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Duration, Convexity and Higher Order Hedging (Revisited)

ABSTRACT

Here the concepts of Duration and Convexity are studied when the term structure at a single point
in time generally cannot be summarized by a finite number of state variables. Hence it is unclear
whether calculating Duration and Convexity from partial derivatives makes sense. In this paper
definitions of Duration and Convexity are provided that circumvent this problem and consistency
with traditional measures is shown. The information required to compute Duration as defined in this
paper consists of the term structure and the volatility of zero-coupon bonds. Convexity additionally
requires a model of how this volatility will change over time. Schemes for calculating Duration and

Convexity in practice are provided.



L INTRODUCTION

This paper reexamines the concepts of Duration and Convexity within modern day term
structure theory. The framework adopted to characterize interest rate dynamics is that of Heath-
Jarrow-Morton (1992) (hereafter HIM (1992)). The reason for this framework choice is two-fold.
First, and of primary motivation, is the fact that the HIM framework generically results in a path-
dependent term structure.' Hence there is no guarantee that at a fixed point in time the term structure
is a function of a finite number of state variables observable at that time. This is required for existing
definitions of Duration and Convexity. Second, as we will show in the paper, Duration is closely
related to the forward rate volatility structure (the volatility of all forward rate of different maturity)
and once specified the computation of Duration is almost immediate.

The original notion of Duration founded by Macaulay (1938) is that the Duration of a bond
is the present value weighted average of the times to all cash flows generated by the bond over the
remainder of its life.” Macaulay proceeds to compute present values by discounting using the yield-
to-maturity of the bond which is consistent with assuming a flat yield curve. For ease of exposition
throughout this paper we consider all interest rates quoted in the form of annualized continuously
compounded rates. Consequently the resulting Macaulay Duration, denoted D, ., of a bond with N
remaining cash flows can be expressedas D, .= Zﬁl T,Ce T / vazl Ce "% where all yields of
different maturity equal » and ; is the time until cash flow C, occurs. Observing that the price of this

bond, denoted B, can be computed via B =Zi1 Ce 7% it is immediately apparent that
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i vae Which gives Hick’s (1939) interpretation that Duration is a measure of a bond’s
"

sensitivity to interest rate changes.’ This derivative based expression for Duration is now frequently

! Note that all term structure models constructed by considering a set of state variables that follow a joint-Markov diffusion

process and having the term structure at time 7 be a function of these state variables at time ¢ are also captured by the HIM (1992)
framework. These term structure models are referred to as path-independent.
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This is the essence of what is being described in Macaulay (1938) pages 46 to 48.

3 Hicks (1939, page 186) used the term “average period” instead of Duration and derived his result by computing the

elasticity of the price with respect to the discount factor a0 ;W) where YTM is the yield to maturity of the bond.




called “modified Duration”.*

Fisher-Weil (1971) considered the use of the Duration concept in a risk management
(immunization) setting. His measure of Duration mathematically captures Macaulay’s original
description of Duration without the implicit assumption of a flat (constant) yield curve. Letting d( 7)
represent the present value of one dollar to be received 7 years in the future Fisher-Weil Duration,
denoted D,;, can be expressed as D, = Zﬁl 7,C.d(T) / Zﬁl C,d(t;) where there are no shape
restrictions on d(7). To perform the immunization strategy Fisher-Weil have to assume some
dynamics of the term structure. In particular they allow for an arbitrary forward rate curve to depict
the current term structure and future forward rate curves take the form of the current forward rate
curve that have undergone a parallel shift up or down. Without loss of generality we can depict this
behavior by expressing all forward rate curves over time in the form of » +&(t) where r is the short
rate prevailing at the time and 0( 7) is a deterministic function measuring the difference between the
current forward rate curve and the current short rate. Observing that the price of a bond can be
computed via B = Zﬁl C,d(t)) where d(t) =exp {— forr +0(v) dv}, it is again apparent that

- %Z—’f = D,.,,. That is, the modified Duration representation also holds for Fisher-Weil Duration.

Cox-Ingersoll-Ross (1979) (hereafter CIR (1979)) is the first work that considers the concept
of Duration within the context of modern day term structure models. The term structure framework
adopted is one where the short rate follows a time-homogeneous univariate Markov diffusion in the
equivalent risk-neutral economy.’ Classic examples of such models are those of Vasicek (1977) and
Cox-Ingersoll-Ross (1985). This structure is enough to guarantee that at time ¢ the present value of
one dollar to be received on date 7 in the future can be expressed as a function of the short rate  at

time ¢ and time to maturity T only and hence denoted d(r,t). The Cox-Ingersoll-Ross measure of

4 In most current text books there is a difference between Macaulay Duration and Modified Duration. Fisher (1966) and

Ingersoll-Skelton-Weil (1978), amongst others, have shown this difference disappears when expressing interest rates in the form of
continuous compounding.

3 The term “equivalent risk-neutral economy” refers to the description of all processes under the equivalent risk-neutral
probability measure in a complete bond market.



Duration for a coupon bond is “the [time to] maturity of the discount bond with the same [ basis]
risk” (CIR (1979) p. 56) where the Basis Risk of a bond with price B refers to Z—lj / B. That is CIR
Duration is defined as that number D, ,, which solves @ / d(r,D.p) = % / B. The motivation
for this definition of Duration stems from the observation that Basis Risk emerges from It6’s lemma
as “the relative change in the price of a bond attributable to an unexpected shift in the spot rate” (CIR
(1979) p.54). Consequently a discount bond with time-to-maturity D, has the same exposure to
movements in the short rate as the coupon bond with price B.

All of the above concepts of Duration have been related to Z—f /B which can be interpreted
as a measure of first order sensitivity to interest rate changes. This has further motivated
consideration of % /B which is called “Convexity” and interpreted as a second order sensitivity

-
measure. However what if bond prices at time ¢ cannot be represented as a function of the short rate
r at time ¢ alone as is generally the case in the HIM (1992) framework?® What is meant by Duration
and Convexity in this case if we typically think of them as being related to ‘Z—f /B and % /B?
Should we restrict our attention to the case where bond prices at time ¢ are a function of the short rate
only?” If we do this then we are losing the richness of HIM framework and further we are in fact
reverting back to the CIR (1979) framework so nothing new has been achieved. Should we extend

the ideas of Duration and Convexity by considering the sensitivity of a bond price with respect to

2
every single interest rate on the yield curve, that is o8 /B and S A— / B for all possible
o(t.1)) (1)) ont.15)
maturity dates 7, and T,,? This is a distinct possibility and now the concepts of Duration and
Convexity become a vector and a square matrix if we restrict attention to several choices of

T, and T, only. This idea is in the spirit of the key-rate Duration concept proposed by Ho (1992)

6 We are referring to the result of the HIM framework that generically the term structure is path-dependent. Consequently

even if there is only one Brownian motion introducing uncertainty into the bond market then the entire term structure at time # must
be considered relevant information. Consequently the short rate alone at time ¢ cannot summarize the information imbedded in the
term structure at that time and even for a multi-factor CIR (1979) type framework where the term structure can be represented as a
function of a finite number of state variables the issues that will be discussed above still apply.

7 This is essentially what was considered in Au-Thurston (1995).
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and the research by Nawalkha (1995)%. The downside of this approach is that generally the Duration
vector and the Convexity matrix are infinite dimensional and we only have ad hoc guidance
regarding how to construct a reasonable finite approximation of them.

The above issues motivate the present paper where extensions of the Duration and Convexity
concepts are provided that overcome the limitations of thinking about them as partial derivatives.
These extensions are obtained by considering their use in an interest rate risk management setting
where Duration matching of assets and liabilities is used to mitigate interest rate risk over a short
time period and the addition of a Convexity match reduces the frequency of re-balancing in order
to maintain the Duration based hedge. Like the typical measure of Duration, the measure provided
in this paper is a single number. However surprisingly the resulting Convexity measure is two-
dimensional. A reconciliation between these alternative measures of Duration and Convexity show
that they indeed collapse to the typical measures under appropriate circumstances. In order to
calculate Duration and Convexity as proposed in this paper requires the term structure, the volatility
of the term structure, and a description of how this volatility changes over time (required only for
Convexity). Very little structure has been imposed in this paper regarding what these three
components should look like’ and consequently can be left to the users discretion. However for
practical purposes a simple scheme for computing Duration and Convexity is provided and a
numerical example given.

The above discussion has revolved around Duration and Convexity when considering
changes in a single interest rate . Two natural extension are apparent. First, if we think of Duration
and Convexity as a first and second order hedge respectively, what about higher order hedging?

Second, what if we want to consider a multi-factor setting where there are two fundamental interest

8 The above comment does not do research of Ho (1992) and Nawalkha (1995) justice since their approachs do allow for

multiple Brownian motions which has advantages. We will also consider the case of multiple Brownian motions in Section V of this
paper.

? The main restriction is that the term structure evolves as in the HIM (1992) framework and the term structure’s volatility
evolution can be described by a stochastic differential equation with the same Brownian motions that introduce uncertainty into the
bond market.



rates driving the evolution of the term structure? The final part of this paper extends on the work
described above to accommodate both of these issues.

The paper proceeds as follows. In Section II we provide the term structure framework and
describe what we mean by “Basis Risk”. Section III develops the concept of Duration in the given
term structure framework presuming one underlying Brownian motion introduces all uncertainty in
the bond market. Consistency with prior Duration measures is shown and a simple scheme for
computing Duration in practice is provided. Section IV is the analogue of Section III for the measure
of Convexity. Extensions to higher order hedging and the consideration of multiple Brownian

motions is presented in Section V. Section VI summarizes and concludes.

II. THE FRAMEWORK

In this paper we consider asset and liability portfolios comprising of non-random, default-free
cash flows where uncertainty is introduced via the random evolution of interest rates. Consequently
the evolution of such portfolios is related to the evolution of the term structure. The term structure
framework adopted is that of HIM (1992) with an arbitrary, but finite, number of Brownian motions
introducing uncertainty into the bond market. Even though the sections immediately to follow only
consider the case of one Brownian motion for the intuitive development of Duration and Convexity,
we consider the case of multiple Brownian motions here as the last section of this paper provides
extensions.

Let P(z,T) denote the price of a one dollar face value, default free, zero coupon bond at time
¢t which will mature at time 7. Such a bond is referred to as a pure discount bond. Characterizing the
dynamics of the bond price process as a stochastic differential equation, the arbitrage-free evolution

of all pure discount bonds can be written as'

10 This representation can be obtained using the same arguments presented in Vasicek (1977) or HIM (1992).
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dP(t,T) & &
Tl = () + Y, A, Tw .7 | dt + Y T(w,6,T) dW (1) (1)
P, T) k=1 k=1

where r(¢) is the instantaneous risk-free interest rate defined by the return on the instantaneously
maturing bond at time #'!, A [ ,7) 1s the market price per unit of risk associated with the uncertainty
introduced by the kth Brownian motion W (f), I',(w,,T) is the volatility associated with the kth
Brownian motion at time # for the pure discount bond with maturity date 7, and w, represents the
possibility of dependence on the realization of the term structure up to time 7, thatis w, € .7, where .7,
represents any information available at time ¢ generated by the random evolution of the term
structure. Here we allow incremental Brownian motions dW (¢) and d Wj(t) to be correlated over time
with correlation structure p(w,,f)dt.

To ensure that the above price process depicts the characteristics of bonds we have to ensure
that the volatility of the instantaneously maturing bond is zero and that the bond price is one dollar
at maturity. Heath-Jarrow-Morton (1992) achieve this by considering the evolution of forward rates
instead of bond prices. The instantaneous forward rate at time ¢ for date 7, denoted f{z,7), is defined
through the relation P(¢,7) = exp{ - f t Tf(t,v) dv}. Characterizing the resulting uncertain evolution
of the forward rate curve via a stochastic differential equation results in the following no-arbitrage

evolution for forward rates:'?

K K r K K
dfir.T) = kZ D o@D YD) [ @ty + kZ Ao Y (@ 1) | dt kZ Y@, .T) dW,(0)
=1 =1 f =1 =1

where the forward rate volatility structure for the ki Brownian motion, v,(w,.,7), is related to bond

. The instantaneous risk-free rate can be defined by (#) = -oIn(P(t.7))/ 3T |,.,.
12 Here we allow for a correlation structure amongst the Brownian motions. HIM (1992) provide their representation for
orthogonal Brownian motions which is equivalent to the above representation after rotation since we can always find an orthogonal
set of Brownian motions that reconstructs a set of correlated Brownian motions. The only reason for allowing a correlation structure
is that it may prove useful in an empirical implementation.

2)



volatility via I'(w,t,7) = - f t Ty {w,2,v)dv. In this paper we will refer to both bond volatility and
the forward rate volatility structure.

Now consider a portfolio at time # containing default-free cash flows C,, for /=1to N, to
be made at respective times 7', in the future. Denote the value of this portfolio at time # as B(¢) which
can be computed using the term structure at time 7 via B(f) = Zﬁl C,P(t,T). Given the arbitrage-
free dynamics of the term structure in (1) the change in the value of this portfolio over the next

instant in time is

.
dB(t) = Y C,dP(tT)
i=1

N K N K
=Y CI,P(t,Tl.)[ "6) + Y, A ) Fk(w,,z,Ti)] dt + Y, CI,P(t,TI,)( Y I'(w,tT) de(t)) .
i=1 k=1 i=1 k=1

Using the fact that B(¢) = Zﬁl C.P(t,T) the above can be expressed as

£ K
dB(t) = [ () + Z )Lk(&)t,l‘) Vk(t)] dt + Z Vk(t) de(t) 3)
B0 k=l k=1
N C Pt,T)T (w,t.T
where V(1) = Z”' PT) L(w,t.T)

M C.p,T)

and V,(7) is interpreted as the volatility of the portfolio associated with the kth Brownian motion.

In the existing Duration and Convexity literature the change in the value of a portfolio is
considered relative to the change in a particular basis, typically some reference interest rate. To
maintain consistency with this idea we will express changes in bond and portfolio prices relative to
a set of “basis factors”. Here we wish to be nondescript regarding which interest rates to use as the
set of basis factors and in fact allow for the possibility of using quantities other than interest rates.

This is achieved by considering a set of K basis factors, K being the number of Brownian motions



introducing uncertainty in the bond market, where x (7) is the value of the it/ basis factor at time ¢
and x(¢) denotes the vector of these factors. The only requirement is that the evolution of x(f) can

be characterized in the form
dx(t) = (m((ot,t) + P(w,f) Mw,b) |dt + P(w,t) dW(1) 4)

where W(¢) = [Wl(t) Wyt - WK(t)] ", m(w,1) is the vector drift of x(7) in the equivalent risk-
neutral economy (that is, under the equivalent risk-neutral probability measure), A(w,,?) is the vector
of preference parameters with the kth element being A, (w,.f), and ¥(w,?) is an invertible matrix
with the element in row / and column & denoted ‘Pi’k((o »1) which is the volatility of x () associated
with the k#h Brownian motion. Examples of basis factors that can be used include specific interest
rates whose dynamics can be determined from the term structure’s evolution in (1), the set of
Brownianmotions W,(f) for k=1,2, -, K (achieved by setting ¥(w,,f) = I and m(w,,t) = -A(w 1)),
and in fact interest rates or the set of Brownian motions under any equivalent probability measure.
To express the changes in value of a single bond, or a portfolio of riskless cash flows, observe that
the transitions of the vector of Brownian motions dW/(f) can be expressed in terms of the transitions

of the basis factors dx(7) via
Aty = - (e, m(w,0) + Moy )di + Beo,)" (o).
Consequently the evolution of pure discount prices given in (1) can be expressed as

X K
—dp(t’T) = ( I”(t) - Z mk(("‘)tat) Ek(("‘)tatoT)) dt + Z Ek(("‘)t’t’T) dxk(t) (5)
P,7T) k=1 k=1

where &,(w,1,T) = ZJKZI ‘I’j,k((ot,t)’1 Fj(wt,t,T) with ‘~I’l.’k(o)t,t)’1 denoting the element in row / and

column kof ¥(w ,7) “! Here we can interpret £,(0,,%,T) as the sensitivity of zero coupon bond price P(z,T)



to a change in basis factor x,(#) over one instant in time, that is the “basis risk associated with factor

x,(#)”. Similarly the evolution for the price of a portfolio given in (3) can be expressed as

B _

K K
= 10 - Y, m(w, ) @(8) | dt + Y D) dx,(t) (6)
(9 k=1 k=1

Y0 G PET) o,LT)
Y CRT)

where @0 =

with ¢,(7) the Basis Risk of the portfolio associated with factor x,(¢). Further the above shows that
a portfolio’s Basis Risk is equal to the present value weighted average of the Basis Risks of the
individual cash flows in the portfolio. The term Basis Risk here may seem different from that

introduced by CIR(1979) however they will be reconciled in the next section.

1. DURATION

In the above characterization of interest rate dynamics note that the term structure at time ¢
depends on how it has evolved from a previous point in time. It is only under very special
circumstances that the term structure at time ¢ can be recovered by observing a small number of state
variables at that time. For example, consider the case of just one Brownian motion. Jeffrey (1995)
has shown that only for very restrictive functional forms of the volatility structure can we express
prices of pure discount bonds at time ¢ as a function of the short rate at time #, time ¢ and maturity
T only; that is, of the functional form P(r(¢),t,T). In this case the value of a bond portfolio at time
t containing non-random default free cash flows will depend on time ¢ and 7(¢) only and hence has
the functional form B(r(¢),f). Now the analysis of CIR (1979) applies and the Duration of this
portfolio can be obtained by computing M;(:—Eg"’) / B(r(1),f). However, in general the term structure
depends on the path that interest rates have taken over time so the value of a portfolio is generically

of the functional form B(w,f) where the short rate at time ¢ is but one element of that realization;



. 3 . . ., 9B(w,t

that is »(¢) € wt.l’ So how should we compute Basis Risk? Is it a(—(:’))
14

dB(w 1)

in the sense that all other

elements of , are held fixed? Should we now consider computing for each x € w ?'*"* Or
is there another way of thinking about Duration altogether?

To define a concept of Duration consider a common use of the Duration measure, namely
immunization, originally introduced by Fisher-Weil (1971). The standard immunization strategy,
which under ideal circumstances guarantees the ability of making all payments in your liability
portfolio, is I) to purchase an asset portfolio with the same present value as the liability portfolio, ii)
match the current “Durations” of the asset and liability portfolios, and iii) at the end of every period
liquidate the asset portfolio and purchase a new asset portfolio that again has the same “Duration”
as the liability portfolio (referred to as re-immunization). For now the term “Duration” is undefined.
To retain intuition in this section we consider term structure dynamics with only one source of
uncertainty, one Brownian motion. Later, in section V, we will examine the more general case of an
arbitrary number of Brownian motions.

Consider a liability portfolio at time ¢ containing positive default-free liability payments C I.L
to be made at respective times 7 ,.L in the future. Denote the value of this liability portfolio at time

t as L(¢) and from (6) it’s dynamics can be represented as

% = (1(0) - m(eo,d) B,(0)) dt + B,(0) dx(t )

13 For example, it simply may not be possible to summarize the information in the term structure at time ¢ with a finite number
of state variables in which case the entire term structure or the realization of interest rates over time is considered relevant information
and are elements of ®,.

14 This idea can make sense for the case where a representation for the term structure exists such that it is a function of a finite
number, say M, of state variables at time ¢ even though M may exceed the number of Brownian motions introducing uncertainty in
the bond market. Here the additional state variables are acting as sufficient statistics for the path-dependent information that the term
structure depends upon. A classic example of such a path-dependent model is that of Ritchken-Sankarasubramanian (1995). However
in the general case it is not possible that a finite number of state variables at one point in time can summarize the term structure
making the calculation of 0B(w,.f) /dxfor each x ¢ w infeasible.

It is also instructive to compare this idea to the market practice of computing key-rate Durations, that is the sensitivities of a bond
portfolio’s value to changes in several key interest rates. This is achieved by perturbing the yield curve in a region around each key
interest rate while keeping all regions around other key rates fixed. If the number of key-rates is large then key-rate Duration
calculations are in the spirit of computing 0 B(w,f) / dx for a large number of x € w,.

10



where @ (7) is the Basis Risk of the liability portfolio with respect to basis x(z). Similarly the
dynamics for the value of an asset portfolio containing positive default-free cash receipts CiA to be

. . . A . .
received at respective times 7, in the future can be represented via

1

A0 _ (r(®) - m(w,0) @ (0)) dt + @ (2) dx(z) )
A(7)
where A(f) represents the value of the asset portfolio at time 7 and ® (7) is the Basis Risk of the
asset portfolio with respect to basis x(z).
The way to achieve the objective of the immunization strategy is to create a self-financing
strategy using the above asset portfolio so that the dynamics of the liability portfolio are mimicked.
The first part of this strategy requires that the chosen asset portfolio must have the same present

value as the liability portfolio, that is A(¢) = L(z) which will be referred to as the “present value

matching condition”. This can be expressed as
NA NL
Y ¢'paty = Y ¢ Pt ©
i=1 i=1

where N, and N, respectively represent the number of cash flows remaining (beyond time 7) in the
asset and liability portfolios. The second part of the strategy requires that the asset portfolio mimics
the dynamics of the liability portfolio over the next instant in time, that is dA(¢) = dL(¢). This
requires the corresponding coefficients of dt and dx(¢) to match across equations (7) and (8) . This
is achieved when @ (¢) = ®,(¢) which means that the only thing required for the replication strategy
is to match the Basis Risk of the asset portfolio to the Basis Risk of the liability portfolio; referred

to as the “Basis Risk matching condition”. Using (6) this condition can be expressed as

Yo ¢ PET BT Yo € P T EwutT))

- (10)
Y Ct P Y clrarh
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noting that any choice of basis will do. The last part of the strategy, that is re-immunization, requires
that at the end of each instantaneous change in time the asset portfolio is liquidated and the money
is reinvested in a new asset portfolio that again satisfies the Basis Risk matching condition, that is
® (t+dt) = @, (t+dt). The present value matching condition at this new time is guaranteed since
A(t) = L(t) and dA(¢) = dL(¢) by construction at time ¢. Consequently the above dynamically
managed asset portfolio is a self-financing strategy that replicates the path of the liability portfolio’s
value.

The three parts of the above described self-financing strategy correspond to the three parts
of the standard immunization strategy described earlier.'® Consequently the Basis Risk matching
condition ® () = @,(7) can be used to provide a definition for Duration. The intention of Duration,
as proposed by Macaulay, is that it provides a measure of the “longness” of a sequence of cash flows
where the Duration of a single cash flow is unambiguously equal to the time to when that cash flow
will occur (see Macaulay (1938) p. 43-44)". To obtain a definition for Duration observe that the
Basis Risk matching condition can be satisfied by placing a single zero-coupon bond in the asset
portfolio; denote maturity date of this bond as 7. Since the immunization strategy calls for Durations
of the asset and liability portfolios to equal we consequently have a definition for the Duration of the
liability portfolio, namely (7-¢). The present value matching condition, also required by the
immunization strategy, is trivially obtained by holding the appropriate number of these zero coupon
bonds. The Duration of an asset portfolio can be defined similarly by considering the single liability

that immunizes the asset portfolio. Therefore the proposed definition of Duration is as follows:

16 Comparing the standard immunization strategy to the above self-financing strategy we see that the first part of both are

identical and the third part of the immunization strategy achieves the same objective as the third part of the self-financing strategy.
Consequently the concept of Duration must be obtained from the second part of the self-financing strategy.

17 Macaulay was interested in the “longness™ of a coupon bearing bond however since the discussion of this section refers
to asset and liability portfolios we paraphrase using the term “sequence of cash flows”.

12



Definition (DURATION):
Take as given at time ¢ the term structure P(z,7), the forward rate volatility structure
Y(w,t,T), and the volatility y(w,f) of the chosen basis factor x(f). The Duration of a
portfolio containing positive default-free cash flows C, to occur at respective times 7,

where T,>¢,is (T-t) where T solves'®

_ Y(w,.0) (11)
, V(w0 M, P

_ N T, Y(w,1,y)
- C.PuT. ! = d
T Y(wtat’v) dv Zl:l i ( H l) ft A%

noting that the solution for T is the same irrespective of the choice of basis.

For example, consider the case when the forward volatility structure takes the form y(w .2, 7)
= or(t)’ e *U for positive constants o, B and . This volatility structure is considered in Ritchken-
Sankarasubramanian (1995), a special case of Cheyette (1992), and when B = 0 it corresponds to the
volatility structure implied by the Vasicek (1977) model. Since Duration is invariant under the
choice of basis, choose for simplicity the Brownian motion as the basis in which case {i(w,7) = 1.
Inserting the volatility structure into the above definition for Duration and solving for (7 - ¢) implies
the Duration measure

iy Ve PeTy(1-e )

(T-t) = —1In| 1 - —
K i1 C.Pt,T)

1 To ensure that T exists it is enough to assume that all pure discount bond prices are strictly positive, that is P(¢,7)> 0 for

all ¢ < T<eo, and the bond volatility structure T'(w,.£,7) is continuous in the maturity dimension 7 for all ¢ < T <. To see this let
w,=C, P(t.T) / N C.P(tT), observing 0<w <1 forall i=1,..,N and Y% w =1, so T(@.tT) = Y i, wD(@,LT).
Consequently I' . < I'(w Ptj’) <I" whereT

min — max min max min

andI’  arerespectively the smallest and largest elements of { D(w,tT) }’Z . LetT

and 7, be the maturities associated with T' . and T . Given the continuity of I'(w,£7) in 7" implies 7, < T<T ' and the
existence of 7, and T, implies the existence of T. If we further assume that the forward rate volatility structure y(w,.t.T), where

max

[(w,t.T) = f [ Ty(o) #L.v)dv, is the same sign across maturity then I'(w,.£,T) is also monotonic in 7 implying the uniqueness of T.
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An interesting observation is that the volatility of the short rate o7(¢)’ does not enter the above
Duration measure. The reason is immediately apparent from the definition of Duration where we
could have set Y(w,.f) = or(H)P with the interpretation that the short rate r(f) is the basis. An
implication of this observation is to highlight the fact that the same Duration measure can result from
a range of volatility structures, namely all those that are an arbitrary maturity independent scaling
of each other.

From the above definition Duration can be interpreted as “the time-to-maturity of the zero
coupon bond that has the same Basis Risk as the portfolio of cash flows”. However it is important
to realize that the matching of Basis Risks resulted from matching the transition in value of the zero
coupon bond to that of the liability portfolio. Consequently it is perhaps more prudent to interpret
the above definition of Duration as “the time-to-maturity of the zero coupon bond that behaves like
the portfolio of cash flows”. The term “behaves like” is meant in a local sense, that is the zero
coupon bond and the portfolio have the same current value and will have identical realizations over

the next instant in time.

A. A Scheme for Calculating Duration in Practice

From a practical point of view the above definition suggests an interesting scheme for
determining the Duration of a portfolio at a particular point in time ¢. First observe that we have the
freedom of arbitrarily choosing a basis which corresponds to specifying m(w,,f) and Y(w 7). If we
set m(w,f) = 0 and Y(w,7) = 1 ' then this provides the convenient interpretation that the Basis Risk
of a bond portfolio is the present value weighted average of the volatilities from each cash flow in
the portfolio. Present value factors at time 7 can be obtained by estimating the yield curve at that time
and the volatility at time ¢ of a cash flow to occur at time 7'is equal to the bond volatility structure I'(w ,2,T)

which can be estimated from the time-series of historical term structure transitions. A reasonable

19 This corresponds to choosing the Brownian motion that introduces uncertainty into the bond market in the equivalent risk-

neutral economy as the basis. However as a practicality this is unimportant.
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first-cut approximation to the bond volatility structure can be obtained by arguing that the volatility
of a zero-coupon bond with time-to-maturity T does not change significantly over a short period of
time. This statement corresponds to modeling the bond volatility structure I'(w,,7) purely as a
function of time-to-maturity I'(t) and using recent historical data to estimate it. An estimate for I'(t)
can be obtained by computing the sample standard deviation of log-bond price transitions for the

zero-coupon bond with time-to-maturity t*°

I'(t) = \/i VAR[AIn(P(t,t+7))] (12)

where VAR[ x | denotes the sample variance of x, A represents a small change in time such as one
day, P(t,t+7) represents the price at time ¢ of a pure discount bond with time-to-maturity t, and
Aln(P(t,t+7)) = In(P(t+At,t+At+7)) - In(P(t,t+7)) represents the change in the log of the price of
a T-year zero-coupon bond from one day to the next.

To demonstrate the calculation of Duration consider a 9 year, $100 face value bond with a
coupon rate of 5% per annum payable semi-annually on June 15, 1994. Further, for comparison, both
the Macaulay and Fisher-Weil Duration measures are also computed. The first step toward

computing Duration is to estimate the term structure on June 15, 1994. This can be achieved using

20 The evolution of bond prices driven by one Brownian motion can be obtain from (1) by setting K=1. Applying It6’s lemma

to In(P(#.T)) provides the evolution for the natural logarithm of bond prices which demonstrates that the volatility of dn(P(,T))
is the same as that of % Considering the evolution of In(P(¢,¢+1)) with a fixed time-to-maturity t instead of a fixed maturity date
.

T we obtain
din(P(t1+7)) = (r(t) # M) D@pt.+) ~ @t + D) g Do, 1.0+7) dIVG)

Now consider the case when I'(w,,t,7) is of the form I'(7-¢). Discretizing the above, squaring both sides and taking unconditional
expectations of both sides provides

E[(Aln(P(t,t+‘c)) )2] = T(z)* At + o(Ar)
where At represents a fixed discrete time step and AIn(P(t,¢+1)) = In(P(¢+At,t+At+7)) - In(P(t,t+1)). It is also true that
E[(Aln(P(t,t+1:)) - m(v)At )] - TP Af + o(Ad)
for any m(t). Consequently letting m(t) be the sample mean of observations Aln{P(z,¢+1)) and replacing the above expectation with

the sample mean suggests that a first order approximation for I'(7—f) can be obtained from the sample variance of log-bond price
transitions.
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any of the existing flexible curve fitting procedures such as McCulloch (1971, 1975), Fama-Bliss
(1987), and Linton-Mammen-Nielson-Tanggaard (2000). We choose the latter to estimate the yield
curve y(¢,T) at time ¢ and compute the discount function via the relationship P(,T) = e >-DxT0,

The estimated yield curve on June 15, 1994 is given in Figure 1 below.

FIGURE 1
Yield Curve on June 15, 1994.
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From this yield curve the present value of each cash flow generated by the bond is computed and
summing these provides the bond’s value of $86.2937. At this point the above provides enough

information to compute both the Fisher-Weil and Macaulay Duration measures:

N
Fisher-Weil _ Zi:l C,PT)(T,;-1)

‘ = 7.17 years
Duration N
Y. C.PT)
N -y x(T,-1)
Macaulay _ - Ce” (7,7 = 7.20 years
Duration N -y x(T;-1) -
Do Ce '

where y = 6.9631% p.a. continuously compounded. represents the yield-to-maturity of the coupon

bond.

For the measure of Duration given in (11) the volatility structure of zero-coupon bonds is also
required. Using six months of daily data just prior to June 15, 1994 volatility estimates for bonds

with time-to-maturities from 0 to 10 years are calculated using (12) with Az = 2—;0 representing one
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trading day. The resulting estimate for the bond volatility structure on June 15, 1994 is depicted in

Figure 2 below.

FIGURE 2
Zero-Coupon Bond Volatility Structure
on June 15,1994.
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From (3) the volatility of a portfolio of default-free cash flows is the present value weighted average

of the volatilities from each cash flow in the portfolio and hence the coupon bond’s volatility is

= 0.092777

N
( coupon bond) - Y0 CPT) T (w,t,T)
latili -
volatility Zj\il C,- P(t,Tl.)

remembering that here the coupon bond’s volatility is a measure of the bond’s Basis Risk. The
Duration of this bond can now be obtained from Figure 2 by finding the time-to-maturity of the zero

coupon bond with the same volatility, that is
Duration = 6.60 years.

For the example above the difference between the Macaulay and Fisher-Weil measures is
small relative to the difference observed when using the Duration measure proposed in this paper.
Whether this difference is economically or statistically significant remains an empirical question.
However, before proceeding with such a study it should be noted that a caveat regarding the above

is that the analysis assumes only one Brownian motion driving the dynamics of the entire term
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structure. If this is not the case, as suggested by the multi-factor term structure literature, Duration

must be considered in a the multi-factor context presented in Section V.

B: Consistency With the Cox-Ingersoll-Ross (1979) Framework

The CIR framework is one where the short rate follows a univariate Markov diffusion?' in

the equivalent risk-neutral economy and the price of a pure discount bond with maturity date 7'is a

function of the short rate 7(¢) and time ¢ only. That is, the dynamics of the short rate can be expressed
22

as

dr(t) = (0(-(0),0) + Mw,1) o(r(),0)) dt + o(r(1),1) dW(D)

where O(r(¢),f) is the drift of the short rate in the equivalent risk-neutral economy, o(#(¢),?) is the
volatility of the short rate, and the prices for all pure discount bonds takes the functional form

P(r(?),t,T). Applying Itd's lemma to P(#(2),t,T) show that the bond volatility structure I'(w,z,7)

AP(r(1),t,T) o(r(1),0)
or() Pr(H)..T) "

takes the form Placing this form into the definition of Duration given in (11) and
choosing the short rate as the basis, implying {/(w,f) = o(r(?),), states that Duration is (T-t) where T

solves

OP(r(1).1,T))
or(t)

(13)

7 L C,PUr().1.T) P(rH.AT)
OP(r(f),t,T) / P T - 1 r , ( / P(r )
o) ¥ CP(OT)

where the left and right hand sides of the above are the Basis Risks, with respect to the short rate,

of the desired zero coupon bond and the portfolio respectively. Observing that the right hand side

aB(r(1).1)
or(t)

framework of CIR(1979) results in

/ B(r(®),t) , where B(r(1),t) = ?:1 C.P(r(0),t,T), we see that imposing the

dB(r(1),1)
or(r)

of (13) is

/B(r(0).1) being a measure of Basis Risk for the portfolio.

2 Actually, only a time-homogeneous univariate Markov diffusion is considered however their arguments can clearly be

extended to the non-homogeneous case discussed here.

2 Note that it is only necessary to have the short rate process follow a Markov diffusion under the equivalent risk-neutral

probability measure. This is the reason why the market price of risk can be of the form A(w,).
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This is identical to the measure of Basis Risk as defined in CIR(1979, page 54). Further CIR(1979,
page 56) define the Duration of a portfolio to be the “[time to] maturity of a discount bond with the
same [basis] risk”. This statement is exactly the measure of Duration given in (13) above showing

that the CIR (1979) concept of Duration is consistent with the definition of Duration given in this

paper.

C. Modified Duration

The term Modified Duration is defined as the negative of the percentage change in the price
B of a portfolio for a small change in a given interest rate r, that is - ‘;—f /B. A common motivation
for considering modified Duration stems from considering a portfolio’s value at a fixed point in time
as a function of an interest rate » and expressing the percentage change in the portfolio’s value %
resulting from a discrete change in the level of the interest rate Ar via the first order Taylor

expansion
AB

1(2B :
2 7|3, Ar+0((Ar)) )

The negative of the coefficient of the first order term Ar is Modified Duration which can be
interpreted as a first order sensitivity measure to the change in interest rate levels.

The implicit assumption in the above is that the value of the portfolio at a fixed point in time
is solely a function of . In the context of Fisher-Weil the price at time ¢ of a default-free portfolio
of positive cash flows is computed via B = vazl Ciexp{— f T+ o(v) dv} where r is the short rate

t
and O(v) is a deterministic function that does not change through time. The Macaulay setting can be
considered the special case of Fisher-Weil when &(v) =0 for all v. In both of these cases the type of
term structure transitions are limited, in particular it is assumed that the yield curve evolves through
time by undergoing parallel shifts up or down. To consider a general term structure framework in

which the value of a default-free portfolio at a fixed point in time is solely a function of » we must
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turn to the no-arbitrage framework considered in CIR(1979)*. Within this framework Basis Risk is
identical to modified Duration. However if we wish to consider a term structure framework where
the value of a default-free portfolio at a fixed point in time is also dependent on information other
than the interest rate 7** then the measure of Modified Duration needs to be extended. Observing that
Basis Risk is identical to Modified Duration in the traditional settings suggests generalizing the term

Modified Duration to be identical to Basis Risk as defined in the present paper, that is

N INw, 1T,
. CP(t,T)——=L
( Modiﬁed) _ et 1) W(w,0) (14)
Durati
uration Zj\il Cl,P(t,Ti)

An alternative motivation for this extended definition of Modified Duration can be obtained
by observing from (6) that a first order approximation for the percentage change in a portfolio’s

value as a result of a change in basis x(f) can be written as>

dB()

50 D(F) dx(?)

where ®(7) is computed via the modified Duration measure (14) above. Consequently this extension
to the measure of Modified Duration is consistent with the original intent of Modified Duration,

namely to provide a first order measure of a portfolio’s sensitivity to a specified basis.

= It is interesting to note that parallel shifts in the yield curve cannot be sustained in an arbitrage-free setting; see Ingersoll-

Skelton-Weil (1978). However the Fisher-Weil Duration measure can result from an arbitrage free term structure model that does
not imply parallel term structure transitions. This is considered in CIR (1979) and further considered in the next sub-section.

2 As areminder we are still only considering one underlying Brownian motion in the bond market and the statement regarding
dependence on information other than » should be interpreted in the sense that » is not a sufficient statistic to summarize the entire
term structure at a single point in time bringing us back to the original motivation of this paper.

2 This results by observing that dx(¢) is of order ‘/% and hence the term (r(t) - m(w,.t) <I>(t)) dt is of smaller order.
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C: Macaulay and Fisher-Weil Duration Revisited

Cox-Ingersoll-Ross (1979) consider the issue of when the Fisher-Weil Duration measures
can result within their framework. They show that the only term structure model generated by a time-
homogeneous univariate Markov diffusion model for the short rate in the equivalent risk-neutral
economy is when the drift and volatility coefficients of the short rate process are constants, that is
dr(t) = ndt + odW(t). Further the functional form for pure discount bonds is P(r,(¢).t,7) =
exp{—(T -1) () - %(T -1)? + %2 (T-1)° }.26 For the case of Macaulay Duration where the forward rate
curve is flat, the above term structure form shows that this can only occur when p =0 and o0 =0,
that is, when interest rates never change over time. These results suggest that the previous Duration
measures are quite restrictive in the context of an immunization strategy. However are there other
term structure models consistent with the Fisher-Weil and Macaulay Duration measures if one goes
beyond the CIR framework?

To answer this question suppose the Duration of a portfolio of default-free cash flows is

computed via the Fisher-Weil Duration measure

_ N C P@T,
(T-t) = Y w,x(T,~f) where w, = AL
i1 Y ¢ Pty

noting that no restrictions are place on the shape of the term structure at time ¢. Substituting the
Fisher-Weil Duration calculation into the definition of Duration provided in this paper implies
N ,
I ((ol.,t, t+y wix(Ti—t)) N T(wutT)

Y(w,1) ] ;Wi P(w,f)

where the chosen basis defines yi(w 7). At each fixed point in time 7 the bond volatility structure

I'(w,,T)) possess the properties of a linear operator and consequently I'(w,z,7,) must be linear in

26 In the CIR framework, where only a time-homogeneous short rate process is considered, an arbitrary term structure shape

is not consistent with the Fisher-Weil Duration measure. However if we allow the drift of the short rate to be a deterministic function
of time then we can always calibrate the drift term to an arbitrary initial term structure and maintain Fisher-Weil Duration measure.
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the third argument. Since I'(w,£,7) = - f t Ty((ot,t,v) dv the only possible forward rate volatility
structures admitting the Fisher-Weil Duration measure are those independent of maturity, that is
Y(w,t,T) = 0(w,1).

Macaulay Duration can be considered as the special case of Fisher-Weil Duration when
forward rate curves are always flat. Unfortunately for any volatility structure of the form
Y(w,t,T) = o(w,f) the no-arbitrage dynamics of forward rates given by (2) implies that if a forward
rate curve is initially flat it will not remain flat as time passes.”” Consequently at best it can be said
that Macaulay Duration is valid at time ¢ if the forward rate curve happens to be flat at that time and
if the forward rate volatility structure at time ¢ is of the form y(w,,z,T) = o(w 7). However after time

t the Macaulay Duration measure no longer applies.

IV. CONVEXITY
To perform the immunization strategy described in the previous section requires continual
liquidation and reconstitution of the asset portfolio. In practice this is clearly not feasible and begs
the question of how to reduce the number of times the asset portfolio has to be re-balanced.
“Convexity matching” has been used in practice to handle this issue where the Convexity of a
portfolio is a standardized measure of the second partial derivative of a portfolio’s value B with
respect to a particular interest rate 7, in particular % / B. Motivation for using Convexity for the
2
purpose of reducing the frequency of re-balancing is obtained by extending the Taylor expansion
motivation of Modified Duration. That is, consider a portfolio’s value at a fixed point in time as a
function of a particular interest rate » and expressing the change in the portfolio’s value AB
resulting from a discrete change in the level of the interest rate Ar via
AB 1| 0B d’B

1
= —| 2= Ar + ——=(Ar)?* + ol(AFr))].
5 Blor 292" ol(ary)

7 This is consistent with the finding of Ingersoll-Skelton-Weil (1978) where they show that Macaulay Duration admits

arbitrage.
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This suggests the following strategy. First match the modified Duration of an asset portfolio to that
of'the liability portfolio. This provides a first order approximation for ensuring the values of the asset
and liability portfolios respond similarly to a discrete change in the interest rate 7. Second match the
Convexities of the asset and liability portfolios. This should improve the similarity of value change
behavior between the asset and liability portfolios when a change in the interest rate level occurs.
The fact that asset and liability portfolios are now more closely aligned in terms of their behavior
to interest rate changes suggests that less frequent re-immunization is required in practice.

The implicit assumptions with the above argument are I) the value of the portfolio at a fixed
point in time is solely a function of 7, and i1) interest rate changes are the dominant cause of portfolio
value changes. The latter assumption is evident after realizing that interest rates only change with
the passage of time but time itself also causes the portfolio to change value since the cash flows
within the portfolio are closer to maturity. Both of these assumptions are violated in the context of
the term structure framework presented in section II since a portfolio’s value at time ¢ is more than
a function of a single interest rate and for time horizons greater than or equal to one instant time df,
time also significantly affects a portfolio’s value.*® So now we are left with the question “how can
we think about Convexity if we want to relax these two assumptions™?

To provide a definition for Convexity consider the intention of its use within an
immunization strategy, namely reducing the number of times re-immunization has to take place. In
the continuous time framework adopted in this paper re-immunization has to be conducted at the end
of every period where one period is an instant in time df. What is proposed in this section is to halve
the number of times that re-immunization has to take place and define Convexity based on what is
required to achieve this goal. Of course theoretically this means re-immunization has to be conducted
at time intervals of 2dt as opposed to dt so the frequency of re-immunization is still impractical.

However the intention is that the inclusion of Convexity matching in an immunization strategy will

2 It is also true that in the CIR (1979) framework the passage of time significantly affects a portfolio’s value for horizons

greater than or equal to an instant in time d¢. We will consider the CIR (1979) setting in subsection B to follow.
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carry over in practice by implying that less frequent re-immunization is needed over reasonably small
but finite time intervals.

To again retain intuition this section considers term structure dynamics with only one source
of uncertainty and the extension to an arbitrary number of Brownian motions is considered in section
V. To motivate a definition for Convexity again consider the Duration immunization strategy
presented in section IIl. To perform Duration immunization both the present value matching
condition A(f) = L(f) and the Basis Risk matching condition ® () = ®,(7) must be satisfied.
Together these conditions imply A(z+dt) = L(¢+dt). Consequently to ensure the value of the asset
portfolio is equal to that of the liability portfolio after two periods have transpired, that is
A(t+2dt) = L(t+2dt), we require the Basis Risk matching condition to be satisfied at time #+d¢, that
is @ (t+dt) = @, (t+dt). Tosolve this problem the dynamics for the Basis Risk of zero coupon bonds
&(w,t,T) is required and using (6) the dynamics for any portfolio’s Basis Risk can be computed.
Therefore suppose the evolution of &(w,#,7) can be characterized by the following stochastic

differential equation

de(w,1,T) = (oc(wt,t,T) + Mw,0) n(w,4,7) q;(w,,t))dt + N(w,0,7) Y(w,b) dW(?) (15)

where a(w,z,T) is the drift of Basis Risk in the equivalent risk-neutral economy, n(®,,2,7) Y(w 1)
is the volatility of Basis Risk, and () is the same Brownian motion that introduces uncertainty into
the bond market. The reason for expressing the volatility of Basis Risk in the form n(w,.2,7) Y(w ,.7)
is so we can interpret 1(w,z,T) to be the Basis Risk of &(w,,,T). This interpretation is obtained by

expressing the above dynamics in the form

d(w,1,T) = (oc((ot,t,T) - m(w,,0) n((ot,t,T)>dt + N(w,4,T) dx(?) (16)

interpreting the coefficient of dx(f) as a measure of g(w,t,7)‘s sensitivity to x(f). Since
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E(w,t,T) = w(‘ - f Ty(wt,t,T)dv and y(w ) is determined from the specification of the basis, it is
@y t

perhaps more natural to model the evolution of y(w,,,7) and then determine the implied dynamics
Of E((*),atan * »

Given that the Duration immunization conditions hold the requirement that @ (z+dt) =

d(A(t) @ A(z)) _ d(L(t) cInL(t))30
A(r) L(0)

matching the standardized change in “Dollar Modified Duration”, that is Modified Duration times

®, (t+dt) is equivalent to the condition which has the interpretation of

price, across assets and liabilities. Now, for a portfolio at time ¢ with value B(¢) and Basis Risk

measure ®(7) the transition @ expressed relative to the transition of the basis x(¢) is’!
N N
Y, C.P(t,T) G(w,1,T) Y, C.P(t,T) H(w,1,T)
dBH @) | k , 0 Y k / ) (17
B(t) ZI=| Cj P(taT,) Z,:| C,- P(t,T[)

where  H(w,t,7) = n(w,,T) + Ew,t,T)
G(w,t,T) = a(w,t,T) + 1|J((ot,t)2 E(w, .1 N(w,t,T) + &w,t,T) r(t) - m(w,t) Hw,t,T).

The terms H(w,,t,T) and G(w,,t,T) are the coefficients of dx(z) and dt respectively for the process

d(P(t,T) g(m,,zj))

o . Consequently to ensure the evolution of the asset portfolio equals that of the liability

» Suppose we model the dynamics of the forward rate volatility structure in the form of a stochastic differential equation

dy(@,.T) = (C(@pt.T) + M) d(w, 7)) di + 3(w,t.T) dW(1)

where ((w,,T) is the drift of the forward rate volatility structure in the equivalent risk neutral economy, 6(w,,,T) is the volatility

of the forward rate volatility structure, and W#(¢) is the same Brownian motion that introduces uncertainty into the bond market.

Further suppose we choose as our basis the Brownian motion W(¢) itself. In this case &(w,.7T) = f Ty(m,,t,v) dv and the dynamics
t

of &(w,1,T) can be expressed as

d).

T T
dE(w,t.T) = f U, tv) + M@,8) S(w  Lv)dv - y(m,,t,t)] dr + [ f d(w,tv)dv

30 This is because the Duration immunization conditions ensure A(f) = L(¢), @ (1) = @,(¢), and A(¢t+dt) = L(¢+df). The reason
d(A) @ 1)) _ d(L() @;(1))

for considering the condition
A L(1)

instead of d® ,(f) = d®,(¢) is purely for the convenience of later expressions

and interpretations.

31

See Appendix 1.
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portfolio over two periods in time the following two conditions must hold in addition to the Duration
immunization conditions (9) and (10):
Y ¢ P Hon Ty Y ¢ PaT!) HoT))

Ny 4 A ) Ny L L (18)
Zizl ¢ PT]) Zizl C, P@T)

Yo PTGl Ty Y ¢ P! GlonT)) 19)

pIRRORP (%0 Y. ¢l par)

Since the above conditions result from the intended spirit of Convexity within an immunization
context, that is match the Convexity of assets to that of liabilities to reduce the frequency of re-

immunization, we propose the following definition for Convexity:

Definition (CONVEXITY):

Take as given at time ¢ the term structure P(z,7) and the computed coefficients G(w,.z,T)
d(P(t,T) g(m,,zj))
P(t.T)
basis and &(w,,,T) is the Basis Risk of the pure discount bond at time ¢ with maturity date

and H(w,,t,T) of the process = G(w,t,T)dt + H(w,t,T)dx(t) where x(7) is the

T. The Convexity of a portfolio containing positive default-free cash flows C, to occur at

respective times 7', where T,> ¢, is two dimensional with components

Y, ¢ P(1,T) Hw,t,T)

YL CPT)

Convexity,

(20)
Y CP(LT) G(w,t.T)

Eﬁil CI P(t’ 7—;)

Convexity,

From the above definition we can interpret H(w,,T) and G(w,,t,T) as Convexity, and Convexity,

at time ¢ for a single cash flow to occur at time 7. Consequently the above Convexity measure of a
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portfolio has the property that it is the weighted average Convexity of each asset in the portfolio
where the weighting scheme is the usual present value weighting scheme.

An interpretation for Convexity as defined above is that the change in Dollar Modified
Duration can be random and it has an exposure to changes in the basis measured by Convexity, and
an additional expected change component measured by Convexity,. An obvious observation at this
point is that the above definition of Convexity is two-dimensional. This appears unusual given that
the traditional measure for Convexity, namely % B, is not. This issue is the subject of the

r
following subsections where they are reconciled. At this point however, if we have to choose

between the two components of Convexity then the one which is of higher order importance is

Convexity,.”

A Consistency with Traditional Convexity

Traditional measures of Convexity are obtained by computing i’j / B in the setting of either

or
Fisher-Weil where the price at time ¢ of a default-free portfolio of positive cash flows is computed
via B = Zle CieXp{_ f, L, +0(v) dv}, or Macaulay which is the special case of Fisher-Weil when

0(v) =0 for all v. For both cases the resulting Convexity measure for this portfolio is

.
) Y (T-t*C,P(tT)
0 B/B _ il
arl N

C.P(t,T)
1

i=

where P(t,7) = exp { f Tr+ o(v) dv} which is the term structure of pure discount bonds at time ¢.
t
Consequently traditional Convexity can be interpreted as the present value weighted average of the

time to each cash flow squared.

32 From (17) we can see that Convexity, is the coefficient of dx(f) which is of order /df whereas Convexity, is the coefficient

of dt. Hence Convexity, is of higher order importance when matching Convexity.
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To reconcile the above traditional Convexity measure with the Convexity definition (20) first
recall from Section III-B that the only class of volatility structures consistent with the Fisher-Weil
Duration measure is y(w,z,T) = 6(w ,f). Second, a basis must be chosen and to simplify calculations
set m(w,f) = 0 and Y(w,f) = o(w,f). This can be interpreted as choosing the short rate as the basis
with an adjustment so that expected changes in the short rate are always zero in the equivalent risk-
neutral economy. With this choice the resulting Basis Risk measure of a single default-free cash flow
is &(w,¢,T) = T-t which has intertemporal dynamics described by (16) when o(w,t,7) = -1 and
N(w,,T) = 0. Consequently the functions H(w,z,T) and G(w,z,T) in (17) simplify to (T ~-1)? and

((T-t)r(¢) - 1) respectively resulting in a Convexity measure of

M (T2 C P,T)
¥ C,Par)

Convexity, =

N (T-1) C,P(t,T)
Convexity, = r(t) m -1 = r() x Duration - 1
i=1 Ci P(t’Ti)

Convexity, above is identical to the traditional Convexity measure and at each fixed point
in time Convexity, is a linear function of Duration. Consequently if we wish to engage in an
immunization strategy where present value, Duration, and Convexity are matched across assets and
liabilities then we can ignore Convexity, because it is redundant. In this sense the only relevant
component of Convexity in the traditional settings of Fisher-Weil or Macaulay is indeed the

" 3*B
traditional measure of — / B.

or?

B: Convexity in the CIR (1979) framework

Computing the Convexity measure i‘j B can be done in the framework of CIR (1979)

ar
since the value at time 7 of a portfolio containing default-free cash flows takes the functional form B(7(z),7)
where 7(¢) is the short term interest rate at time ¢. Is this measure Convexity in the CIR (1979)

framework also consistent with the definition of Convexity provided in this paper?
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To understand the relationship between these two concepts of Convexity first choose the
short rate as the basis for computing Convexity as defined in this paper. This choice is motivated
from the observation that Convexity in the CIR (1979) setting considers changes in a portfolio’s
value with respect to movements in the short rate. Now consider the dynamics of (P(t,T) E(w t,t,T))
with respect to this basis within the Markovian spot rate framework of CIR(1979). Letting
P(r(?),t,T) denote the functional form for the price at time ¢ of a bond that matures at time 7, the

dynamics of (P(Z,T) E(w t,t,T)) can be written in the form™

d\ P, Az
( (D&, T)) = G(w,t,1) dt + H(w,t,T)dr(?) (21)
P@t.T)
where H(w,t.T) = FPCOLD | proyaty
Or(zy’
Glw 1) = 1 +(r(t)m]ﬁ( LT - (B(F(t) 0 + o)) 220D | 1o 1.7y,
or(t) or(1)

Imposing this structure onto the definition of Convexity in (20) for a portfolio whose value is

computed via B(r(),t) = Y ., C, P(r(1),t,T) yields

Y CP(LT (a“"”’“ P(r(1).4.T, )
Lo et PO ] #3000 i

Convexity, = =
X, P ooy

' a0(r(?), Modified
Convexity, = 1 + (” (1) - %] X( DZNZEZH)

ao(r(t) 1)

0(r(2).r) + 0.t
[(r()) o(r(),) ————== )

) x Convexity,

See Appendix 2.
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The above shows that Convexity, is a linear function of Modified Duration and Convexity,. Once
again we see that if we wish to engage in an immunization strategy where present value, Duration,
and Convexity are matched across assets and liabilities then matching Convexity, is redundant.
Consequently a relevant measure of Convexity in the CIR (1979) setting is simply Convexity, which
is exactly the traditional measure of Convexity.

An intuitive interpretation for why Convexity as defined in this paper is two dimensional
whereas it is only one dimensional in the CIR (1979) framework can be obtained from thinking of
a liability portfolio’s value evolving on a two-period binomial tree. Now consider immunizing this
liability portfolio with an asset portfolio. Over one period we require two conditions to be met by
this asset portfolio to ensure that its value imitates the liability portfolio’s outcomes. Duration
immunization provides these two conditions; the present value matching condition and the Basis
Risk matching condition. However over two period there are four possible paths that the liability
portfolio’s value can take. Consequently we require four conditions on the asset portfolio to ensure
it has the same value as the liability portfolio in these four states of nature. The two additional
conditions correspond to the two Convexity conditions provided in this paper. However in a path-
independent term structure setting such as that of CIR(1979) the up/down and down/up movements
of the liability portfolio are perceived to be identical. Consequently one of the Convexity conditions

is redundant.

C: A Scheme for Calculating Convexity in Practice

Here we return to the practical scheme for computing Duration presented in Section I1I-A and
extend it to include Convexity. As a reminder the chosen basis is obtained by setting m(w ,f) = 0 and
Y(w,2) = 1 which allows us to interpret bond volatility as Basis Risk. Further it was argued that a
reasonable local approximation to the bond volatility structure I'(w,,2,T) is obtained by restricting

it to be purely a function of time-to-maturity I'(t) and estimating it using recent historical data via

I'(r) = LVAR[Aln(P(t,tH:))}. The resulting Basis Risk measure of a default-free portfolio
At
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containing positive cash flows is

(Basis) YN (T € P(T)
Risk |
. Y. ¢ PT)

To compute Convexity we need to characterize the evolution of Basis Risk for single cash flows as
in (16). Here &(w,t,7) = (T-¢) which implies a(w,t,T) = - % and M(w,4,7) =0 so the

resulting Convexity measure is

Y T(T-0)? C, P@4,T)

Convexity, = m
Y. CPT)
Y-Sl par) Busis
Convexity, = , @ + (1) x( chz;s) .
Y ¢ P@.T)

As an aside, observe that when creating an immunization strategy where present values,
Durations and Convexities are matched across assets and liabilities we can re-center Convexity, by
subtracting r(¢) x (Basis Risk) without affecting the strategy. This is because Duration immunization

already requires the matching of Basis Risks. We can interpret this re-centered Convexity as the

weighted average of forward rate volatilities since % is the forward rate volatility structure.
T

To demonstrate the calculation of Convexity we continue the numerical example presented

in Section III-A, namely consideration of a 9 year, $100 face value bond with a coupon rate of 5%

per annum payable semi-annually on June 15, 1994. Estimates for the yield curve and I'(t) on June

15, 1994 appear in Section III-A. The computed bond value is $86.2937 and the bond’s Basis Risk
EING)

is 0.092777. The only remaining item required for calculating Convexity is an estimate for —

This is obtained by numerically differentiating the volatility structure estimate of I'(t) which is
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depicted in Figure 3 below.**
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FIGURE 3
Forward Rate Volatility Structure
on June 15,1994,
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We now have sufficient information to compute the Convexity of any single cash flow with a time-
to-maturity of t; denote the Convexity, and Convexity, for this single cash flow as H(t) and G(7)
respectively. In particular H(t) = I'(t)? and G(7) =

the observed yield curve. Both components of the Convexity measure for all single cash flows is

depicted in Figure 4.
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FIGURE 4
Zero-Coupon Bond Convexity
on June 15, 1994.
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Note that traditional Convexity in the Fisher-Weil or Macaulay setting implies that the forward rate volatility structure
should be constant across maturity (see Section IV-A). This does not appear to be the case in Figure 3. Whether this deviation is

significant in an immunization context remains an empirical question.
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The Convexity of the coupon bond in question can be obtained by observing that the Convexity of
a portfolio is the present value weighted average of the Convexities from each cash flow in the

portfolio, that is

Y H(T-1)C,P(1,T)

Convexity, = = 0.01000282
Y C P
3L G(T, 1) C, P(LT)
Convexity, = = 0.00804985.
Eﬁil CI P(t’]—")

The above information can be used to find a portfolio that matches the present value,
Duration and Convexity of the coupon bond. This requires two cash flows in the portfolio where
maturities and quantities of these cash flows must be chosen. That is, we want to solve for a, b, T

and 7, in the following system of equations

aPtT) + bPtT,) = 862937
aP(t,1)) _ b P(T) _ -
86.2937 I 86.2937 (750 0092777
P T, -1) + 228 B r,-r) = 0.01000282
86.2937 86.2937
) G(T, 1) + 22 G(T,-1) = -0.00804985 .
86.2937 86.2937

A solution to the above system is a =26.4516, b =119.0285, T, = 2.62 and T, = 8.86. This has the
interpretation that a portfolio with $26.4516 invested ina 2.62 year zero-coupon bond and $119.0285
invested in an 8.86 year zero-coupon bond behaves like the original coupon bond over a 2dt time

period.
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V. DURATION, CONVEXITY AND HIGHER ORDER HEDGING

IN A MULTI-FACTOR TERM STRUCTURE SETTING

This section will appear in the next version of the paper.

VI. SUMMARY AND CONCLUSIONS

This paper generalizes the traditional measures of Duration and Convexity in a manner that
circumvents the need to think of them in terms of partial derivatives. This is necessary within the
context of modern-day term structure models where the term structure at a single point in time
generally cannot be summarized by a finite number of state variables.

Here Duration can be thought of as “the time-to-maturity of the zero coupon bond that
behaves like the portfolio of cash flows under consideration”. The term “behaves like” is meant in
the sense that the zero coupon bond and the portfolio have the same current value and will have
identical realizations over the next instant in time. The matching of realizations is obtained by
matching the volatility of the zero coupon bond to that of the portfolio hand hence volatility is
closely related to the calculation of Duration. In a multi-factor term structure setting a single zero-
coupon bond cannot achieve this goal however a portfolio containing N zeros can where N is the
number of Brownian motions introducing uncertainty into the bond market. Consequently Duration
in a multi-factor setting becomes an N-dimensional vector.

Convexity can be thought of as measure of how to maintain a duration based hedge over a
longer period of time. The interesting result of this measure is that it is generally two-dimensional.
This results because the term structure is allowed to be generically path-dependent. The first
component of Convexity is related to a combination of the term structure’s volatility and the
volatility of this volatility whereas the second component is related to expected changes in the term
structure’s volatility. However under the traditional circumstances of the Fisher-Weil setting and the

path-independent setting such as CIR (1979) then the traditional one-dimension convexity measure
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is obtained. In particular the second component of the Convexity measure derived in this paper
becomes redundant.

In order to calculate the Duration and Convexity measures as defined in this paper requires
the term structure, the volatility of the term structure, and a description of how this volatility changes
over time; the latter is required only for the Convexity measure. This paper has been nondescript in
terms of these components so the specifications can be left to the user. However the case where the

term structure’s volatility is purely a function of time-to-maturity is considered as an example.
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APPENDIX |
Given the dynamics for P(¢,T) in the case of one Brownian motion and £(w,.#,T) in equations (1) and (15) respectively,

the dynamics for the process (P(t,T) E(w,,t,T)) can be expressed as
d(P(t,T)E(wt,t,T)) = P(.T) di(w,1,T) + E(,1,T) dP(t,T) + d(P(t,T) , E(wt,t,T)>r

thatis d(P([’Qf(T(’;"t’D) = (@@, T) + M) N@u,7) W(@,0))dt + M(@,L.T) W(w,0) Q)

+ Ew,1,7) (r(t) + )L(w,,t)I‘(w,,t,T)) dt + &(w,t,T) [(w,t,T) dW(1)

+ Do, t,7) n(w,t,7) P(w 1) dt .

Observing that I'(w,.£,7) = &(w,.t,T) ¥(w,.f) and simplifying yields

d<P(”2§§‘;’””T)) . [ W, 0.T) + (0,0, T A1) + W(w,0 E(@,t.T) 1(w0,1,T)

+ M@0 Y@ (n(w,L7) + a(w,,z,nz)) dt
+ Y(w,0) (N(@LT) + Ew, L7 )dW (1) |

Expressing the evolution of the process (P(t,T) E(w t,t,T)) in terms of the basis factor x(f) yields

d(P(t,T) I‘(w,,t,T))
P(t,T)

= G(w . T)dt + H(w,1,T)dx(r)

where H(w,,T) = n(w,,7) + Ew,LT)

Gw,t,T) = a(w,t,T) + 1|J(o),,t)2 E(w, 6T N(w,t,T) + E(w,6,T) r(t) - m(w,f) Hw,t,T)

Now observing from (6) that B(f) ®(¢) = Zfi L C,P(t,T)E(w,t,T) we can write

d(BOD@) _ Y C d(PULT) &, T))
B([) i\il Ci P(taT,')

dx(r)

| XN ¢ par) G,T) . Y C PUT) Hw,LT)
Y C,PT) Y C,PT)
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APPENDIX 2

The dynamics for pure discount bonds takes the form

dP(LT)
% = (M) + M) T(@u. 1)) di + Do, ,7) Q). (A-1)

In the Markovian framework of CIR(1979) the functional form for the prices of all pure discount bonds can be written

as P(r(¢),t,T) and the dynamics of the short rate can be expressed as
dr(t) = (0(r(0).0) + Mw,0) o(r().0)) di + o(r(r),0) dWAD).

Applying Itd's lemma to P(r(¢),t,T) shows that the dynamics of bond prices can also be expressed as

; NELGOYR L OPeL) 1 EPE@T) o o L [ 9P
ap(r(0),.7T) o) W, = 2 oy o( (t),t)]dt ( ar0) o( (t),t)J aw(r) (A-2)

where 1(®,0) = 0(r(0),0) + Mw 1) o(r(£),)). Comparing the drift and diffusion coefficients across (A-1) and (A-2)

provides two restrictions implied by the addition of the Markovian framework, namely

mmnwm=ﬁ%%ﬂwwo (A3)

PUT) (1) + Moo D, D)) = ZLEOLD g gy SPCOLT) L IPUOLT 17,12 (A4)

or(f) ot 2 or(ry?
Observing from (5) that &(w,t,7T) = F(:(’;? when the short rate is the chosen basis, from (A-2) we have
o(r(r).t
Pt,7) E(w,1,T) = % Consequently the dynamics for (P(fj) F(‘A’,J,T)) can be expressed as

4Mﬂw%m:4ﬂ%%ﬂ)

| @P),,T) FP(r(HT) 1 5 FP(r(h),t,T)
= (W(e(r(t),t) +A(w,,t)o(r(t),t)) + oo + Eo(r(t),t) W dt

+(@M%DW@ﬂmm (A-5)
or(ty
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However, from (A-3) and (A-4)

82P(r(t),t,T) _ o , . B M ; ) l
or(r) ot ar(t) () PUr().1.7) (D) 0(r(0.0) 5

2

9"P(r(0),1,7) 0(,,([),[)2
1y’

and rearranging provides

FLEOLD gy py o ELEOLD L FPEDLT) 0 2

or(1y ar@or 2 oy’
ooty + |y - 20D PE@LT) ) 3000 FPDLT)
oL ((t) ar(r) ) ar(r) oD or(t) ory

Substituting the above into (A-5) provides the expression

| per o [y - 20000\ OPCLT) | _ aotrinn \ PPEOLT) o
d( P17 E(w,0.1)) = [P( (D..1) + (1 - 202 o [r@,0) - 222 . (t),t)) dr

. [ m o(r(t),t)) dm()
ar(t)?

Expressing this dynamic in terms of the spot rate transitions, since the spot rate is the chosen basis, and again observing

that E(w,1,7T) = % /P(r(0),t,T) yields

d(P(t.7) E(w,0.7))
P(LT)

= G(w £ T)di + H(w,1,T) dr(0)

where  H(wi,7) = ZECOLD [ poy iy
ar(t)?

Gl tT) = 1+ ( Hi) - aea(r”—((t’))”)] E(w,.T) —( 0((0),1) + o(r(t),t)%g;’[) H(w,,T) .
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