt is a vector of

exogenous variables,Et−1 is the conditional expectations operator based on the

model and on information through periodt − 1, αi is a vector of parameters, and

uit is an error term with mean zero that may be correlated across equations but not

across time. The firstm equations are assumed to be stochastic, with the remaining

equations identities. The functionfi may be nonlinear in variables, parameters,

and expectations.
3It is straightforward to generalize the model to include serially correlated errors:uit =

ρiuit−1 + εit . See Fair and Taylor (1983, 1990) for a discussion of this case.
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Table 1
Notation in Alphabetical Order

h maximum lead
I number of DFP iterations needed for convergence
J number of stochastic simulation repetitions
k extra periods beyondh needed for convergence
L number of function evaluations needed for line searching
M number of entire path comptations needed for convergence
N number of one-period passes needed for convergence
q number of control variables
Q length of simulation period
R length of optimal control horizon needed for first-period convergence
S length of stochastic simulation period
T length of optimal control period

3 Solution

Consider the solution of the model for periodt . Assume that estimates ofαi are

available, that current and future values of the exogenous variables are available,

and that all values for periodst − 1 and back are known. If the current and future

values of theuit error terms are set to zero (their expected values), the solution

of (1) is straightforward. A popular method is the extended path (EP) method in

Fair and Taylor (1983), which has been programmed into a number of computer

packages. The method iterates over solutionpaths. Values of the expectations for

periodt through periodt+h+k+h are first guessed, whereh is the maximum lead

in the model andk is chosen as discussed below. Given these guesses, the model

can be solved for periodst throught + h + k in the usual ways (usually period by

period using the Gauss-Seidel technique). This solution provides new values for

the expectations through periodt +h+k, namely the solution values. Given these
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new values, the model can be solved again for periodst throught + h + k, which

provides new values for the expectations, and so on. Convergence is reached when

the predicted values for periodst throught + h from one iteration to the next are

within some tolerance level of each other. (There is no guarantee of convergence,

but in most applications convergence is not a problem.)

In this process the guessed values of the expectations for periodst +h+ k + 1

throught + h + k + h (theh periods beyond the last period solved) have not been

changed. If the solution values for periodst throught + h depend in a nontrivial

way on these guesses, then overall convergence has not been achieved. To check

for this, the entire process can be repeated fork one larger. If increasingk by

one has a trivial effect (based on a tolerance criterion) on the solution values for

t throught + h, then overall convergence has been achieved; otherwisek must

continue to be increased until the criterion is met. In practice what is usually done

is to experiment to find the value ofk that is large enough to make it unlikely that

further increases are necessary for any experiment that might be run and then do

no further checking using larger values ofk.

The solution requires values forxt throughxt+h+k, the current and future

values of the exogenous variables. These values are what the agents are assumed

to know or expect at the beginning of periodt . If agents are assumed not to have

perfect foresight regardingxt , then after convergence as described above has been

achieved, one more step is needed. This step is to solve the model for periodt

using the computed expectations and theactual value ofxt , not the value that the

agents expected. This is just a standard Gauss-Seidel solution for periodt . To the

extent that the expected value ofxt differs from the actual value,Et−1yt will differ
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from the final solution value foryt . The final solution value foryt is conditional on

1) the use of zero errors, 2) the actual value ofxt , and 3) the values ofxt through

xt+h+k that are used by the agents.

So far only the solution for periodt has been described. In many cases one is

interested in a dynamic simulation over a number of periods, say theQ periodst

throught +Q−1. If it is assumed that all exogenous variable values are known by

the agents, this simulation can be performed with just one use of the EP method,

where the path is fromt throught + Q − 1 + h + k rather than justt through

t+h+k. With known exogenous variables, the solution values for the expectations

are the same as the overall solution values, and so if convergence is reached for

the expectations for periodst throught + Q − 1 + h, the model has been solved

for periodst throught + Q − 1.

If the actual values of the exogenous variables differ from those used by the

agents, thenQ separate uses of the EP method are required to solve fort throught+
Q−1. It is no longer the case, for example, thatEt−1yt+1 equalsEtyt+1 because the

information sets through periodst − 1 andt differ. The latter includes knowledge

of xt and the former does not. For simplicity the rest of this paper will only consider

the case in which agents know the exogenous variables. It is straightforward but

somewhat tedious to incorporate the case in which the exogenous variables are not

known.

A useful way of estimating the computational cost of the EP method is to

calculate the number of “passes” through the model that are used. A pass using

the Gauss-Seidel technique is going through the equations of the model once for

a given period and computing the values of the left hand side variables given the
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values of the right hand side variables. LetN denote the number of passes that are

needed to obtain Gauss-Seidel convergence for a given period, and letM denote the

number of times the entire path has to be computed to obtain overall convergence

(assuming thatk has been chosen large enough ahead of time). Then the total

number of passes that are needed to solve the model for theQ periodst through

t + Q − 1 isN · M · (Q + h + k), since the path consists ofQ + h + k periods.

If the model does not have rational expectations, the total number of passes is just

N · Q.

4 Optimal Control

The solution of optimal control problems for large scale models is fairly easy using

certainty equivalence. Assume that the period of interest ist throught + T − 1 (a

horizon of lengthT ) and that the objective is to maximize the expected value of

W , whereW is

W = g(yt , . . . , yt+T −1, xt , . . . , xt+T −1) (2)

In most applications the objective function is assumed to be additive across time,

which means that (2) can be written

W =
t+T −1∑

s=t

gs(ys, xs) (3)

Let zt be aq–dimensional vector of control variables, wherezt is a subset

of xt , and letz be theq · (T + h + k)–dimensional vector of all the control

values:z = (zt , . . . , zt+T +h+k−1), wherek is taken to be large enough for solution
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convergence through periodt + T − 1.4 If all the error terms are set to zero, then

for each value ofz one can compute a value ofW by first solving the model for

yt , . . . , yt+T −1 and then using these values along with the values forxt , . . . , xt+T −1

to computeW in (2) or (3). Stated this way, the optimal control problem is choosing

variables (the elements ofz) to maximize anunconstrained nonlinear function. By

substitution, the constrained maximization problem is transformed into the problem

of maximizing an unconstrained function of the control variables:

W = "(z) (4)

where" stands for the mappingz −→ yt , . . . , yt+T −1, xt , . . . , xt+T −1 −→ W .

Given this setup, the problem can be turned over to a nonlinear maximization

algorithm like DFP. For each iteration of the algorithm, the derivatives of" with

respect to the elements ofz, which are needed by the algorithm, can be computed

numerically. An algorithm like DFP is generally quite good at finding the optimum

for a typical control problem.5

Once the problem is solved,z∗
t , the optimal vector of control values for period

t , is implemented. If, for example, the Fed is solving the control problem and

there is one control variable—the interest rate—then the Fed would implement

through open market operations the optimal value of the interest rate for period

t . In the process of computingz∗
t the optimal values for periodst + 1 through

t + T + h + k − 1 are also computed. Agents are assumed to know these values

when they solve the model to form their expectations. For the Fed example, one
4Remember that the guessed values of the expectations for periodst + T + h + k through

t +T +h+ k +h−1 are never changed in the solution.k has to be large enough so that increasing
it by one has a trivial effect on the relevant solution values.

5See Fair (1974) for various applications of this procedure.
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can think of the Fed implementing the periodt value of the interest rate and at the

same time announcing the planned future values.

After z∗
t is implemented and periodt passes, the entire process can be repeated

beginning int +1. In the present deterministic case, however, the optimal value of

zt+1 chosen at the beginning oft + 1 would be the same as the value chosen at the

beginning oft , and so there is no need to reoptimize. Reoptimization is needed in

the stochastic case, which is discussed in Section 6.

Each evaluation ofW requiresN · M · (T + h + k) passes, since the path is of

lengthT + h + k. Each iteration of the DFP algorithm requiresq · (T + h + k)

evaluations ofW to compute the derivatives numerically and then a few more

evaluations to do the line searching. LetL denote the number of evaluations that

are needed for the line searching after the derivatives have been computed, and

let I denote the total number of iterations of the DFP algorithm that are needed

for convergence to the maximum. The total number of evaluations ofW is thus

I · (q · (T + h + k) + L). Since from Section 3 the number of passes needed to

solve a model forT periods isN · M · (T + h + k), the total number of passes

needed to computez∗
t is N · M · (T + h + k) · I · (q · (T + h + k) + L).

5 Stochastic Simulation

Forget optimal control for now and assume that some (not necessarily optimal)

control rule is postulated. The stabilization features of a rule can be examined using

stochastic simulation. One first needs an estimate of typical shocks to the economy.

Shocks can be estimated in one of two ways. The first is to use the estimated error
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terms from the econometric model. If, for example, the estimation period is 160

quarters, there are 160 vectors of error terms. The stochastic simulation can be

set up so there is a probability of 1/160 of drawing any particular vector for any

particular period.

The second way is to draw error terms from an estimated distribution. LetV̂

be an estimate of the covariance matrixV of the uit error terms (V and V̂ are

m×m). If the error terms are assumed to be multivariate normal with zero means,

one can draw errors from theN(0, V̂ ) distribution. For large models there may

not be enough observations to estimate all the nonzero elements ofV , and so zero

restrictions may have to be imposed. The advantage of drawing the historical error

vectors directly is that no distributional assumption has to be made and no zero

restrictions have to be imposed.

Assume that the periods of interest aret throught+S−1. The steps to estimate

the variances of the endogenous variables for these periods under the rule are as

follows:

1. Let u∗
t , anm-dimensional vector, denote a particular draw of them error

terms for periodt . This draw can either be from a set of historically estimated
vectors or from an estimated distribution. Assume that agents know this draw
but use zero values of the errors for periodst + 1 and beyond. (This means
that the certainty equivalence assumption is still being used for agents for
future periods.) Then solve the model (with the rule included) for periodt

using the EP method. Record the solution values for periodt .

2. Draw a vector of error terms for periodt + 1,u∗
t+1, and use these errors and

the solution values for periodt to solve the model for periodt + 1 using the
EP method. For this solution agents are assumed to use zero values of the
errors for periodst + 2 and beyond. Record the solution values for period
t + 1.
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3. Repeat step 2 for periodst + 2 throught + S − 1. This set of solution
values is one repetition. From this repetition one obtains a prediction of
each endogenous variable for periodst throught + S − 1.

4. Repeat steps 1 through 3J times forJ repetitions.

5. Letyj

it denote the value on thej th repetition of variablei for periodt . For
J repetitions, the stochastic simulation estimate of the expected value of
variablei for periodt , denotedµ̃it , is

µ̃it = 1

J

J∑

j=1

y
j

it (5)

Let
σ

2j
it = (y

j

it − µ̃it )
2 (6)

The stochastic simulation estimate of the variance of variablei for periodt ,
denotedσ̃ 2

it , is then

σ̃ 2
it = 1

J

J∑

j=1

σ
2j
it (7)

In practice it is usually the case with macroeconometric models thatµ̃it , the

estimate of the expected value ofyit , is quite close to the predicted value ofyit

based on setting all the error terms to zero (no stochastic simulation).6 (The main

reason for doing stochastic simulation is not to improve on the estimates of the

expected values but to compute variances.) If this is true for a particular model,

it suggests that the use of certainty equivalence may not be a bad approximation.

In other words, the expectations that agents compute using certainty equivalence

may not be too far from the expectations that they would compute if they did a

complete stochastic simulation. The closeness ofµ̃it to the certainty equivalence
6See, for example, Fair (1984), Section 7.3.4.
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prediction may thus serve as a rough guide for how much confidence to place in

the use of certainty equivalence, although this is by no means a rigorous test.7

In the above steps agents are assumed to know the drawu∗
t when solving

the model beginning in periodt , to know the drawu∗
t+1 when solving the model

beginning in periodt + 1, and so on. The steps could be set up so that agents do

not know these draws and use zero errors instead. In this case the expectations

would be computed using all zero errors, and after this the model would be solved

using these computed expectations and the drawn error vector. For reasons that

will be clear in the next section, the focus here is on the case where the current

period draw is known.

The total number of passes that are needed for theJ repetitions isJ · S · N ·
M · (h + k), since each path is of lengthh + k and there areJ · S paths solved.

7It is difficult to find in the literature comparisons of truly optimal and certainty equivalent
solutions. One example is in Binder, Pesaran, and Samiei (2000), who examine the finite horizon
life cycle model of consumption under uncertainty. They consider the simple case of a negative
exponential utility function, a constant rate of interest, and labor income following an arithmetic
random walk. The following computations are based on the values: interest rate = .04, discount
factor = .98, negative exponential utility parameter = .01, initial and terminal values of wealth =
500, initial value of income = 200, standard deviation of random walk error = 5. For these values
the truly optimal and certainty equivalence solutions were computed. (I am indebted to Michael
Binder for providing me with the solution code.) Letc∗

1 denote the truly optimal first-period value of
consumption, and letc∗∗

1 denote the value computed under the assumption of certainty equivalence.
For a life cycle horizon of 12 years,c∗

1 is .30 percent belowc∗∗
1 . For 24 years it is .60 percent

below; for 36 years it is .87 percent below, and for 48 years it is 1.09 percent below. Although these
differences seem modest, it is not clear how much they can be generalized, given the specialized
nature of the model, and so it is really an open question as to the restrictiveness of the certainty
equivalence assumption for the general model in this paper.
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6 Stochastic Simulation and Optimal Control

In the optimal control case the control rule is dropped and an optimal control

problem is solved to determine the values of the control variables. The steps that

are needed to estimate the variances of the endogenous variables in this case are

similar to those in the previous section. The difference is that after each draw of the

error vector an optimal control problem has to be solved. As in Section 5, assume

that the periods of interest aret throught + S − 1. The steps are:

1. Drawu∗
t as in Section 5. Assume that both the control authority and the

agents know this draw but use zero values of the errors for periodst + 1 and
beyond. Given this draw and the zero future errors, solve the (deterministic)
control problem beginning in periodt as in Section 4. This solution produces
z∗
t , the optimal value of the control vector for periodt , which is implemented.

Record the solution values for periodt .

2. Draw a vector of error terms for periodt + 1, u∗
t+1, and use these errors

and the solution values for periodt to solve the control problem beginning
in period t + 1. For this problem the control authority and the agents are
assumed to use zero values of the errors for periodst + 2 and beyond. This
solution producesz∗

t+1, the optimal value of the control vector for period
t + 1, which is implemented. Record the solution values for periodt + 1.

3. Repeat step 2 for periodst + 2 throught + S − 1. This set of solution
values is one repetition. From this repetition one obtains the implemented
optimal values,z∗

t ,…,z∗
t+S−1, and a prediction of each endogenous variable

for periodst throught + S − 1 based on these values.

4. Repeat steps 1 through 3J times forJ repetitions.µ̃it andσ̃ 2
it can then be

computed as in Section 5.

The variances computed in this section using optimal control can be compared

to the variances computed in Section 5 using other rules. The steps are set up so

that both procedures assume that agents know the current period draw of the error
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terms. In addition, any rule used in Section 5 in effect knows the draw, as does

the control authority in this section. The information sets are thus the same for the

comparisons.

In step 1 a control problem is solved beginning in periodt . In Section 4 the

horizon of the control authority regarding the objective function was taken to be

lengthT and values of the control variables were computed for periodst through

t + T + h + k − 1. In step 1, however, it may be possible to shorten the horizon.

What step 1 needs are only the solution values for periodt (includingz∗
t ), and the

horizon only needs to be taken long enough so that increasing it further has a trivial

effect (based on a tolerance criterion) on the values for periodt . One can initially

experiment with different values of the horizon to see how large it has to be to meet

the tolerance criterion. LetR denote this length. This value ofR can be used in

step 2 for the control problem beginning in periodt + 1, and so on.

The overall procedure requires thatS control problems be solved per repetition,

and so withJ repetitions there areJ ·S control problem solved, each with a horizon

of lengthR. The total number of passes in this case is thus:J · S · N · M · (R +
h + k) · I · (q · (R + h + k) + L). If the number of trials (J ) is 20, the number

of periods (S) is 16, the number of passes needed for convergence (N ) is 5, the

number of solution paths needed for convergence (M) is 5, the necessary horizon

for the control problem (R) is 10, the lead length (h) is 3, the necessary value ofk

is 8, the number of DFP iterations needed for convergence (I ) is 8, the number of

control variables (q) is 1, and the number of line searches needed per DFP iteration

(L) is 10, then the total number of passes needed is 41,664,000. At 11,573 passes

per second, this could be done in 1 hour; at 5,787 passes per second, it could be
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done in 2 hours; and so on.

In term of speed it is obviously important that efficient code be written for

passing through the model, since most of the time is spent passing through. A

practical way to proceed after the code is written is to set limits onN , M, I ,

andJ that are small enough to make the problem computationally feasible (like

completion within an hour or two). Once the bugs are out and the (preliminary)

results seem sensible, the limits can be gradually increased to gain more accuracy.

If two cases are being compared using stochastic simulation, such as a simple rule

versus an optimal control procedure, the same draws of the errors should be used

for both cases. This can considerably lessen stochastic simulation error for the

comparisons.

The number of passes needed is much smaller if the model is not a rational

expectations model. In this caseM is 1 andh andk are zero, and in the above

example the number of passes is 2,560,000. This is about 1/16th the number of

passes for the rational expectations case.

The appendix presents an example of the use of the procedure in this section

for a large nonlinear model with rational expectations.

7 Conclusion

This study has shown that it is computationally feasible to solve stochastic sim-

ulation and optimal control problems for large nonlinear models with rational

expectations if certainty equivalence is used. The analysis of monetary and fiscal

policies need not be restricted to the use of small models or linear models.
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What is lost by the use of the open loop procedure of certainty equivalence

and reoptimization in Section 6? Agents know when they solve the model to

form their expectations the current period values of the control variables that are

implemented and the announced planned future values. They take the planned

future values as deterministic rather than stochastic, and they take the future error

terms to be deterministic, namely zero. Agents do not take into account the fact

that everything will be redone at the beginning of each period after the error terms

for that period are realized and known. The overall procedure is thus not fully

optimal. As mentioned in Section 1, in some cases this may be a serious problem,

and in these cases the procedure in Section 6 is of little use.
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Appendix

Coding

As noted in the text, it is important that efficient code be written to pass through

the equations of a model. Let PASS(r) denote a subroutine written to pass through

the model once for period r. Let SOLVE(s,Q) denote a subroutine written to solve

a rational expectations model for periods s through s + Q -1using the extended

path method. SOLVE(s,Q) calls PASS(r) many times for r equal to s through s + Q

- 1 + h + k,where h is the maximum lead and k is chosen as discussed in the text.

Let DFP(s,R) denote a subroutine written to solve an optimal control problem with

beginning period s and necessary horizon R (as discussed in Section 6). DFP(s,R)

calls SOLVE(s,R) one time per evaluation of the objective functionW . Finally, let

DRAW(s) denote a subroutine written to draw a vector of error terms for period s.

The outline of the program to do stochastic simulation and optimal control as in

Section 6 is:

DO 100 j = 1, J
DO 200 s = t, t+S-1
CALL DRAW(s)
CALL DFP(s,R)

Calls SOLVE(s,R) once per evaluation of W.
Calls PASS(r) many times for r = s, s+R-1+h+k.

Record predicted values on trial j for period s.
200 CONTINUE
100 CONTINUE
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An Example

One of the models used for the results in Fair (2000) is a model of the United

States with rational expectations. There are 31 stochastic equations and about 100

identities in this model. The model is nonlinear, and the maximum lead length

(h) is 7. The model is estimated for the 1954:1–1999:2 period, which gives 182

vectors of historical error terms. Stochastic simulation was done for this model

in Fair (2000), but optimal control experiments were not performed. For the

example below both stochastic simulation and optimal control were done using the

procedure in Section 6. Stochastic simulation was done by drawing for a given

period one of the 182 vectors of error terms with probability 1/182.

The period was 1993:1–1995:4 (S = 12); the number of trials (J ) was 20;k

was taken to be 12; and the DFP iteration limit (I ) was taken to be 6. No limits

were imposed onN andM. The tolerance criterion for a Gauss-Seidel iteration

was 0.1 percent, and the tolerance criterion for extended path convergence was 0.2

percent.

The example was run using the Fair-Parke (1995) program. The program is

written in FORTRAN and includes all the necessary subroutines. The computer

used was a Dell Pro 200 (which uses an early Pentium chip), purchased in May

1996. Computer chips have gotten much faster since this purchase date, and so the

time given below would be considerably smaller on newer computers.

The time taken for this example was about 11 hours. The average number of

passes per Gauss-Seidel iteration was about 5, and the average number of passes

for extended path convergence was about 2. The DFP iteration limit of 6 was
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binding in that in most cases it appeared that more iterations would be needed to

achieve acceptable accuracy. If the number of iterations were doubled, the time

would also roughly double.

This time of 11 hours on a fairly old computer shows that the procedure in

Section 6 is in the realm of computational feasibility even for a nonlinear model

of over 100 equations with a nontrivial lead length (i.e., 7). As mentioned in

the text, a good approach is to set fairly small limits on the relevant parameters

and then increase the limits to gain more accuracy after the bugs are worked out.

One programming issue that is important is setting the step size for the numeric

derivatives used by the DFP algorithm. The step size must be larger than the

solution tolerance criteria in order for the computed derivatives to be any good.

Some experimentation is usually needed to get this right.
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