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Estimating the Dynamics of Mutual Fund Alphas
and Betas

Abstract

Consider an economy in which the underlying security returns follow a linear factor
model with constant coefficients. While portfolios that invest in these securities will,
in general, have a linear factor structure, it will be one with time-varying coefficients.
However, under certain assumptions regarding the portfolio’s investment strategy, it is
possible to estimate these time-varying alphas and betas. Importantly, this can be done
without direct knowledge of either the portfolio manager’s exact investment strategy or
of the alphas and betas of the individual securities in which the portfolio invests. This
paper develops and estimates a Kalman filter statistical model to track time-varying
fund alphas and betas. Several tests indicate that relative to a rolling OLS model the
Kalman filter model produces more accurate fund factor loadings both in and out of
sample. This appears to be in large part due to the attempts of fund managers to
time the market by varying their fund’s risk exposure from period to period. Another
advantage of the Kalman filter model is that the dynamic parameter estimates can be
used to classify funds by their trading strategies and to determine the source of a fund’s
profits or losses. The tests in this paper indicate that the superior and inferior returns
produced by some funds arise almost entirely from attempts at market timing rather
than managerial selection ability. However, as other research in the area of mutual
fund performance measurement have found, overall there appears to be little evidence
that, in aggregate, fund investors earn superior returns.

JEL Classification: G12, G13.



Over the last twenty years the mutual fund industry has grown at an incredible rate, and

this has naturally attracted a lot of attention from the academic and financial community.

A great deal of attention has gone into both predicting mutual fund returns (see, for ex-

ample Lehmann and Modest (1987), Grinblatt and Titman (1992), Carhart (1997), Daniel,

Grinblatt, Titman, and Wermers (1997), Wermers (2000), Pástor and Stambaugh (2002a)

Hendricks, Patel, and Zechhauser (1993), Brown and Goetzmann (1995), and Teo and Woo

(2001)) and describing their trading strategies (Ferson and Schadt (1996), Brown and Goet-

zmann (1997), and Ferson and Khang (2002)). What most studies have in common is the

maintained hypothesis that past factor loadings reasonably forecast future factor loadings.1

While this assumption may or may not be true at an individual security level, it seems rather

unlikely to hold for managed portfolios. Investors presumably employ portfolio managers to

move assets into and out of various sectors and securities as part of a dynamic strategy.2

Absent some mathematical coincidence, the simple act of shifting funds across securities will

lead to time-varying portfolio loadings on any benchmark.

This paper extends the mutual fund performance literature along the lines of Ferson and

Schadt (1996), hereafter FS. In order to estimate time variation in a portfolio’s risk loadings

FS project the latter onto a set of observable macro variables such as credit spreads. The

FS technique is designed to estimate the manager’s implicit strategy with respect to these

macro variables and then allow for the resulting correlations when judging performance.3

However, in contrast to FS, the goal here is to allow for portfolio shifts due to factors

unobservable by the econometrician. This is accomplished by assuming that assets are real-

located on the basis of some unobserved factor, and then estimating the system of equations

via a Kalman filter. Of course, one can also include the macro economic factors FS use,

thereby allowing for both observable and unobservable factors in the specification. Relative

to the typical OLS model, this may allow researchers to estimate a portfolio’s alpha and

betas with less misspecification bias, and thus produce models with better in and out of

sample properties.

Using the CRSP mutual fund database, cross referenced to Morningstar’s mutual fund

classifications, this paper estimates a dynamic model with time-varying parameters for a

large subset of all U.S. mutual funds. The resulting alpha and beta time series show that

the Kalman filtering approach produces considerably better estimates of their instantaneous

values than do standard OLS models. It appears that depending upon the mutual fund

category (and thus implicitly the strategy followed) static OLS alphas can be off anywhere

from 5 to 87 percent from a fund’s time averaged alpha and even further off at any one

1One exception is Grinblatt and Titman (1994). The methodology they use avoids a direct comparison
against a specific portfolio, and instead uses an “endogenous” benchmark. However, their technique requires
knowledge of the fund’s actual composition, which may not always be available. Ferson and Khang (2002)
extend the technique to condition the portfolio betas on exogenous variables such as macro economic data.

2See Breen, Glosten, and Jagannathan (1989) for an empirical estimate of the potential value of such
actions, and Mamaysky and Spiegel (2002) for a theoretical treatment.

3Several recent papers have adopted this technique for performance evaluation. For example, Christo-
pherson, Ferson, and Glassman (1998), and Blake, Lehmann, and Timmermann (2002).
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moment in time.4 These results imply that previous performance estimates may be very

sensitive to the security classes a fund trades in. In addition, they show the potential value

of explicitly allowing for managerial portfolio reallocation not only on publicly observed

variables as in FS, but also on unobserved factors.

Because the Kalman filter model yields dynamic factor estimates it not only provides

parameter estimates but also information about a fund’s trading style and its impact on

returns. Among the questions that can be addressed is how and if managers adjust their

portfolio’s market risk in reaction to their own or the market’s past returns. The estimates

derived here indicate that twice as many funds increase than decrease their fund’s market

risk in response to their own fund’s past positive returns. In a sense, managers who have

recently seen high market adjusted returns tend to “double down.” However, while managers

may respond in a variety of ways to their own fund’s past returns the data does not indicate

that it makes any difference to their expected four factor risk adjusted returns. In contrast,

funds are about evenly split in their reaction to high overall market returns between those

that increase or decrease their market risk exposure. However, while the response is evenly

split the returns are not. Those that act as market return contrarians produce significantly

better four factor risk adjusted returns than those using other strategies.

Another style issue examined here is the manner in which funds produce non-zero alphas.

This can occur either because a manager is good (or bad) at selecting among stocks or because

he is good (or bad) at anticipating market returns. The former is typically called selection

ability and the latter timing ability. The Kalman filter’s statistical output provides a natural

way to look at this issue. Using the model’s estimates fund performance is decomposed into

various types of skills which the paper refers to as “selection ability,” “bull market selection

ability,” and “market timing ability.” For the most part, funds with good in sample selection

ability (whether of the standard or bull market variety) do not show similar out of sample

performance. By contrast, good timers in sample appear to show some skill in this regard out

of sample as well. Papers by Daniel, et al. (1997) and Bollen and Busse (2001) also examine

these issues. The former use the underlying stock holdings and concludes fund managers

possess little in the way of timing ability. The latter use daily data and come to the opposite

conclusion. One advantage of the Kalman filter model is that it provides this decomposition

without using each fund’s underlying stock holdings and is apparently sensitive enough to

detect some degree of market timing ability on monthly data.

While the Kalman filter can adapt itself to time-varying factor loadings does this com-

pensate for the additional computational overhead vis-a-vis a rolling OLS model? As with

the FS model the Kalman filter model does a better job of fitting the data in sample, and

appears to pick up a number of statistical patterns relative to an OLS model with constant

4In contrast, static OLS beta estimates are much more reliable, in that they are never estimated to be off
by more than 8% from their time averaged values. However, the dynamic estimates indicate that at any one
point in time the OLS betas can lie far from their current values. As with the alphas there is considerable
variation across fund types.
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coefficients.5 More importantly, out of sample tests show the Kalman filter model does a

better job of predicting future alphas and betas than the standard OLS model with constant

factor loadings.

The final test in the paper looks at the degree to which conditioning information, as

in FS, adds to the model’s ability to fit the data within sample. Overall, the conditioning

information does not improve the model’s fit (as measured by the R2 statistic). But this is

not true of every fund. The number of funds with significant parameter values somewhat

exceeds that which would be produced by chance. From an economic point of view, these

findings indicate that while some funds condition on the type of macro information tested

here, many do not. For those that do not, the Kalman filter picks up the time variation

in their betas and alphas via estimates of the unobserved factor’s value. The tests in this

paper suggest that perhaps 12% of all mutual funds exhibit investment strategies with some

dependence on the lagged treasury bill rate, and on the market dividend yield. Of course,

the other funds may be conditioning on macro information not included in this paper’s tests,

a possibility which offers intriguing avenues for future research.

The remainder of the paper proceeds as follows. Section 1 derives our empirical specifica-

tion for the dynamic alpha–beta model for portfolio returns. Section 2 derives the alphas and

betas of an OLS regression for a dynamic coefficient, linear model. Section 3 describes the

data used to estimate the model. Section 4 discusses the model’s ability to remove intertem-

poral patterns from the estimated residuals across fund categories. Section 5 examines the

dynamic properties of the estimated alphas and betas. Section 6 presents our decomposition

of OLS alphas and betas for a large cross-section of mutual funds. Section 7 reports out of

sample performance. Section 8 explores the impact of adding macro economic factors like

those used in FS to the model. Section 9 concludes. All proofs are in the Appendix.

1 Statistical Model

Portfolio returns and the returns of those securities which constitute them may behave

in quite different ways. Therefore a model which appropriately describes the returns of

individual securities may poorly describe a portfolio holding those same securities.

If fund managers are to outperform the market on a risk adjusted basis they must receive

some sort of private signal that forecasts returns. To accommodate this one needs to start

with a general equilibrium model of asset returns with asymmetric information such as

Admati (1985). Extending the basic setting to a multiple period framework, from a particular

fund manager’s perspective the return on asset i can be described by a linear factor model

5This empirical result holds whether one estimates the OLS model on the entire data set or that contained
within a rolling window. Also, note that the in sample tests presented here offer the OLS model a better
chance than would a direct comparison with FS. By its very nature the FS model employs data that the
OLS model does not. Here comparisons between the Kalman filter estimates and those of the OLS model
use exactly the same predictive data.
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with constant factor loadings:

rit − rf = αit + βi
′(rmt − rf ) + εit. (1)

The risk adjusted abnormal return αit depends upon the current value of the manager’s

signal. Thus, it should technically include a parameter indicating the signal upon which

it is based. However, for notational simplicity it is not displayed here. Under the null

hypothesis (which will be formally developed later on) the manager’s signal does not forecast

stock returns and the α terms are zero. Here βi is an n by 1 vector of factor loadings, rm

the corresponding per period factor returns, rf the risk free rate, and ε a random shock.

Throughout this paper it is assumed that the errors are normally distributed and independent

over time. Note that while returns change over time, their loadings on the economy wide

risk factor returns (here, the rm’s) remain constant.6 If the rm’s are known, estimates of

a security’s loadings on the economy’s risk factors can be obtained by regressing security

returns on factor returns.

Even when equation (1) accurately describes each individual stock’s return it may not

extend to a portfolio of such stocks. Consider a fund that holds securities A and B. At any

time t the portfolio’s return (rP ) equals

rPt = wAtrA + wBtrB

where the w terms equal the fraction of the portfolio invested in each asset. Using this, and

equation (1), it is straightforward to see that portfolio returns are also linear in the factor

returns rit’s. However, unless the returns on A and B at time t happen to be the same,

the portfolio weights for securities A and B will be different at time t + 1 than they were

at time t. Thus, while time t + 1 portfolio returns remain linear in the ri,t+1’s, the weights

attached to each factor’s return will have changed from the time t weights. Clearly, even in

this simple example, security returns and a portfolio’s returns may not be well described by

the same model especially a linear factor model with constant coefficients.

Now suppose one wishes to estimate the alphas and betas of the above portfolio, rather

than the alphas and betas of its constituent securities. In this case, an OLS estimate of the

portfolio’s loadings on the ri’s can produce answers that are quite far from the portfolio’s

true loadings on the factor returns in question.

To address the above problem a statistical model needs to allow explicitly for variation

in the fund’s portfolio weights over time. A portfolio’s time t return equals the weighted

6Many studies like those of Ferson and Harvey (1991 and 1993), and Ferson and Korajczyk (1995) question
whether or not individual security loadings are constant. However, this will not qualitatively alter this paper’s
conclusion that fund loadings change over time. If anything such underlying intertemporal variation in the
underlying securities will only add to the importance of allowing for time variation in the mutual funds
themselves.
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average of the returns from the underlying I assets:

rPt − rft = w′
t−1

(
αt + β ′(rmt − rft) + εt

)
− kt

= αPt + β ′
Pt

(
rmt − rft

)
+ εPt, (2)

where the variables αP , βP , and εP are defined by

αPt ≡ w′
t−1αt − kt, (3)

βPt ≡ βwt−1, (4)

εPt ≡ w′
t−1εt, (5)

with w, α, and ε, the I by 1 vectors containing their corresponding firm specific elements

wi, αi, and εi. The β term represents a matrix with I columns containing the vectors βi.

Finally, k equals the transactions costs incurred by the portfolio, which for mathematical

tractability are assumed to be proportional to the funds under management. In (2), if the

CAPM or APT holds period by period, then αt equals a vector of zeros for all t and all

managers. If a model such as Admati’s (1985) holds then individual managers may use their

information to produce non-zero alphas. Thus, again, one should keep in mind that the α

terms are manager and signal dependent.

Equation (2) is the main focus of the econometric analysis in this paper, and as such,

deserves some discussion. Thus far two important assumptions have been employed:

1. The evolution of portfolio wealth must satisfy an intertemporal budget constraint.

2. All stocks have constant betas.

These two assumptions together imply that portfolio returns will satisfy a linear factor model,

but with time-varying coefficients, and with a heteroscedastic innovation term. This suggests

that linear-factor, constant-coefficient models for portfolio returns, a common paradigm for

empirical work in asset pricing, are misspecified.

Absent information about a fund’s holdings and the alphas and betas of the underlying

assets, the empirical system in (2) through (5) cannot be estimated. However, these problems

can be overcome by adding some additional assumptions. As will be shown, with the proper

specification of the dynamics governing a fund’s portfolio weights, knowledge of the individual

weights, alphas and betas is not necessary.

Let Ft represent some signal (normalized to have an unconditional mean of zero) that

the fund uses to trade. Once again, for notational simplicity, the subscript identifying the

signal’s recipient is suppressed. Assume that it follows the AR(1) process (though more

general specifications are possible)

Ft = γFt−1 + ηt (6)
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through time. The γ ∈ [0, 1) coefficient measures the degree to which the signal’s value

persists over time, and ηt represents an i.i.d. innovation.

If the signal F has value then one expects it to influence both the fund’s present holdings

and future expected stock returns. Statistically, these dual impacts can be represented by

assuming that the portfolio weights follow:

wit = w̄i + liFt, (7)

and that stock alphas equal

αit = ᾱiFt. (8)

Here w̄i represents the steady-state fraction of the strategy invested in a given security.

Alternatively, w̄i can depend upon any set of observable variables, in which case it may be

time dependent. The variable li is stock i’s loading on a common unobservable factor F̃t

which shifts the portfolio weights from their steady-state values. This formulation holds

exactly under Admati’s (1985) model and is generally consistent with Blake, Lehmann,

and Timmermann’s (1999) empirical finding of mean reversion in fund weightings across

securities among UK pension funds. Finally, ᾱi represents the degree to which a stock’s

expected return is predictable by the signal F . If the signal has no value then all of the ᾱi

terms equal zero. Also, the present specification insures that the steady state alpha values

equal zero.7

Now use (3), (4) and (8) in the above formulation. Also, define w̄, l, and ᾱ as the I by

1 vectors with elements w̄i, li, and ᾱi respectively, and one finds that

αPt = w̄′ᾱFt−1 + l′ᾱF 2
t−1 − kt

= ᾱP Ft−1 + bP F 2
t−1 − kt, (9)

for the appropriately defined ᾱP and bP . Similarly, one has

βPt = βw̄ + βlFt−1

= β̄P + cP Ft−1, (10)

for the appropriately defined β̄P and cP .

The ᾱi, ᾱP , and bP each play a unique economic role in the analysis. In equation (8),

ᾱi �= 0 implies that a given fund’s signal has a systematic relationship with the instantaneous

excess returns of individual stocks in an economy. Therefore, one can add an indicator

7Beyond the asset allocation case outlined above, the modeled interaction between the signal Ft and
security alphas can also accommodate market timing strategies. Imagine a fund manager that uses
macroeconomic information to move in and out of the market index. In this case Ft equals the current
value of the macroeconomic variable, ᾱ1 its impact on next period’s market return, and l1 the fraction of the
fund the manager invests in the market (with 1-l1 invested in the risk free asset). Within this setting a high
value of Ft implies an expected period t + 1 market return that the manager’s information indicates will be
higher than the overall market expects. While testing for this type of timing behavior is possible within the
model’s framework such tests are not conducted here.
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variable to the ᾱi that indicates the coefficient is both stock and fund dependent. The point,

though, of having non-zero ᾱi’s is to allow the fund’s αP to systematically depend on the

fund’s trading strategy F . This dependence comes about through a linear term, the ᾱP and a

quadratic term bP . There is no constant alpha term in αP because in the long-run all alphas

are assumed to be zero (their unconditional value). The linear term ᾱP simply measures the

degree to which a given fund’s strategy is actually related to the instantaneous alphas of

individual stocks. Since F can be positive or negative, a non-zero αP does not indicate either

under- or overperformance. The quadratic term bP , on the other hand, does indicate exactly

this – it measures the degree to which a fund is able to systematically go long (short) positive

(negative) alpha stocks.8 Note that this is a sufficient, though not necessary, condition for

a given fund to exhibit occasional (as opposed to systematic) risk-adjusted outperformance.

A weaker and necessary condition is that a fund’s αP is persistent and occasionally positive

(which obtains when ᾱP �= 0 and when γ > 0).

The empirical model derived above is very flexible. For example, if one assumes that

ηt has a variance of zero, or that γ equals zero, the FS specification can be reproduced.

Importantly, however, even absent these assumptions the model can still be estimated. Also

note that nowhere does the econometrician need data on the actual portfolio weights used

to produce the observed returns.9

Equations (2), (6), (9), and (10) can be estimated via extended Kalman filtering. To

obtain the observation equation, use (9), and (10) in (2) to eliminate αpt and βpt and produce:

rPt − rft = bP F 2
t−1 − kt + β̄P

(
rmt − rft

)
+

(
āP + cP

(
rmt − rft

))
Ft−1 + εPt (11)

after some minor algebra. Due to the F 2
t−1 term standard Kalman filtering techniques will

fail, as the conditional variance of rPt − rt will no longer be independent of the estimated

values of Ft−1. The standard solution is to use a first-order Taylor expansion around the

conditional expectation of Ft−1, or

F 2
t−1 ≈ 2 E

[
Ft−1

∣∣∣rP,t−1 − rf,t−1, Ft−2

]
Ft−1 (12)

−E

[
Ft−1

∣∣∣rP,t−1 − rf,t−1, Ft−2

]2

to replace the F 2
t−1 term in equation (11) where E is the expectations operator.10 Equation

(6) then forms the state equation.11 Note that the vector cP has n elements (one for each

8Intuitively, bP can be thought of as the covariance between a fund’s security weights (wt) and the
underlying security alphas.

9Of course, other modeling choices are possible, and this is an interesting area for future research. For
example, some portfolio strategies lead to known security weightings. In such cases the portfolio alpha and
beta in (3) and (4) may be calculated directly, as long as alphas and betas of individual stocks are known.

10For details about extended Kalman filtering see Harvey (1989).
11The estimated dynamic Kalman filter model bears some philosophical resemblance to the Bayesian

approaches found in Baks, Metrick and Wachter (2001), and Pástor and Stambaugh (2002b). In those
papers, the authors wish to investigate optimal fund holdings across investors with different priors regarding
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risk factor) but only n-1 degrees of freedom. Thus, in the scalar case (as in the CAPM) it

can be normalized to one when estimating the model. In the case where n is greater than

one, at least one element’s value must be fixed or some other normalization must be applied.

The other fact needed for estimation is that the variance of εpt, conditional on time t − 1

information, is given by

Vart−1

(
εPt

)
=

I∑
i=1

w2
i,t−1Vart−1

(
εit

)
.

This follows from (5), and from the fact that all εit’s are independent.

The system specified in equations (6) and (12) imbeds an important timing convention.

The alphas and betas which determine time t returns are known at time t − 1 (assuming

that kt is deterministic). Therefore any covariance between a portfolio’s time t alphas and

time t market returns indicates that the portfolio manager makes investment decisions at

time t− 1 which successfully anticipate market returns at time t. The same is true for time

t betas and time t market returns. Whether a portfolio manager has such ability or not will

affect the interpretation of our results in later on.

2 Problems with Constant Coefficient Models

If funds dynamically adjust their portfolio holdings in response to changes in the economy

then estimates from a constant coefficient model will generally be systematically biased. As

it turns out these biases are readily quantifiable. Roughly, the estimated OLS coefficients

can be decomposed into a number of elements which can themselves be estimated. Thus, it

is possible to determine just how biased a particular OLS coefficient may be, and what part

of the dynamic structure is responsible. The analysis that follows is similar to that in both

FS, and Grinblatt and Titman (1989a) but is reproduced here to accommodate this paper’s

particular setting and notation.

Assume that the return generating model for a given strategy is the following

rPt − rft = αt + βt (rmt − rft) + εt. (13)

One example of a structural derivation of such a specification is in the previous section of this

paper. However, for the analysis which follows, no assumptions about the dynamics of the

above coefficients and error term are necessary, other than the usual regularity conditions

needed for the law of large numbers.

Now, assume that for data generated using equation (13), one estimates a single factor,

constant coefficient, linear model as follows

rPt − rft = α̂ + β̂ xt + ηt, (14)

managerial ability. As with this model, past data is used to form forecasts of future performance. However,
the focus of the present model is on inferring the dynamics of mutual fund holdings, rather than on identifying
skilled or unskilled managers.
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where xt ≡ rmt − rft. The following proposition shows that the above coefficient estimates

converge asymptotically to expressions which depend on the co-dynamics of αt, βt, and

(rmt − rft) in (13).

Proposition 1 Using data originating from equation (13), ordinary least squares estimates

of the regression in (14) converge in probability to the following limits:

plim(α̂) = E[αt] − E[xt]

Var(xt)

(
Cov(αt, xt) + Cov(βt, x

2
t )

)

+

(
1 +

(E[xt])
2

Var(xt)

)
Cov(βt, xt), (15)

and

plim(β̂) = E[βt] +
1

Var(xt)

(
Cov(α(t), xt) + Cov(βt, x

2
t )

)

− E[xt]

Var(xt)
Cov(βt, xt). (16)

The proof is in the Appendix. Note as well that the proof easily generalizes to the multi-

factor case.

2.1 Interpreting the Covariance Terms

The covariance terms that make up the OLS alphas and betas have natural economic in-

terpretations. A fund’s “selection ability” enters through the E[αt] term. One can think

of this as the static part of the fund’s alpha (denoted as αstatic from here on). The αstatic

variable represents the alpha parameter typically sought in an OLS regression that attempts

to decompose a fund’s returns into factor loadings and an ability to outperform (or underper-

form) the market on a systematic basis. Another aspect of a fund’s selection ability comes

in via the cov(αt, xt) term. Formally, it represents the covariance of a fund’s alpha and

the market return. This covariance, however, comes about even though the fund does not

necessarily alter its market risk exposure (which is captured in the cov(βt, xt) and cov(βt, x
2
t )

terms). Thus, these funds seem to be good at selecting stocks that do particularly well in

up markets. As such, for expository purposes, this term will be referred to as “bull market

selection ability.” Finally, the cov(βt, xt) and cov(βt, x
2
t ) terms represent a fund’s ability

to time the market by increasing (decreasing) its beta in anticipation of high (low) market

returns. Intuitively, if there exists a function relating a fund’s beta to the market return

these two values represent a second order Taylor series approximation of that function. From

the point of view of the fund’s actual operations, a high covariance estimate implies that

it increases its market risk exposure when the market return is unusually high. These two

terms thus represent a fund manager’s “market timing ability.” Later sections of the paper

decompose the estimated OLS alphas and betas into their constituent parts and make use

of these economic interpretations to understand their sources.
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3 Data Description and Model Estimation

Monthly mutual fund data from 1970 to 2000, as supplied by CRSP, is used to estimate

the model. A fund is only included if it has more than 48 months of return data. Some of

the tests in the paper use data from Morningstar. For those tests, a fund must also have

a Morningstar assignment into one of nine categories as of the end of 1999. The categories

used in this study (the set of domestic equity funds) can be found in Table 1. These criteria

leave a total of 572 funds with which to conduct the estimation. Other data includes the

market factor returns, T-bill returns from Ken French’s web site, 12 and the CRSP stock

decile returns.

The empirical model also uses the dividend yield on the market which is constructed

using a three step process. First, the dividends from the previous twelve months of the

CRSP value weighted index is divided by the “with dividends” index level. Second, the

same is done using the “without dividends” index level as the divisor. Third, the result from

the second step is subtracted from the first to get the dividend yield.

Most of the tables and graphs presented here derive from estimating the dynamic model

discussed in Section 1 within a single factor structure. Unless otherwise stated, estimates

are conducted under the assumption that the w̄i are constants.

A note is in order at this point about the use of Morningstar data. Since requiring that

a Morningstar assignment for a given fund should exist as of 1999 introduces survivorship

bias into the sample, care must be taken as to the tests that use this classification and those

that do not. For analyses that seek only to characterize mutual fund alphas and betas, or

look at model comparisons (but not from a performance point of view), and hence are not

sensitive to survivorship issues, the Morningstar classification is used in order to provide

further insights into the results. For those tests where statements about performance of a

given strategy are made, no classification into Morningstar categories is done. Hence these

tests use the entire CRSP mutual fund sample, thereby maintaining to the greatest possible

degree unbiasedness of the data, and rendering the results comparable with those of other

studies.13

4 Detecting and Tracking Dynamic Factors

Table 1 breaks down the funds by Morningstar category. For each category the last column

displays the number of funds for which the Kalman filter estimates diverge from the static

OLS estimates. In what follows these are referred to as “dynamic funds” in that they appear

to employ strategies that produce time-varying alphas and betas. Note that within each

category the vast majority of funds fall within the set of dynamic funds. This should not be

too surprising. Fund managers are generally active traders, and as the discussion in Section 1

12http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
13See Elton, Gruber and Blake (2001) for a discussion of biases in the CRSP mutual fund database.
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shows such activity will produce time-varying return parameters.

Table 2 reports the results of a CUSUMSQ (see Harvey (1989)) test on the residuals of

each portfolio. Under the OLS specification the test has little difficulty detecting time series

patterns within the residuals. Fully 97% of all funds fail the test. Relatively, the Kalman

filter model does a much better job. For those cases in which the dynamic model does not

converge to the OLS model the test cannot reject the hypothesis that the errors for about

31% of the funds have been purged of their time series patterns. In total this means that

after using the Kalman filter 29% of the funds have had their residuals sufficiently washed

of their intertemporal patterns that the test can no longer detect anything.

Looking across categories the model’s ability to purge the errors of any time pattern varies

somewhat. From a low of 18% in category 18 (large value) to a high of 45% in category 16

(large blend). A chi-squared test rejects the null hypothesis that the percentage differences

across categories are due to chance. This rejection indicates that a fund’s investment objec-

tives will affect the model’s statistical performance. However, there does not appear to be

a pattern across the market capitalizations of the portfolio’s target firms. Rather it is those

funds that invest in large and mid-cap value stocks that seem to give the model the greatest

problems. Across the other size and objective categories the results are fairly uniform.

5 Alpha and Beta Dynamics

In many studies such as Gruber (1996), Carhart (1997), and FS the estimated alphas tend

to be negative. However, those alphas include the fund’s expenses and thus represent what

might be called the “investor’s alpha.” Here, as in Grinblatt and Titman (1989b) fund

expenses and performance alphas are estimated separately. Under the model, a fund incurs

expenses at an estimated rate k. In exchange, the fund manager generates an informative

signal F that produces occasional excess returns by allowing trades based upon a stock’s

sensitivity to the signal via the parameter ᾱ. Table 3 displays the model’s average parameter

estimates across Morningstar categories. For most categories the estimated expenses are

about 1.5% per annum (a monthly k of 0.0013). Given industry filings this seems to be

about right, since expenses in this case include both management fees and transactions

costs.

The fact that the estimated ᾱP ’s are non-zero suggests that stocks in the economy have

non-zero ᾱi’s. This indicates that, in general, funds choose trading strategies which are

related to the instantaneous alphas of stocks in the economy. This, together with the fact

that the γF ’s are non-zero, suggests that there is some hope of finding funds that are currently

in an “outperformance” period (recall the discussion of Section 1). From equation (9), note

that bP measures the degree to which funds choose trading strategies that systematically

profit from variation in security alphas over time. Table 3 suggests that the average fund

within each category has no ability in this area. The two exceptions to this are small growth

funds (category 39), which overall have some ability to spot high alpha stocks, and small
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value funds (category 40) which seem to have the unfortunate ability to systematically go

long negative alpha stocks.

Table 3 also provides an estimate of the degree to which fund betas vary over time.14

Some algebra shows that the estimated standard deviation of beta equals
√

σ2
F /(1 − γ2

F ).

These values range from a low of 0.18 to a high of 0.41 per month, and average .27. For a

typical fund with an intertemporal average beta of one, this implies that in any one period

the 95% confidence interval for its beta lies within .5 and 1.5. Empirically then, trading

appears to induce economically significant time variation in mutual fund betas. If anything,

one’s intuition might indicate that the variation is too large, but consider that almost half

of all funds have documented records of moving at least 20% of their assets (over the time

period from 1991–1999) from stocks into bonds, and vice versa (Mamaysky and Spiegel

(2002)).15 Also, note that the drift in the fund’s beta is not a random walk, as the signal is

assumed to mean revert. The estimated persistence parameter (γF ) takes on values between

0.12 and 0.35 in the data. These rather low estimates indicate that funds deviate from their

baseline portfolio betas for only a few months at a time.

Along with the Morningstar categories a natural division across funds is by their response

to either their own portfolio’s or the market’s past returns. Those employing a “momentum

style” can be expected to increase their market risk exposure in response to high past returns

while “contrarians” should decrease their market risk exposure. Because the Kalman filter

model estimates each fund’s beta over time it is particularly well suited to the task of

identifying such reactions. Table 4 reports the results from regressing each fund’s current

market beta on either the market or the fund’s own lagged return. It shows that the model

can identify with 95% confidence that just under 10% of all funds act as market contrarians

and just under 8% as market momentum traders. These figures are significantly different

from those one expects via chance at any reasonable level.16 Not too surprisingly, given

the relatively similar number of funds identified as either market momentum or contrarian

traders, the hypothesis that a fund is equally likely to follow either strategy or that the

distribution across categories is identical cannot be rejected.17 However, while funds are

about equally likely to fall into either category their out of sample returns differ significantly.

The market momentum traders earn a statistically insignificant negative four factor risk

adjusted out of sample return. In contrast, the contrarians earn a statistically significant

14Since this is a one factor model, the value of cP has been set to one as a normalization.
15Such behavior seems consistent with an attempt to implement something like Breen, Glosten, and

Jagannathan’s (1989) algorithm for optimally shifting between treasury bills and stocks. When done properly
they show that such a strategy can potentially add as much as 2% to a fund’s annual returns.

16Here market momentum and contrarian trading strategies refer only to a how a fund adjusts its exposure
to market risk in the current period in response to the previous period’s market return. They have no other
connotations. Thus, it is possible that a market momentum fund reacts to a high previous period market
return by reducing its cash position and then purchasing a set of stocks it did not previously hold. This is
not a strategy that would take advantage of the well known “momentum anomaly’ that seems to influence
individual stock returns.

17The χ2 statistic with 8 degrees of freedom from the Kruskal-Wallis test equals 13 which is not significant
at even the 10% level.
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12bps per month. This seems to indicate that at least some funds can time the market to

some degree and offers some insight into the strategy they use to do so.

Table 4 also shows that for many funds their own past returns influence their current

market risk exposure. However, unlike the results discussed above the funds are no longer

split evenly between momentum and contrarian strategies. With 95% confidence the model

identifies about 23% of all funds as using a momentum strategy with regard to their own

returns, and about 12% as contrarians. Both of these figures are statistically different from

what one might expect to get by chance and they are also statistically different in size from

each other. Essentially, more fund managers increase their market exposure in response to

high returns in their own fund than decrease it. However, while funds may vary in their

response to their own past returns no group seems to provide its investors with any overall

risk adjusted outperformance.18

6 Decomposing Alphas and Betas

As discussed in Section 2 if the dynamic model accurately describes mutual fund return dy-

namics then the OLS parameter estimates are actually an agglomeration of several covariance

terms. If so, then this provides a mechanism for checking the model. By using the equations

in Proposition 1 one can create “synthetic” OLS regression estimates by properly summing

up the covariance of the dynamic alpha and beta estimates with the market portfolio. The

resulting values can then be compared to what one obtains by actually running an OLS

model on the data. If the dynamic model properly describes the data, then the synthetic

and actual values should be fairly close to each other. Table 5 reports the results from this

experiment. Column six shows that in no category does the average absolute percentage dif-

ference between the synthetic and the actual OLS parameter estimate for alpha exceed 6%

and it is generally under 1%. For beta every category displays an absolute average difference

under 1% (column 8).

Another test of the Kalman filter model is the degree to which it can better explain

the data relative to both a standard and rolling OLS model. The standard model produces

parameter estimates based upon a fund’s entire history. The rolling OLS model uses only the

48 months of data prior to any particular date. To calculate an R2 statistic for the rolling

OLS model only the final period’s error term is used. This gives the OLS model a natural

edge since the squared errors come from finding the set of parameter estimates that best fit

only the last four years of data, while the Kalman filter parameter estimates are forced to

fit the entire time series.

18The propensity of funds to act as momentum rather than contrarian traders with regard to their own
past returns shows statistically significant variation across categories. The Kruskal-Wallis test produces a χ2

statistic of 22 with eight degrees of freedom. This is significant at the 1/2% level. However, looking across
the categories it is difficult to find any strong economic interpretation for this result. For example, the two
most likely groups to produce own-return momentum traders are the large capitalization value fund and the
mid-capitalization growth funds.
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Columns four and five from Table 5 show that the dynamic model generates a higher

R2 relative to both the ordinary and rolling OLS model by 0.09 to 0.30 depending upon

the category. Thus, in every case the Kalman filter model, with its time-varying alphas and

betas, does a better job of tracking fund returns. While this is clearly not conclusive, since

the Kalman model may be over fitting the data, later tables provide out of sample tests

(where over fitting is obviously penalized) with similar results.

Table 6 breaks down the OLS alphas into their constituent parts based upon equations

(15) and (16), and as discussed in Section 2.1. Table 7 shows the percentage contributions

of each component to the OLS alpha. Recall from (15) that the OLS alpha is composed of

four components. The percent contribution for component i is given by

Percent Contribution ≡ |ci|
|c1| + |c2| + |c3| + |c4| .

where ci is the ith component. Panel A reports results from first aggregating the cross-section

of funds to compute each component, and then computing the percent contribution using

the absolute value of the cross-sectional means of each component. Panel B computes the

percent contribution at an individual fund level, and then takes an average of these for the

category level numbers.

Note from Panel A that the selection ability measure (the static part of the dynamic

alpha) can account for as little as 13% of the estimated OLS value. For categories 38 (small

blend), 39 (small growth), and 40 (small value) selection ability accounts for under 50% of the

estimated OLS alpha. This implies that OLS estimates for small capitalization fund alphas

may be very misleading. Along the same lines the OLS model’s parameter estimates become

unstable as the fraction of the dynamic alpha explained by selection ability declines. The

Spearman rank correlation between the absolute value of the OLS t-statistics in column one

of Table 6 and column two and the αstatic percentage in Table 7 equals .82 (t-statistic of 3.74).

This implies that the OLS alphas become more reliable (have higher t-statistics) when funds

use strategies that produce stable alphas (have high αstatic percentages). Using the standard

deviation of the OLS alpha estimates instead of the t-statistics produces a similar result; a

rank correlation of -.77 and a t-statistic of -3.16. Thus, as the αstatic percentage increases

the standard deviation of the estimated OLS alpha goes towards zero. Overall this indicates

that the poor intertemporal stability of OLS alpha estimates may derive in part from the fact

that the funds in question use dynamic strategies and this leads to misspecification errors

when a static statistical model is used to produce estimates.

What seems to drive the difference between the OLS and dynamic alphas is each fund’s

market timing ability (the covariance in each fund’s beta with the market) and only to a

much smaller degree bull market selection ability (the covariance between the fund’s alpha

and the market). The market timing ability accounts for 21% or more of the estimated OLS

alpha in half the categories. In contrast, the median contribution of bull market selection

ability is only 5.5%. Within the static OLS model it thus appears that because of the

dynamic strategies employed by funds the induced time variation in beta leads to erroneous
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conclusions about performance (alpha).

Table 7’s Panel B produces similar conclusions to those of Panel A. The primary change

is that looking at the component contributions this way (i.e. first computing the percent

contribution at the fund level, and then aggregating into categories) increases the importance

of the fund beta with the squared market return (the second order term in the Taylor series

approximation). This increase generally comes at the expense of the contribution made by

the covariance between a fund’s beta and the market (the first order term). Overall though,

it is the time variation in beta that seems to induce the discrepancy between the estimated

static OLS alphas and the steady-state values of the dynamic Kalman filter alphas.

Table 8 decomposes the OLS beta estimates into their constituent parts. These tables

show that the OLS betas are quite close to the expected value of the dynamic beta. In no

case does the OLS beta differ from the expected value of the dynamic beta by even 10%.

However, this does not mean that month by month the OLS beta equals the fund’s actual

beta, only that the long run averages are the same. As shown in Table 3 column ten, month

by month fund betas exhibit considerable volatility and any long run average value is likely

to be far from the current mark.

Because the Kalman filter model simultaneously estimates the alpha and beta dynamics

it is possible to determine the degree to which one influences the other. Table 9 examines this

issue by sorting funds according to their static alphas (selection ability) by thirds designated

as low, medium, and high and their market timing ability (again in thirds).19 Out of sample

the static alphas do not help forecast future fund returns. More interesting though, is the

comparison across the market timing ability groups. In sample, market timing seems to help

for the low and medium selection ability funds, but not the high selection ability funds. Out

of sample, however, there is evidence that funds with high market timing ability produce

higher returns than those with low market timing ability. The t-statistics range from 1.74

to 1.90 and are all significant at the 10% level.

Table 10, like Table 9, breaks funds down by their ability estimates. This time the

comparison is with each fund’s bull market selection ability cov(αt, xt) and market timing

ability cov(βt, x
2
t ) and cov(βt, x

2
t ). Remarkably, in sample there is little variation in the

estimated returns across categories except for those funds with low scores on both ability

measures. Out of sample, however, it again appears that funds with high market timing

ability estimates do well while other funds do not. Bull market selection ability appears

to play no role in a fund’s future performance. This reinforces the conclusions from earlier

tables. Some funds apparently adjust their beta in anticipation of future market returns;

those that are successful produce higher returns out of sample than their counterparts and

as was shown earlier also generate less accurate in sample OLS alpha estimates.

19Note that the Morningstar categories are not used in this table and thus the out of sample tests do not
suffer from survivorship bias. The out of sample data set is further described in Section 7.
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7 Out of Sample Tests

The tests presented so far have primarily been within sample. As Ghysels (1998) shows even

if a model with time-varying risk factors performs well in sample, it may not outperform

simpler models out of sample. Since both the simple time invariant and more complex

dynamic models are likely to be misspecified it is an empirical question as to which will work

better. The out of sample tests in this section are designed to answer this question, and

as will be shown the dynamic Kalman filter model often produces superior out of sample

predictions.

For a fund to be included in these out of sample tests, that fund must included in the

CRSP mutual fund database and have an ICDI objective of AG, BL, GI, IN, LG, PM, SF

or UT. A fund then stays in the sample until the end of the sample period in 2002, or until

it ceases to exist. Hence, all tests in this section control for survivorship bias. Furthermore,

note that none of the results in this section use Morningstar classification data, and therefore

are free of the survivorship bias that such classifications can introduce (see the discussion in

Section 3).

In the out of sample tests each model is asked to forecast each fund’s upcoming alpha

and beta in each period. A portfolio for the period with a predicted zero alpha and zero

beta is then formed by going long the fund, taking countervailing positions in the underlying

factors, and then subtracting the predicted alpha value. By repeating the above procedure a

time series of returns from 1970 to 2002 is produced. This return sequence is then regressed

against the appropriate factor model. A model without any forecasting error should produce

portfolios that yield excess returns (alphas) and factor loadings (betas) of exactly zero. Pos-

itive regression parameters indicate that a model has underestimated a value, while negative

regression parameters imply the opposite. Table 11 reports the resulting distributions from

bootstrapping the regression results 1,000 times. Each bootstrap samples the pool of funds

with replacement prior to conducting the calculations.

Table 11 Panel A displays the distribution of the resulting excess returns (alphas). Ideally,

each model should produce a nearly mean zero error and encompass zero within as small a

confidence interval as possible. Of the four models tested only the one factor Kalman model

meets the latter criteria. Thus, if the goal is to produce an unbiased forecast of a fund’s

alpha this model appears to provide the best performance. By contrast, the one factor OLS

model produces portfolio returns with a 95% confidence of 3.72bps to 7.29bps (basis points)

per month; indicating that it underpredicts fund alphas. For both the four factor OLS and

Kalman filter models the results are reversed. In these two cases the 95% confidence intervals

are entirely negative, implying that they tend to overpredict fund alphas. Between the four

factor Kalman and OLS models, the four factor Kalman model has a median return closer

to zero and a 90% confidence interval that is also closer to zero. The only place in the

distribution where the OLS model appears to be superior is at the fifth percentile. Here its

return is somewhat closer to zero: -5.00bps versus -5.28bps for the Kalman filter model. This

indicates that the four factor Kalman filter model is somewhat more likely to produce a large
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overestimate of a fund’s alpha than is the four factor OLS model. Perhaps one should expect

this from a relatively nonlinear model but the error is not symmetric. At the ninety-fifth

percentile the Kalman filter’s return is much closer to zero than the OLS model’s return.

Here the OLS model yields an error of -2.59bps versus only -1.25bps for the Kalman filter

model. The implication is that the Kalman filter model is much more likely than the OLS

model to produce a very small overestimate of a fund’s alpha. Thus, the four factor Kalman

filter model appears to be the more accurate prediction tool from the tenth percentile and

up in the return distribution.

Table 11 Panel B reports the bootstrapped distribution of the “return weighted beta

error.” This is constructed by multiplying the factors estimated on the out of sample pre-

dicted zero-alpha zero-beta returns by each factor’s average value over the sample period

and adding the products together:

return weighted beta error =
∑

i

β̂ir̄i. (17)

In this equation β̂i is the estimated value of factor i from the regression, and r̄i the factor’s

average return during the sample period. This metric is designed to give greater weight to

those factors which if misestimated will yield the largest systematic errors regarding a fund’s

predicted performance. The closer a model comes to producing return weighted beta errors

of zero the better it is at predicting a fund’s overall future factor risks and returns.

Table 11 Panel B shows that each of the single factor models produces a nearly identical

return weighted beta error distribution. Both, however, are biased towards negative values

and neither has a 95% confidence interval that covers zero. This implies that in both cases the

market betas are overestimated and thus the “zero beta” portfolios are in fact over hedged.

In contrast to the single factor models, the four factor OLS model has the opposite problem

as evidenced by the fact that its 95% confidence interval is entirely positive. Thus, this

model appears to systematically underpredict a fund’s factor loadings, leading to portfolios

that are under hedged. The only model that encompasses zero within the 95% confidence

interval is the four factor Kalman model. If one looks at the median values in absolute terms

the best performing models are the two Kalman models and the one factor OLS model.

These three models yield median errors with absolute values between 0.62bps and 0.65bps.

The four factor OLS model’s performance on this metric is relatively poor. Its median value

of 1.64bps is worse (in absolute value terms) than the errors from any of the other three

models at either the fifth or ninety-fifth percentiles. Thus, if one is interested in producing

accurate out of sample beta forecasts it appears that in the one factor case both the OLS

and Kalman models will perform about equally well; however, in the four factor case the

evidence indicates that the Kalman model will lead to smaller prediction errors than the

OLS model.

One might think that the relative out of sample performance of each model might depend

on the variability of a fund’s predicted betas. To test this the bootstrap was repeated on

subsamples divided into groups based upon the variance of each fund’s market beta as
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estimated by the Kalman filter model. Intuitively, one would expect the OLS model to

produce better predictions for the low variance funds and the Kalman filter model for high

variance funds. Overall there appears to be no systematic patterns that are not evident in

Table 11. To conserve space the table from testing this hypothesis is not included here since

the results are primarily negative. As in the whole sample, the Kalman filter model is more

likely to cover zero in its 95% confidence interval for both the out of sample alphas and

return weighted betas in the subsamples that were tested.

8 Comparison with FS Model

As noted earlier the dynamic model developed here has as a special case the FS model.

However, so far all tests have been conducted under the restriction that the fund betas

depend only upon some unobservable factor. This section examines the impact on the

estimated model when observable conditioning information is added. The tests conducted

here use the lagged treasury bill rate and the dividend yield on the CRSP value weighted

index. Thus, the equation for βP,t becomes

βP,t = β + Ft + k1z1,t−1 + k2z2,t−1. (18)

If the observable information improves the model’s predictive ability then k1 and k2 should

differ from zero. To test this the model was run with and without the conditioning variables

on the monthly returns of 437 mutual funds during the period of 1994 to 1998. Asymptot-

ically, the likelihood ratio under the null should follow a chi-square distribution with two

degrees of freedom. In Figure 1, the bars represent the cross-sectional distribution of the

likelihood ratio while the dashed line traces out a chi-square distribution with two degrees

of freedom.

Overall, the null hypothesis that k1 and k2 are zero cannot be rejected at the traditional

1%, 5% or 10% levels. However, for individual funds, the fraction that reject the null

hypothesis at the 1%, 5% or 10% level is 10.8%, 15.7% and 20.3%, respectively. These

numbers are somewhat higher than might be expected by chance, which implies that for

some funds the conditioning information appears to improve the model’s fit.

Table 12 provides further evidence about the richness of the dynamic coefficient model

used in this paper. This table shows the R2’s of fund return regressions on a market index

using OLS, the FS two factor conditional beta model, and the Kalman model of this paper.20

As can be seen, across all fund categories and for the entire sample, the FS model provides an

improved fit relative to the OLS model. Consider however how the R2 statistic changes as one

moves across models. The increase when one goes from the OLS to FS model is approximately

a tenth as large as the increase obtained when moving from the FS to the Kalman model.

20The Kalman model used in these tests does not use the FS conditioning variables and looks only at the
return series of funds and of the market index.
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Based upon this, it appears that the Kalman model can account for a considerably larger

portion of fund return fluctuations than either the OLS or the FS models.

Between this paper, FS, and Grinblatt and Titman (1989a) there is now considerable

evidence that mutual fund managers produce portfolios with time-varying betas, and possibly

alphas, too. Thus, it is clear that portfolio managers are altering their portfolios in response

to some set of economic variables. Why then are k1 and k2 statistically indistinguishable

from zero for most funds? The model has two ways of fitting a fund’s alphas and betas.

One way is to use the observable conditioning variables in some manner. Another is to

use the estimated lagged values of alpha and beta, and then let them change according to

an estimated relationship with an unobserved factor following an AR(1) process. Figure 1

indicates that the latter prediction method often dominates, at least when using the lagged

treasury bill rate and dividend yield on the CRSP value weighted index. One conclusion may

be that a few funds use treasury bill rates and the market dividend yield to help manage

their assets, while most do not. More practically, one can use the model to identify both

those funds with a more macro based approach to asset allocation and the variables they

concentrate on.

9 Conclusion

Even if security returns are well described by a factor model with time invariant loadings, the

same will not be true of an actively traded portfolio holding these securities. This point goes

at least back to Admati and Ross (1985), and Dybvig and Ross (1985). This paper develops

an empirical specification of which the FS setting can be thought of as a special case. In FS,

time-varying factor loadings are estimated via the use of observable macro economic factors.

By contrast, this paper assumes that the portfolio holdings may also vary in response to

some unobservable variable that follows an AR(1) process.

In terms of both fitting the historical data and making out of sample predictions the

empirical generalizations presented here can provide many potential advantages. By assum-

ing an unobservable variable with a known stochastic process drives portfolio holdings, the

econometrician can effectively use past changes in a portfolio’s alpha and betas to predict

future changes. If the underlying assumptions are even approximately true, then one expects

the model to better fit the data. In fact, a number of tests presented here show that it does.

Looking at the historical data, the empirical results show that the dynamic model de-

veloped here does a much better job of capturing mutual fund portfolio returns and factor

loadings than does a static OLS model. This opens up the possibility that managerial over

performance, even if it exists, may be difficult to detect with a static model. In addition,

because the model produces dynamic estimates it is possible to explore what trading strate-

gies seem to be associated with either historical or predictive out performance. One strategy

examined here is whether or not some funds attempt to time the market. The data indicates

that a substantial number of funds do, although with varying success.
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Out of sample tests also indicate that the Kalman filter model has a number of desirable

properties. Bootstrap tests lay out the relative predication errors from the one and four

factor OLS and Kalman filter models tested here. For out of sample alphas the four factor

Kalman filter model has a generally tighter distribution around zero than its four factor OLS

counterpart. When it comes to the out of sample betas the four factor OLS model system-

atically underpredicts them. In contrast, the four factor Kalman filter model encompasses a

zero prediction error within the standard confidence intervals.

Finally, the empirical work examines the degree to which observing macro economic

variables such as treasury bill rates and the dividend yield on the CRSP equally weighted

index helps to fit the data. Indeed, if one assumes that a fund’s trading strategy is driven by

some unobservable variable following an AR(1) process, does observing these two variables

help at all? Statistically, adding these observable variables to the model does not improve

its overall fit, and the estimated coefficients are statistically indistinguishable from zero.

However, for some funds the conditional information is helpful, and this may indicate that

while some fund managers trade on the macro economic variables included in the estimation

process, most do not.
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Appendix

A Proof of Proposition 1

The data generating process is given by equation (13), reproduced here for convenience

y(t) = α(t) + β(t) x(t) + ε(t),

where y(t) ≡ rP (t) − r(t), x(t) ≡ rm(t) − r(t), and where we assume that E[ε(t)] = 0 and

E[ε(t)|x(t)] = 0. Consider the OLS estimate of the following constant-coefficient equation:

y(t) = α̂ + β̂ x(t) + η̂(t).

Define X ∈ R
T×2 and Y ∈ R

T as

X ≡




1 x(1)
...

...
1 x(T )


 Y ≡




y(1)
...

y(T )


 .

Then the OLS estimates α̂ and β̂ are given by

[
α̂

β̂

]
=

(
1

T
X ′X

)−1 (
1

T
X ′Y

)

=
1

v

[
1
T

∑
x(t)2 − 1

T

∑
x(t)

− 1
T

∑
x(t) 1

]
 1

T

(∑
α(t) +

∑
β(t)x(t) +

∑
ε(t)

)
1
T

(∑
x(t)α(t) +

∑
β(t)x(t)2 +

∑
x(t)ε(t)

)

 ,

where

v ≡ 1

T

∑
x(t)2 −

(
1

T

∑
x(t)

)2

.

Note all the summations are over t = 1, . . . , T . We then find that
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T

∑
x(t)2 1

T

(∑
α(t) +

∑
β(t)x(t) +

∑
ε(t)

)

− 1

T

∑
x(t)

1

T

(∑
x(t)α(t) +

∑
β(t)x(t)2 +

∑
x(t)ε(t)

)]

→ 1

Var(x(t))

[
E[x(t)2]

(
E[α(t)] + E[β(t)x(t)]

)
− E[x(t)]

(
E[α(t)x(t)] + E[β(t)x(t)2]

)]

=
1

Var(x(t))

[
E[α(t)]Var(x(t)) − E[x(t)](Cov(α(t), x(t)) + Cov(β(t), x(t)2))

+ E[x(t)2]Cov(β(t), x(t))
]
.
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where the limit is in probability, and follows from an application of the law of large numbers.

Also we have that

β̂ =
1

v

[
− 1

T

∑
x(t)

1

T

(∑
α(t) +

∑
β(t)x(t) +

∑
ε(t)

)

+
1

T

(∑
x(t)α(t) +

∑
β(t)x(t)2 +

∑
x(t)ε(t)

)]

→ 1

Var(x(t))

[
−E[x(t)]

(
E[α(t)] + E[β(t)x(t)]

)
+ E[α(t)x(t)] + E[β(t)x(t)2]

]

=
1

Var(x(t))

[
E[β(t)]Var(x(t)) + Cov(α(t), x(t)) + Cov(β(t), x(t)2)

− E[x(t)]Cov(β(t), x(t))
]
.

Again the limit is in probability, and follows from an application of the law of large numbers.

Q.E.D.
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Table 1: Descriptive statistics. The statistical analysis uses CRSP mutual fund monthly
return data from 1970 to 2000. To be included in this table a fund must have more than 48
months of valid return data, and located in one of nine Morningstar categories as of 1999.
Reported below are the 9 Morningstar categories, the total number of funds within each
category, the mean excess return and Sharp ratio for funds within each category, and the
number of funds estimated to be “dynamic” in each category. A fund is said to be dynamic
if the Kalman filter estimates do not converge to the static OLS estimates.

Category Category Name Total Funds Return Sharp Ratio Dynamic Funds
16 Large Blend 112 0.0096 0.2334 96
17 Large Growth 107 0.0129 0.2559 85
18 Large Value 105 0.0077 0.1961 93
22 Mid-Cap Blend 66 0.009 0.1959 57
23 Mid-Cap Growth 48 0.0133 0.2137 28
24 Mid-Cap Value 36 0.0069 0.1589 31
38 Small Blend 29 0.0085 0.1734 28
39 Small Growth 50 0.0136 0.1938 36
40 Small Value 19 0.0075 0.1662 19

Summary 572 473
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Table 2: Convergence of Kalman filter and the CUSUMSQ residual test. This
table reports the convergence properties of the Kalman filter estimates and the CUSUMSQ
residual test. Each entry lists the number of funds. For funds in the OLS columns the
Kalman filter estimates converge to the OLS parameters. For funds under the DYN column
the Kalman filter estimates diverge from the OLS estimates. The last column lists the total
number of dynamic funds within each category (the sum of the two DYN columns). A
“Q=0” indicates that the CUSUMSQ test accepts the null that the residual has no time
structure, at the 5% level. A “Q=1” indicates that the CUSUMSQ test rejects the null that
the residual has no time structure, at the 5% level.

Cate funds OLS,Q = 0 OLS,Q=1 DYN,Q=0 DYN,Q=1 Dynamic Funds
16 112 2 14 43 53 96
17 107 3 19 33 52 85
18 105 0 12 17 76 93
22 66 4 5 21 36 57
23 49 2 19 12 16 28
24 36 2 3 6 25 31
38 29 0 1 6 22 28
39 50 3 11 8 28 36
40 19 0 0 4 15 19

SUM 573 16 84 150 323 473
Percentage 100 3 15 26 56 83
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Table 3: Estimation of a one-factor model. This table reports the parameters estimated
from the following model: rP (t)−r(t) = −k+bP F (t−1)2 + β̄P (rm(t)−r(t))+(rm(t)−r(t)+
ᾱP )F (t − 1) + εP (t), where F (t) = γFF (t − 1) + ηF (t). Here rm(t) is the market portfolio’s
return. β̄P is the static exposure of the portfolio to the market excess returns. σ2

ε is the
variance for εP (t), and σ2

F is the variance for ηF (t). In the last column, σβ is the standard

deviation of beta (σβ =
√

σ2
F /(1 − γ2

F )). For each category of funds, the first line reports
the cross sectional mean for the estimated parameters while the second line reports the cross
sectional T-ratio for the mean. The whole system is estimated using an extended Kalman
filter.

Category −k β̄P γF σ2
ε σ2

F ᾱP bP σβ

16 mean -0.0008 0.9332 0.3446 0.0001 0.0348 0.0327 0.0746 0.20
T ratio -3.2913 67.6583 8.7938 7.9700 5.1765 3.8792 0.7357

17 mean -0.0008 1.0909 0.3251 0.0002 0.0295 0.0778 -0.0236 0.18
T ratio -3.2203 65.0044 7.9177 7.8602 7.2951 8.9236 -0.1902

18 mean -0.0013 0.8467 0.3475 0.0001 0.0316 0.0696 -0.2073 0.19
T ratio -3.9877 63.9289 8.8629 8.7819 7.6943 7.8703 -1.8951

22 mean -0.0022 0.9279 0.3486 0.0003 0.0750 -0.0026 -0.0155 0.29
T ratio -5.1357 40.6962 6.4198 11.7703 3.7868 -0.1993 -0.1168

23 mean 0.0004 1.1303 0.3294 0.0004 0.0702 0.0538 0.2342 0.28
T ratio 0.7450 23.4796 5.1599 6.6534 4.7233 3.3583 1.2607

24 mean -0.0016 0.8574 0.4041 0.0004 0.0517 0.0399 -0.2657 0.25
T ratio -2.6351 31.5863 4.9125 5.5452 3.4231 2.7608 -0.8768

38 mean -0.0013 0.8516 0.2099 0.0006 0.1194 -0.0279 -0.1612 0.35
T ratio -1.7792 28.8316 3.2067 13.1113 3.2952 -1.1432 -0.9159

39 mean 0.0002 1.1997 0.1272 0.0008 0.1640 0.0817 0.3336 0.41
T ratio 0.2154 23.6649 2.3737 4.9963 4.5008 3.2419 2.1897

40 mean -0.0013 0.7885 0.3351 0.0006 0.0897 -0.2185 -0.2708 0.32
T ratio -0.9082 18.1309 3.7387 6.4321 4.2417 -0.8279 -2.8581
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Table 4: Beta strategies in response to market or fund realized returns (1970-
2002). This table explores how mutual funds change their betas in response to past market
or fund returns. A mutual fund is defined as adopting a momentum, invariant, or contrarian
strategy in response to the market return, if the parameter b in the following regression:
βt = a + b× r̄MKT

t−1,t−LAG + ε is positively significant at the 5% level (1-side test), insignificant,
or negatively significant at the 5% level, respectively. Here βt is estimated by the Kalman
filter, r̄MKT

t−1,t−LAG represents the average market excess return realized in month t − 1 to
t − LAG, and LAG is 6 months in the current case. Similarly, a mutual fund is defined as
adopting a momentum, invariant, or contrarian strategy in response to its own return, when
r̄MKT
t−1,t−LAG is replaced by the average risk-adjusted return realized in the previous 6 months.

(The risk adjusted return is defined as the fund’s return minus the product of its estimated
beta from the Kalman filter and the market return) Using the dynamic funds from Table 1
Panel A sorts the funds by their Morningstar category and within each category reports the
number of funds for which the model can detect a particular dynamic beta strategy. Panel
B forms an equal-weighted (EW) portfolio for funds adopting a same dynamic beta strategy.
Reported is each portfolio’s 4-factor adjusted return and corresponding t-statistic.

Market Return Fund Return
Momentum Invariant Contrarian Momentum Invariant Contrarian

A. Number of Funds in each category
Large- Blend 9 80 7 20 67 9
Large-Growth 9 68 8 23 58 4
Large- Value 12 77 4 30 58 5
Mid - Blend 4 45 8 12 36 9
Mid -Growth 2 25 1 10 16 2
Mid - Value 2 28 1 5 25 1
Small- Blend 1 24 3 1 19 8
Small-Growth 3 32 1 5 31 0
Small- Value 0 14 5 4 13 2

Sum 42 393 38 110 323 40

B. 4-factor adjusted return for each strategy

Alpha -0.0003 -0.0001 0.0012 0.0004 -0.0002 -0.0003
T-stat -0.6006 -0.1873 2.0458 0.8734 -0.4413 -0.5098
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Table 5: R2 increment and decomposition error of the OLS Alpha and Beta.
Kalman filter estimates are used to calculate predicted OLS alphas and betas according to

the following formula α̂ = E(αt)− E(xt)
V ar(xt)

cov(αt, xt)+(1+ E(xt)2

V ar(xt)
)cov(βt, xt)− E(xt)

V ar(xt)
cov(βt, x

2
t )

and β̂ = E(βt) + 1
V ar(xt)

cov(αt, xt) − E(xt)
V ar(xt)

cov(βt, xt) + 1
V ar(xt)

cov(βt, x
2
t ), where the αt and

βt are dynamic portfolio alphas and betas, and xt the market excess return. Asymptotically
α̂ and β̂ should converge to the OLS estimates. The table also lists the R2

OLS from the

OLS regression, and the R2 improvement from estimating the dynamic Kalman filter model.
Consistent with the OLS model, the R2

Kal for the Kalman filter equals 1−E(εP (t)2)/E((yt −
ȳ)2), where yt is the excess portfolio return and εP (t) is the residual from the dynamic model.
The variable ȳ equals the mean value of yt, and �R2 = R2

Kal − R2
OLS. The �R2

2 measure
compares a rolling OLS model with the Kalman filter. Here the rolling OLS model estimates
employ data from the previous 48 months, with the current month as the 48th. A residual
from the 48th month is then calculated and used to compute the R2 statistic, labeled R2

ROLS.
Finally, the time period is incremented by one and the process repeated until the end of the
data set has been reached. The �R2

2 variable equals R2
Kal − R2

ROLS. The numbers in the
corresponding columns report the absolute and average percentage errors between α̂ and
αOLS, and the corresponding statistics regarding the fund betas.

category R2
OLS �R2 �R2

2 |%errα| %errα |%errβ| %errβ

16 mean 0.8502 0.0980 0.1046 1.8375 -0.7134 0.1491 0.0115
T ratio 8.3080 7.0693 4.3327 -1.5392 3.9289 0.2793

17 mean 0.7900 0.1590 0.1687 1.9367 -1.0208 0.1472 -0.0400
T ratio 13.3937 10.6376 3.4011 -1.6993 3.3324 -0.8493

18 mean 0.7523 0.1971 0.2531 3.2518 -1.2980 0.2660 -0.0834
T ratio 14.4164 11.1611 3.2965 -1.2474 4.0752 -1.1742

22 mean 0.7262 0.1612 0.1606 1.2465 -0.1311 0.1924 0.0234
T ratio 7.8809 7.9059 3.4214 -0.3236 2.5423 0.2912

23 mean 0.6909 0.2240 0.2233 1.7470 -0.9109 0.2501 -0.0195
T ratio 7.6710 7.1438 2.2648 -1.1014 3.2108 -0.2105

24 mean 0.6749 0.1859 0.1792 1.9382 0.9353 0.2505 0.0245
T ratio 8.2108 6.3536 2.7805 1.2063 3.2131 0.2651

38 mean 0.5717 0.2170 0.2185 2.4482 1.7071 0.5077 0.3839
T ratio 8.2048 7.5761 2.3324 1.5357 1.9069 1.3956

39 mean 0.5525 0.2859 0.3018 0.8575 -0.1833 0.0257 0.0068
T ratio 7.7169 7.5502 2.3994 -0.4544 1.6708 0.4149

40 mean 0.5640 0.2095 0.1878 5.5118 3.4770 0.6355 0.4031
T ratio 6.0037 6.0649 1.8530 1.1037 1.9330 1.1526
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Table 6: Decomposition of the OLS Alpha. This table shows each of the four com-
ponents for the following decomposition of the OLS alpha α̂ = E(αt) − E(xt)

V ar(xt)
cov(αt, x) +

(1 + E(xt)2

V ar(xt)
)cov(βt, xt)− E(xt)

V ar(xt)
cov(βt, x

2
t ), where αt and bt are dynamic alpha and beta, and

xt denotes the market excess return. For each category of funds, the first line reports the
mean while the second line reports the cross sectional T-ratio for the null hypothesis that
the component equals zero.

Category αOLS E(αt) cov(αt,xt) cov(βt,xt) cov(βt,x
2
t )

16 mean -0.0008 -0.0008 -0.0000 -0.0000 -0.0000
T ratio -4.0256 -3.7697 -0.8837 -0.2670 -0.8418

17 mean -0.0002 -0.0004 -0.0001 0.0002 0.0001
T ratio -0.8277 -1.6248 -1.4517 3.4613 2.2654

18 mean -0.0018 -0.0017 -0.0000 -0.0001 -0.0000
T ratio -6.3687 -6.3907 -0.0196 -0.9528 -0.3409

22 mean -0.0017 -0.0017 0.0000 0.0001 -0.0001
T ratio -4.9560 -5.1258 0.0981 0.6472 -1.4891

23 mean 0.0010 0.0012 0.0003 -0.0004 -0.0000
T ratio 1.9970 2.2095 3.3088 -2.7784 -0.3545

24 mean -0.0025 -0.0020 -0.0001 -0.0003 -0.0001
T ratio -4.4783 -3.6393 -1.3809 -2.0696 -1.0917

38 mean -0.0025 -0.0011 -0.0001 -0.0010 -0.0004
T ratio -3.9895 -1.6027 -1.4530 -6.9325 -4.9655

39 mean -0.0001 0.0002 0.0004 -0.0008 0.0001
T ratio -0.1151 0.2178 2.0645 -4.5043 0.8668

40 mean -0.0018 -0.0005 -0.0001 -0.0008 -0.0004
T ratio -2.9564 -0.8172 -1.6062 -5.2917 -3.6075
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Table 7: Components of OLS Alpha: absolute percentage. This table reports the

results for the decomposition, α̂ = E(αt) − E(xt)
V ar(xt)

cov(αt, xt) + (1 + E(xt)2

V ar(xt)
)cov(βt, xt) −

E(xt)
V ar(xt)

cov(βt, x
2
t ), where xt denotes the market excess return. Panel A columns three through

six report the percentage contribution of each component to the value of α̂. To arrive at
these values the average value of each component across all funds is computed. Then the
absolute value of the average is calculated. The resulting numbers are then added together to
produce column seven, which then serves as the denominator for the percentage contributions
reported in columns three through six. Panel B repeats the analysis in Panel A, except that
absolute values are taken fund by fund prior to calculating the mean value of each component.

Category αOLS αstatic cov(αt,x) cov(βt,x) cov(βt,x
2
t ) Sum(|α(components)|)

A

16 -0.0008 90.9497 2.4515 2.5525 4.0464 0.0008
17 -0.0002 53.8183 10.2323 27.8133 8.1361 0.0007
18 -0.0018 95.4011 0.0650 3.7367 0.7972 0.0018
22 -0.0017 88.6364 0.1510 5.1362 6.0765 0.0019
23 0.0010 62.1663 14.8368 21.4123 1.5846 0.0019
24 -0.0025 80.0956 3.8869 12.4355 3.5819 0.0025
38 -0.0025 42.0451 5.5257 38.6425 13.7868 0.0025
39 -0.0001 12.7093 27.2640 53.5571 6.4696 0.0014
40 -0.0018 28.9745 6.1534 44.3250 20.5472 0.0019

B

16 -0.0008 62.8109 7.3571 20.0651 9.7668
17 -0.0002 62.1060 10.3851 17.5283 9.9806
18 -0.0018 65.6543 7.6162 15.7693 10.9602
22 -0.0017 67.6874 4.1612 17.3352 10.8162
23 0.0010 59.2356 9.4512 20.7004 10.6128
24 -0.0025 60.9653 5.8977 22.8405 10.2965
38 -0.0025 55.5984 5.0968 27.3056 11.9992
39 -0.0001 53.9725 10.4055 21.8664 13.7556
40 -0.0018 46.3407 6.8832 31.6218 15.1543
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Table 8: Decomposition of OLS Beta. This table shows each of the four components for
the following decomposition of OLS beta, β̂ = E(βt)+ 1

V ar(xt)
cov(αt, xt)− E(xt)

V ar(xt)
cov(βt, xt)+

1
V ar(xt)

cov(βt, x
2
t ) where αt and bt are dynamic part of alpha and beta, and xt denotes the

market excess return. For each category of funds, the first line reports the mean while the
second line reports the cross sectional T-ratio for the null hypothesis that the component is
zero.

Category βOLS E(βt) cov(αt,xt) cov(βt,xt) cov(βt,x
2
t )

16 mean 0.9373 0.9361 0.0016 0.0001 -0.0003
T ratio 64.0177 70.2978 0.9286 0.1841 -0.0777

17 mean 1.0897 1.0923 0.0061 -0.0012 -0.0081
T ratio 65.9604 65.9432 1.7305 -2.9941 -3.1629

18 mean 0.8496 0.8488 0.0010 0.0006 -0.0015
T ratio 65.7914 67.5370 0.2499 1.1252 -0.4364

22 mean 0.9339 0.9276 0.0006 -0.0004 0.0066
T ratio 35.1753 39.7614 0.2191 -0.4607 1.0119

23 mean 1.1105 1.1327 -0.0238 0.0025 -0.0003
T ratio 26.3939 23.9411 -3.4784 2.4814 -0.0416

24 mean 0.8807 0.8647 0.0083 0.0012 0.0067
T ratio 31.6878 32.4088 1.3961 1.4033 0.7859

38 mean 0.8997 0.8606 0.0104 0.0070 0.0253
T ratio 37.6198 30.7002 1.4812 6.2558 4.4721

39 mean 1.1669 1.2001 -0.0270 0.0056 -0.0117
T ratio 26.0820 23.7304 -2.2857 4.1762 -1.4276

40 mean 0.8392 0.7925 0.0103 0.0048 0.0345
T ratio 20.8500 18.7460 1.6194 5.7729 3.7118
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Table 9: Four-factor adjusted return across estimated skill sets (1970-2002). This
table reports four-factor risk adjusted returns for nine equally weighted portfolios holding
mutual funds with particular trading ability measures. Panel A ranks each mutual fund
by selection and market timing ability. Funds with high ability measures generate higher
returns than funds with low ability measures. Panel B repeats the analysis but reports the
out of sample risk adjusted returns. Portfolios are formed at the beginning of each year.
Mutual fund ability measures are estimated using the previous 60 months of data.

A. In sample alphas.

Four-factor adjusted return T-ratio for four-factor adjusted return

Market Timing Ability Low Media High H-L Low Media High H-L

Selection Ability
Low -0.0052 -0.0028 -0.0015 0.0037 -3.5061 -4.2783 -2.2765 2.5451

Media -0.0010 -0.0006 0.0002 0.0011 -1.5933 -1.4819 0.5193 2.1718
High 0.0015 0.0017 0.0014 -0.0000 2.5715 3.8858 3.0022 -0.0693
H-L 0.0067 0.0046 0.0030 0.0067 4.7294 6.9625 4.6059 4.5436

B. Out of sample alphas.

Four-factor adjusted return T-ratio for four-factor adjusted return

Market Timing Ability Low Media High H-L Low Media High H-L

Selection Ability
Low -0.0007 0.0006 0.0002 0.0009 -1.1867 1.0762 0.4167 1.7422

Media -0.0006 -0.0004 0.0004 0.0009 -1.1978 -1.3108 0.7121 1.8648
High -0.0009 0.0004 0.0002 0.0011 -1.6543 0.8693 0.2822 1.9008
H-L -0.0002 -0.0001 -0.0000 0.0009 -0.3398 -0.1819 -0.0564 1.0629
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Table 10: Four-factor adjusted return across estimated skill sets II (1970-2002).
This table reports four-factor risk adjusted returns for nine equally weighted portfolios hold-
ing mutual funds with particular trading ability measures. Panel A ranks each mutual fund
by bull market selection and market timing ability. Funds with high ability measures gen-
erate higher returns than funds with low ability measures. Panel B repeats the analysis but
reports the out of sample risk adjusted returns. Portfolios are formed at the beginning of
each year. Mutual fund ability measures are estimated using the previous 60 months of data.

A. In sample alphas.

Four-factor adjusted return T-ratio for four-factor adjusted return

Market Timing Ability Low Media High H-L Low Media High H-L

Bull Market Selection Ability
Low -0.0039 0.0005 -0.0006 0.0033 -2.2848 0.9126 -0.8407 1.9535

Media 0.0004 -0.0005 0.0004 0.0000 0.6708 -1.2707 1.1650 0.0405
High -0.0002 -0.0002 0.0006 0.0008 -0.2598 -0.3086 0.8034 0.9800
H-L 0.0037 -0.0007 0.0012 0.0045 2.2893 -0.9047 1.4412 2.6001

B. Dynamic Style, out of sample.

Four-factor adjusted return T-ratio for four-factor adjusted return

Market Timing Ability Low Media High H-L Low Media High H-L

Bull Market Selection Ability
Low -0.0007 0.0001 0.0003 0.0011 -1.3897 0.1514 0.6007 1.6464

Media -0.0006 -0.0000 -0.0002 0.0004 -1.2158 -0.0618 -0.3903 0.8178
High -0.0010 0.0005 0.0002 0.0013 -2.0124 1.1339 0.4811 2.5275
H-L -0.0003 0.0004 -0.0001 0.0010 -0.6216 0.6663 -0.1917 1.7145
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Table 11: Out of Sample Returns for Zero-Alpha and Zero-Beta Portfolios. For
all domestic equity mutual funds (ICDI-OBJ: AG, BL, GI, IN, LG, PM, SF and UT) that
had at least 5 years of monthly return data, both 1-factor and 4-factor (the Fama-French
three factors plus the momentum factor) Kalman and OLS models are used to forecast a
fund’s alpha and beta at the beginning of each year from 1970 to 2000 . These forecasts
are then used to construct zero-alpha and zero-beta portfolios, one for each fund. At the
beginning of each available year, a fund’s predicted risks (the market risk for 1-factor models
and the 4 factors for 4-factor models) are hedged out and the model’s predicted alpha is
subtracted from the realized monthly returns. Next, the resulting monthly time series for
the zero-alpha and zero-beta portfolio is regressed against the market factor (for 1-factor
models) and the 4 factors (for 4-factor models). This process results in risk-adjusted returns
and factor loadings for each zero-alpha zero-beta portfolio. The parameter distributions are
then calculated by bootstrapping with replacement the above procedure 1000 times. Panel
A reports the risk-adjusted returns (alphas), and Panel B the “return weighted beta errors.”
The return weighted beta error is defined as: return weighted beta error ≡ ∑

i β̂ir̄i, where β̂i

is the estimated value of factor i, and r̄i the factor’s average return during the sample period.
The Kolmogorov-Smirnov test rejects the hypothesis that the same probability distribution
produced any pair of distributions generated by the different models (all P-values virtually
zero).

mean Std Dev 5% 10% 50% 90% 95%

A. Risk adjusted return (alpha) 1970-2000

OLS1 0.000547 0.000107 0.000372 0.000408 0.000545 0.000691 0.000729
KAL1 -0.000142 0.000135 -0.000363 -0.000321 -0.000142 0.000030 0.000084
OLS4 -0.000378 0.000074 -0.000500 -0.000475 -0.000380 -0.000286 -0.000259
KAL4 -0.000317 0.000119 -0.000528 -0.000470 -0.000307 -0.000172 -0.000125

B. Return weighted beta error 1970-2000

OLS1 -0.000063 0.000011 -0.000082 -0.000077 -0.000063 -0.000048 -0.000044
KAL1 -0.000064 0.000013 -0.000086 -0.000082 -0.000065 -0.000047 -0.000041
OLS4 0.000164 0.000033 0.000109 0.000123 0.000164 0.000206 0.000219
KAL4 0.000061 0.000040 -0.000008 0.000007 0.000062 0.000112 0.000126
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Table 12: A Comparison with Conditional Model. The sample used for this table
includes all available funds in the CRSP database that contain 60 months of monthly return
data from 1994 to 1998. Model parameters are estimated for the unconditional CAPM model,
the conditional beta model, and the Kalman filter model. The variables R2

CAPM , R2
Cond and

R2
Kal represent R2 statistics for each of the models respectively. Consistent with the OLS

model, R2
Kal is defined as 1 − E(εP (t)2)/E((yt − ȳ)2), where yt is the excess portfolio return

and εP (t) is the residual from the Kalman filter model. The variable ȳ equals the mean value
of the yt. Also reported are the cross-sectional means and T-ratios for the improvements of
R2, �R2

1 = R2
cond − R2

CAPM and �R2
2 = R2

Kal − R2
cond.

Category fund No. R2
CAPM R2

Cond R2
Kal �R2

1 �R2
2

16 mean 92 0.8994 0.9013 0.9382 0.0031 0.0369
T ratio 7.07 3.17

17 mean 81 0.861 0.8673 0.9146 0.0063 0.0473
T ratio 8.74 6.97

18 mean 75 0.8676 0.8734 0.9287 0.0059 0.0553
T ratio 7.52 6.67

22 mean 46 0.7618 0.7709 0.9095 0.0090 0.1386
T ratio 5.56 6.51

23 mean 36 0.7501 0.7601 0.8638 0.0100 0.1036
T ratio 2.94 4.97

24 mean 31 0.7408 0.7477 0.8484 0.0069 0.1007
T ratio 7.11 5.65

38 mean 23 0.6479 0.6536 0.8614 0.0056 0.2079
T ratio 3.37 4.76

39 mean 35 0.6413 0.6448 0.7011 0.0035 0.0563
T ratio 5.12 3.15

40 mean 18 0.6527 0.6581 0.8007 0.0055 0.1426
T ratio 5.44 6.35

All mean 437 0.8047 0.8098 0.8877 0.0059 0.0779
T ratio 14.03 13.80
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Figure 1: Likelihood ratio tests. This figure shows the results from a likelihood ratio
test in which the Kalman filter model includes conditional information similar to that of
Ferson and Schadt (1996). As in their application, lagged macroeconomic information drives
the portfolio weights. However, here portfolio weights are also assumed to vary from some
unobserved factor following an AR(1) process. As a first order approximation, the portfolio
weights become wit = w̄i + liFt + DiZt−1, where Zt−1 is the lagged information. This model
is estimated via extended Kalman filter. For two macro instruments, the estimated system
of equations is given by rPt − rft = αPt + βPt(rmt − rft) + εPt, where βPt = β̄P + Ft−1 +
k1z1,t−1 + k2z2,t−1 and αPt = −kt + āP Ft−1 + bP F 2

t−1 and Ft = γFFt−1 + ηt. Here z1 and z2

are instruments for the lagged T-bill rate and the CRSP value weighted index’s dividend
yield. The null hypothesis is that k1 = k2 = 0. The constrained and unconstrained models
are estimated using monthly returns from 437 mutual funds during the period of 1994 to
1998. Asymptotically, the likelihood ratio test under the null should follow a chi-square
distribution with two degrees of freedom. In Figure 1, the bars represent the cross-sectional
distribution of the likelihood ratio while the dashed line displays the mathematical values
for a chi-square distribution with two degrees of freedom. The fraction of funds that reject
the null hypothesis at the 1%, 5% or 10% levels are 10.8%, 15.7% and 20.3%, respectively.
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