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Abstract

We show that the recently developed nonparametric procedure for fitting the term
structure of interest rates developed by Linton, Mammen, Nielsen, and Tanggaard
(2000) overall performs notably better than the highly flexible McCulloch (1975) cubic
spline and Fama and Bliss (1987) bootstrap methods. However, if interest is limited
to the Treasury bill region alone then the Fama-Bliss method demonstrates superior
performance. We further show, via simulation, that using the estimated short rate
from the Linton-Mammen-Nielsen-Tanggaard procedure as a proxy for the short rate
has higher precision then the commonly used proxies of the one and three month
Treasury bill rates. It is demonstrated that this precision is important when using

proxies to estimate the stochastic process governing the evolution of the short rate.
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1 Introduction

The term structure of interest rates is central to all models of fixed-income security pricing.
Prime examples of continuous time models of the term structure include Vasicek (1977), Cox,
Ingersoll and Ross (1985), Hull and White (1990), and Heath, Jarrow, and Morton (1992). In
both the Vasicek and Cox-Ingersoll-Ross models the evolution of the short term interest rate
and risk preferences are specified; this determines the term structure on any given day. Hull
and White demonstrates how to extend both of these models so that they can be calibrated
to an observed initial term structure. Heath-Jarrow-Morton deviate significantly from these
paradigms by taking an initial term structure as given and models the evolution of the whole
curve.

Unfortunately, at any point in time the whole term structure is not directly observable.
Consider government bonds, which is a natural data set from which to obtain the term
structure. There are several obstacles in place. The first, and most obvious, difficulty is that
only a finite collection of bonds are observed as opposed to a desired continuum. Second,
all bonds issued with maturities greater than one year are coupon bearing, except for bonds
created using the recently introduced STRIPS program.' The existence of coupon payments
is undesirable because theoretical term structure models, such as those mentioned above,
always make reference to the zero-coupon bond term structure. Third, many theoretical
models also assume that all bonds are default-free without features such as callability and/or
special tax privileges. This unfortunately limits the data that can be used. Finally, liquidity

problems are sometimes present. It has been well documented that Treasury notes and bonds

1 “Stripped” notes and bonds are issues that have had their component cash flows traded separately. The
Treasury does not sell the individual cash flows, this is done by dealers that first purchase a coupon bearing
note or bond. In 1985 the Treasury permitted this resale of individual cash flows for a limited selection of
notes and bonds - called the STRIPS program. As of September 1998 all Treasury notes and bonds issued

on or after September 30, 1997 are all eligible for the STRIPS program.



with less than one year to maturity, and Treasury bills with less than one month to maturity,
are illiquid (see Fama and Bliss (1987), Sarig and Warga (1989), Amihud and Mendelsohn
(1991), Duffee (1996), Bliss (1997)).

Our interest in estimating the zero-coupon bond term structure is two-fold. First, esti-
mation of the discount function each day should be considered as a vehicle to explore the
intertemporal behavior of the term structure. In fact such extraction procedures are also a
pre-requisite for intertemporal models requiring the specification of an initial term structure,
such as Hull and White (1990) and Heath, Jarrow and Morton (1992). Second, of particular
interest is the estimation of the very short end of the term structure since most models of
the term structure’s evolution have the short term interest rate as a state variable. The
importance of the short end is highlighted by the fact that the evolution of the short-term
interest rate under the risk-neutral probability measure is enough to characterize the whole
term structure.

The first work dealing with the extraction of the (unobserved) zero-coupon bond term
structure is accredited to McCulloch (1971, 1975) who proposed fitting the discount func-
tion with quadratic and cubic splines. Various alternative parametric methods followed:
Chambers, Carleton, and Waldman (1984) use polynomials to estimate the yield curve, Va-
sicek and Fong (1982) use exponential splines to estimate the discount function, and Nelson
and Siegel (1987) use a second-order constant-coefficient partial differential equation to fit
the yield curve in a parsimonious fashion. Fisher, Nychka, Zervos (1995) and Waggoner
(1997) modify the McCulloch cubic spline procedure by adding a function to penalize large
variations in the estimated yield curve that can occur with over-fitting. Fama and Bliss
(1987) approach the term structure estimation problem differently. Instead of providing a
curve fitting procedure they use an iterative scheme, referred to as “bootstrapping”, where a

piece-wise constant forward rate curve is chosen to exactly price all bonds.? An excellent pa-

2Note that their implementation requires the elimination of suspicious quotes using a series of filters.



per that compares a large subset of the above term structure extraction methods is provided
by Bliss (1997). In short, based on out-of-sample tests, he concludes that the Fama-Bliss
method performs better than all other methods and the McCulloch cubic spline is the better
performer amongst the remaining curve fitting procedures.

Recently, Linton, Mammen, Nielsen, and Tanggaard (2000) (LMNT hereafter) have de-
veloped a nonparametric kernel smoothing procedure to fit the discount function. This
approach is highly flexible with regard to the functional form of the estimated curve; the
trade-off between under/over-fitting is controlled by the “bandwidth” that determines the
quantity of nearby information used to estimate the yield at a particular maturity. LMNT
(2000) mostly provides a description of the large sample theoretical properties of the discount
function’s estimate but the relative performance of this estimate compared with other term
structure extraction methods has not been established on real data. This motivates the first
part of the present paper: we consider a modified version of the LMNT procedure, provide
the first order conditions necessary to solve the optimization problem in a timely fashion,
and finally empirically compare this term structure estimation procedure to other flexible
term structure extraction methods.?> In our comparison we only consider the Fama-Bliss
(1987) bootstrapping method and the McCulloch (1975) cubic spline method since: i) the
LMNT method is not parsimonious and we wish to compare it to other non-parsimonious
methods, and ii) Bliss (1997) has clearly demonstrated the superior performance of both the
Fama-Bliss and McCulloch procedures relative to other existing methods.*

Using U.S. Treasury bills, notes and bonds with time-to-maturities out to ten years
obtained from the CRSP bonds data set over the period January 1970 to December 1998

we conclude that the modified LMNT procedure demonstrates notable superior performance

3The modification considered is to estimate the yield curve instead of the discount function. This was

suggested in LMNT (2000) as an extension.

4We conducted some preliminary analysis using other term structure fitting procedures and our results

conformed to the findings of Bliss (1997).



on average. In-sample results suggest that the LMNT method is preferred to McCulloch’s
cubic spline 70% to 85% of the time across the whole maturity spectrum.’ Out-of-sample
the LMNT procedure is preferred to McCulloch’s cubic spline approximately 75% of the
time for securities with less than one year until maturity, 69% of the time for securities
with maturities between one and three years, 52% of the time for securities with maturities
between three to five years, and 63% of the time for securities with maturities greater than
five years. With respect to the Fama-Bliss method we find that the LMNT procedure is
only preferred a disappointing 18% of the time for securities with less than one year until
maturity. However beyond one year the LMNT method is preferred 71%, 77% and 64% of
the time on the one to three, three to five, and beyond five year maturity regions respectively.
A similar pattern occurs when comparing the McCulloch method to the Fama-Bliss scheme
in that the latter is only preferred when considering securities with less than one year until
maturity. This suggests that the primary benefit of using the Fama-Bliss bootstrapping
procedure is in the Treasury-bill region of the term structure however for longer maturity
securities we are better off using a curve fitting procedure such as the LMNT method.
Given the importance of the short-end of the term structure the second component of this
paper studies the short rate estimate obtained by using the above LMNT procedure. Proxies
for the short rate vary from study to study: Chan, Karolyi, Longstaff, and Sanders (1992) use
the one month Treasury bill rate; Ait-Sahalia (1996b) uses the seven day Eurodollar deposit
spot rate; Conley, Hansen, Luttmer, and Scheinkman (1997) use the Federal funds rate;
Stanton (1997) uses the three month Treasury bill rate. At first glance all of these proxies
seem reasonable however some questions regarding their appropriateness have recently been
raised. In particular Duffee (1996) finds idiosyncratic behavior in very short term U.S.

Treasury bills and suggests using the three month Treasury bill rate as opposed to a shorter

5In-sample comparison to the Fama-Bliss method is not considered as this method will, by construction,

provide an almost perfect fit.



maturity rate. Chapman-Long-Pearson (1999) demonstrate that if the term structure of
interest rates is driven by a non-affine term structure model then an economically significant
difference can arise between the use of one month and three month spot rate proxies for the
short rate. However, one issue that is not considered in the above studies is the impact of
observation noise in prices and it is this issue that we wish to address.

One method of reducing the influence of observation noise is to use a curve-fitting pro-
cedure to estimate the very short term end of the term structure. The resulting proxy for
the short rate should exhibit less error for the obvious reason that the curve-fitting proce-
dure “averages the errors” present in observed prices. We demonstrate this in the paper
via a simulation study: coupon-bond prices are generated with error, the term structure is
then extracted using the modified LMNT methodology, and a comparison between several
short term interest rate proxies is conducted. The comparison involves studying: i) each
proxy’s deviation from the true short rate generated from the simulation, and ii) the use of
each proxy in the estimation of the drift and diffusion coefficients of the stochastic process
characterizing the evolution of the short rate. As expected, the LMNT-based estimate of
the short rate has higher precision relative to the use of the one/three month Treasury bill
rates. We also recover the result of Duffee (1996) in that the three month Treasury bill rate
provides a better proxy to the short rate than the three month Treasury bill rate. This is
because the error in yield resulting from the noise in prices is amplified when the securi-
ty’s time-to-maturity decreases. The importance of using a short rate proxy with low noise
is highlighted when using it to estimate drift and diffusion coefficients from interest rate
changes. The simulation demonstrates that the bias in a diffusion estimate and the ability
to estimate the slope of the drift depends heavily on the ability to obtain a more precise
estimate.

The remainder of this paper proceeds as follows. In Section 2 the modified LMNT (2000),

Fama-Bliss (1987) and McCulloch (1975) term structure extraction procedures are described.



Section 3 contains the comparison methodology, data description, and results. A simulation
study demonstrating a benefit of using a curve fitting procedure to extract a proxy for the

short term interest rate is provided in section 4. Section 5 summaries and concludes.

2 Term Structure Extraction Methods

In this section we provide our implementation of the LMNT (2000) procedure and describe
both the McCulloch (1975) and Fama and Bliss (1987) methods for extracting the term
structure of interest rates. All of these procedures estimate the term structure at time ¢ with
bond data observed at that time only and hence they ignore the intertemporal aspects of the
term structure’s evolution. All bonds are idealistically default-free and provide a stream of
non-random cash flows at known times in the future. In ensuing sections we take as given N
bond prices all observed at the same point in time. The i observed bond price is denoted P*
and this bond provides known cash flows bé- at times 7'3- in the future for j = 1,...,m’. The
discount function, denoted d(-), is extracted from these observed bond prices by imposing
the static no-arbitrage condition, which has the interpretation that the price of any bond is
the sum of all its discounted cash flows, that is P* = PV*, where PV* = ZTzl bid(7h) is the
discounted present value in which d(7) is the discounted value of one dollar to be received
at time 7. In practice, we can expect there to be small errors in this relation when applied
to actual data. First, we do not observe the actual trade price, instead we observed quoted
bid and ask prices. Further these prices may not have been quoted at exactly the same
time so small deviations may result from non-synchronous trading. In addition to this there
are other complications such as liquidity and taxes that have been proposed as reasons to
expect further small violations of the arbitrage condition. We shall therefore suppose that

P' = PV’ + &' where €' is a random error term.



2.1 The LMINT Method

LMNT (2000) suggest various kernel smoothing estimators for the discount function. In
particular two estimators are studied in depth, the “local constant” and “local linear” meth-
ods. In brief these estimators are, respectively, based on locally approximating the discount
function as a constant and a linear function of maturity. The LMNT implementation that
we adopt modifies the local linear method by applying it to the yield curve instead of the
discount function; the yield curve y(-) is defined by y(r) = —XIn(d(7)) or equivalently
d(1) = exp(—7y(7)). The motivation for considering this version of the LMNT procedure
is threefold: i) the discount function at the origin is guaranteed to be one, ii) the discount
function will be strictly positive for finite maturities, and iii) the discount function is “closer”
to being log-linear than linear.

This version of the LMINT procedure provides estimates for both the yield curve and its
first derivative (denoted 3/(-)). The idea is that for any point 7 close to a point v we can
approximate y(7) by the linear function y(v) + (7 — v)y/(v). Therefore, we can approximate

the present value of a given bond by

PV = Z b;e‘(y(vj)+(T§—vj)y'(vj))73,

j=1
where v; are points close to 7'3 The estimation method is based on minimizing the sum
of squared pricing errors P* — PV'. Specifically, we find the functions 7() and /(-) that

minimize the following criterion function with respect to the functions y(-) and 3/(-):

) 2 )
N m" m’

QN(% y/) _ Z / . / pi_ Z b;e*(y(’l)j)+(7';-f’l)j)y’(’l)j))7'; H {Kh<vlc . T};)dvk} : (1)
i=1 j=1 k=1

where K is the kernel function, h is the bandwidth, and K(-) = K(-/h)/h. Here, the
integrals are taken over the support of the kernel. An interpretation for this criterion is that it

is a kernel smoothed version of the sample least squared errors criterion; the kernel weighting



scheme measures the distance between bonds by the distance between their respective vectors
of cash flow payment times.
The above minimization problem generates the following first order conditions for y(.), /()

for all points v in the support of the payment times:

SN Xi(wiy().y() = 0 (2)
S Xy () (v-1i) = 0,
where:
X)) = (Ko = rirtai0) | P~ tito) = 3 ([ Kato -t arae) |
Tk

dy(v) = exp{= (y(v) + (7}, —v)y'(v)) 7}

Numerically it is easier to solve these first order conditions as opposed to the minimization
problem (1) due to the high dimensionality of the multiple integrals present in (1).”
To implement the above LMNT procedure choices must be made regarding: i) the kernel,

ii) the bandwidth, and iii) the set of yields to solve for which is defined by the choice of v’s

considered in the first order conditions.® Our choices are as follows. A common kernel choice

6The objective function (1) has the same probability limit as

2

N m’
Z P Zbi(T;-)e*T;’y(s;)
i=1 i=1

which can be seen by letting A | 07, N — oo and presuming that the bonds ensure the sequence {T;}

becomes dense in a compact support.

"These conditions are derived in a similar manner to the first order conditions for the local linear estimator

of the discount function in LMNT (2000).

8Tt is theoretically possible to compute every point on the yield curve from the first order conditions once
the kernel and bandwidth have been chosen. However since this is impossible in practice we choose a finite
set of specific maturities to form a “reference set of yields” and interpolate between them in a manner that

will ben discussed shortly.



in the applied nonparametric literature is the Gaussian kernel, mostly because it produces
very smooth curves and it is also well attuned for estimation of the derivatives.” Consequently
we adhere to this choice. For the bandwidth our choice is based on the observation that the
cash flows generated by all bonds becomes increasingly sparse as time to maturity increases.
Hence, when computing the present value of the n'* cash flow from bond i, occurring at time
7!, it is desirable for the bandwidth / to be an increasing function of 7¢,. We choose h to be
of the form h(7%) = a + br!, where a and b are arbitrarily chosen so that h(0) = 2/12 and
h(10) = 1.1 This bandwidth choice ensures that the estimated yield curve is relatively more
flexible at the short end where more information is available. Finally, we choose a finite
number of maturity dates vy, ..., v for which to compute y(v;) and g’ (v;) for i =1,... k.
These estimates can be viewed as a set of parameters summarizing the entire yield curve
and an interpolation algorithm is then used to obtain an estimate of any desired yield. We
choose vy, ..., v by setting v; = 0 and generate the remaining v;’s by v; = v;_1 + %h(vi_l).
This structure is consistent with the notion that less yield measurements are required when
the bandwidth increases and adjacent v;’s are “close” to each other relative to the bandwidth
in that neighborhood.

The chosen interpolation algorithm is motivated from the original objective function (1)

9The yield curve estimator will inherit the differentiability properties of the kernel implying that the

resulting yield curve estimator will be infinitely differentiable on the entire real line.

10 Ad hoc motivation for these choices is obtained from the following properties of our data set. We do
not use any Government securities with a time-to-maturity of less than one month however we do wish infer
an estimate of the short rate. We consider a bandwidth choice of two months to be adaquate to capture a
reasonable amount of data at the short end of the term structure for such an inference. At the long end,
we do not use any Government securities with a time-to-maturity of more than ten years. Using a one year
bandwidth will “tie together” the last few cash flow payments of the longest maturity bond (cash flows from
US Treasury notes/bonds occur semi-annually) in the sense that they will be discounted at similar rates.We
also conducted some preliminary experiments with various choices of b, namely b = 0.75, 1.25 and 1.5. The

results did not vary dramatically.
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as follows. Suppose we have computed 7(-) and 3/(-). Now consider a pure discount bond
with time to maturity 7 and price d(7). The yield on this zero coupon bond can be computed
from the relationship d(7) = e~¥(M*7. An estimate of the yield y(7) is obtained from the
value Y (7) that minimize the original objective function (1) with respect to y(7) given J(-)
and ¢/(-); that is

min / (e—yv)w _ o ({0 ) ) Ki(v — 7)dv.

y(r

The solution to this minimization problem is

Y(r)= ! In (/ (ef(g(”H(T*”)??(”))T) Kn(v— T)dv) :

-
Since we only have §(v;) and y/(v;) for i = 1,... k, we can approximate the above with
v 1 25:1 Kh(%’ — T) <€7(@\(vi)+(77vi):’;’(vi))7')
R ; (3)
! Yoing Kn(v; — 1)

-~

Y (7) can be interpreted as the yield on the 7 maturity pure discount bond whose price is
obtained by the Nadaraya-Watson kernel smoothing estimate of pure discount bond prices
computed from yield curve estimates 7j(v;) and 3/ (v;) for i = 1, ..., k. Since Y (7) is obtained

from other yield curve estimates we should interpret this purely as an interpolation scheme.!*

2.2 The Fama-Bliss Method

The Fama-Bliss (1987) bootstrapping procedure considers expressing the term structure in
terms of the forward rate curve f(-), which is defined by the relation d(7) = exp (— [; f(v)dv),
and further the forward rate curve is presumed constant between successive observed bond

maturities. More specifically let the sequence of observed bonds { P} | be ordered from

'Note that the first order conditions (2) require computation of the integral [Kjp(z —

T?)e_(y(m)+(7-§_m)y’(m))fi’da:. Using the above interpolation scheme the integral is approximated by
exp{—Té- X ?(T;)}

11



the shortest maturity to longest maturity and let 7¢ denote the time-to-maturity of the "
bond. Let F* denote the constant forward rate on the time-to-maturity interval (7! 7]
where 7° = 0, that is f(r) = F* for 7 € (77!, 7. The discount function now takes
the form d(7) = exp (—FK(T — 7K1y — 52—11 Fr(rh — Tk*1)> where K is chosen so that
T e (rf 1 7K.

To extract (bootstrap) the forward rate curve proceed as follows. First determine F'!' by
considering the shortest maturity instrument and solve for F'* in P! = Z;n:ll brexp (—F' x 7}).
Now consider the second shortest instrument and solve for F? in P? = Z;njl b2d(73) given
F', and so on. In general, to bootstrap F' use the i"® observed bond and find the F* that
solves P’ = Z;”:l bid(r}) where the sequence {F7}'~} has been computed from previous
bonds in the same fashion.

By construction the above procedure exactly prices all in-sample bonds. It consequently
is subject to spurious behavior if some “mis-priced” bonds are in the sample. To lessen the
impact of this problem Fama-Bliss propose the following filters for the data: i) only fully tax-
able, non-callable and non-flower bonds are used, ii) Treasury notes and bonds are excluded
from the sample if their time-to-maturity is less than one year, iii) an instrument is included
if either its yield-to-maturity is within 0.2% absolute difference of the yield-to-maturities
of surrounding instruments or in between them, and iv) an instrument is included if the

resulting yield curve when the instrument is included does not exhibit large yield reversals

(adjacent changes that greater that 0.2% in absolute value and in opposite directions)."?

12The above is only a brief description of the Fama-Bilss filter and does not do it justice. A detailed
description of the filtering procedure can be found in the CRSP monthly bond file manual from the Center

for Research in Security Prices.
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2.3 The McCulloch Cubic Spline Method

McCulloch (1975) uses a cubic spline procedure to estimate the discount function. That is,

the estimated discount function is of the form

C/i\(’i') = g;(7) on the interval [1;, 7;q] fori=1,...,k — 1, (4)

where:
T1,...,Tk are a pre-specified set of knot points where 71 = 0,

gi(T) = a;(t — 1) + bi(t — 7,)* + (T — i) + d;,

ggn)(ﬂ-“) = ggl_)l(THﬁ fori=1,...,k—2and n =0, 1,2 (n represents the n'" derivative),
and ¢1(0) = 1.

The above structure implies that for k knot points there are k+1 free parameters that can be
solved for using the standard ordinary least squares objective function; that is ming Zf\il g2
where 6 is the set of free parameters in the cubic spline.

McCulloch chooses the spacing of the knot points so that there are an equal number
of bond observations between successive knot points. The motivation for this choice is
that having more issues in a particular maturity region of the term structure allows us to
determine a more detailed depiction of the discount function in that region. Since more
issues are observed at the short end of the term structure the McCulloch scheme allows
for greater flexibility in that region. Furthermore McCulloch suggests setting the number
of knot points equal to the square root of the number of observed bonds v N. Our first
implementation of the McCulloch scheme adheres to this choice however we also consider

doubling the number of knot points to 24/ N in order to study the impact of a more flexible

cubic spline.
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3 Comparison of Extraction Procedures

3.1 Data

The data used in this study is obtained from the Center for Research in Security Prices
(CRSP) and consists of U.S. Treasury bill, note and bond bid and ask prices recorded on
the last day of each month over the period 1970 to 1998. To preserve homogeneity in the
data we only consider fully-taxable, non-callable, and non-flower U.S. issues. This eliminates
pricing complications apparent in some issues that have either a special tax-privileged status
or option like features. To alleviate well known illiquidity problems associated with issues
that are approaching their maturity date, Treasury bills with a time-to-maturity of less than
one month and Treasury notes and bonds with a time-to-maturity of less than one year
are excluded. As an additional ad-hoc illiquidity filter, issues that have a relatively large
bid-ask spread compared to the average bid-ask spread of instruments with a similar time to
maturity are also excluded.'® The data remaining after imposing the above filters exhibits
sparsity and notable gaps in maturity for bond issues with a time to maturity beyond ten
years. This hinders the ability of all term structure extraction procedures introduced in
section 2 to provide a reasonable depiction of the yield curve at the long term end of the
term structure. Consequently we restrict attention to issues that have at most a maturity
of ten years. As a result of the above filtering process the average sample size for a day in

the 1970’s, 1980’s, and 1990’s, is 64, 113 and 140 respectively.

13To be more specific, on a given day the instruments that remain after invoking the previous filters are
grouped by time-to-maturity into one year intervals. Denote the average bid-ask spread for the i*" interval
as 5;. If the bid-ask spread s of an instrument that has a time to maturity falling within the i*" interal
is greater than the average spread by 50%, that is s > 1.5 x 5;, then this instrument is excluded from the

sample. The particular filter only eliminates approximately three to six instruments each month.
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3.2 Methodology

To compare the performance of the different term structure extraction procedures we consider
four criteria, three of which were used by Bliss (1997).1* First the mean absolute pricing
error MAPE = Zf\il ‘ef |, where e!” denotes the pricing error of the i*" reconstructed bond,
provides the average dollar error where all bonds have a face value of $100. As evidenced
in Tables 1 and 2 to follow, and noted in Bliss (1997), pricing errors for longer maturity
bonds tend to be larger. This motivates the use of the weighted mean absolute pricing

error measure WMAPE = YN w;

el | , where Bliss (1997) suggests the weighting scheme
w; = (D)~ N (D")~', where D' denotes the Macaulay duration of the i** bond. As
an alternative means of standardizing pricing error behavior we consider the mean absolute
yield error MAY E = Zfil ’eﬂ , where e} denotes the error in yield-to-maturity of the ‘"
reconstructed bond. This standardization is motivated by the observation that an error in
yield will have a greater impact on the price of a longer maturity bond. Consideration of the
MAY E is also intuitively appealing from a practitioners point of view since bonds are often
considered in terms of their yield as opposed to price. Finally, since any point between the
bid-ask spread is a viable price another measure of performance is to compute the frequency
of times that the reconstructed price is within the quoted bid-ask spread. This is measured
by the hit rate HR = % Zfil Iiprpi<picaski] Where I[BIDigl/D\igASKi} is the indicator function
that takes the value 1 when the reconstructed price of the i** bond is between the observed
bid price BID* and ask price ASK® and 0 otherwise.

A novel feature of the Bliss (1997) comparison methodology is that pricing error is defined
in terms of the reconstructed bond price relative to the observed bid and ask prices. More

specifically the pricing error of i** observed bond is computed as ef’ = Pi — ASK' when

P > ASK', ¢’ = Pi — BID! when Pi < BID', and e’ = 0 when BID' < Pi < ASK".

1 The three criteria considered in Bliss (1997) are: i) the mean absolute pricing error, ii) the inverse-

duration weighted mean absolute pricing error, and iii) the hit-rate.
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This notion of pricing error is intuitive since all values between the bid and ask prices are
viable. All performance measures considered here are based on “mispricing outside the
bid-ask spread” including the mean absolute yield error, which is based on the yield-to-
maturities implied by the fitted bond price, bid price and ask price; denoted if\i, Y}, p and

—

Yiqx respectively. In particular e} = Y? — Vi when Yi < Yig., e = Yi— Y}, when

—

Y > Yip, and ef =0 when Y}, > Y? > Yig. Note however that the Bliss (1997) notion
of pricing error is only used for performance evaluation. When implementing the term
structure extraction procedures of section 2 all errors are with respect to mid-point of bid

and ask prices, that is all errors are of the form &; = P? — Pi, where P = 2 (BID' + ASK").

3.3 Results

The above performance measures are computed for each of the three highly flexible term
structure extraction procedures presented in Section 2 with results reported in Tables 1 and
2. The two implementations of the McCulloch cubic spline procedure are referred to as
McCulloch-A and McCulloch-B with the first using the originally suggested /N number of
knot points and the second extending the number of knot points to 2v/N. To determine
whether these performance measures vary across the maturity dimension we also compute
these measures for different segments of the term structure. This is achieved by partitioning
securities into time-to-maturity regions, namely 0 < 7 < 1,1 <7< 3,3 < 7 < 5 and
5 < 7 < 10, where 7 represents the time-to-maturity of the security. Since a primary goal of
term structure extraction procedures is to estimate the price of a bond that is not actually
traded at the time of interest we wish to assess the relative interpolation performance across
term structure extraction procedures. This is achieved by separating the sample of bonds
on each day into an estimation subsample and a hold out subsample and computing both
in-sample and out-of-sample performance measures. The estimation subsample is obtained

by selecting every other bond from the sample where the longest maturing bond is always
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included. The remaining bonds constitute the hold out sample. Calculating performance
measures using out-of-sample data can also be viewed as controlling for the problem of over-
fitting associated with non-parsimonious methods. The in-sample and out-of-sample results

appear in Tables 1 and 2 respectively.

TABLE 1 ABOUT HERE

By construction, the Fama-Bliss (1987) method provides a perfect fit of all in-sample
bond prices. The only errors are from the bonds additionally filtered out using the Fama-
Bliss filtering rules. Consequently in-sample performance comparisons are heavily biased in
favor of the Fama-Bliss bootstrapping procedure and should be ignored. This accounts for
the high Hit-Rate measure in Table 1 indicating that on average 95% of bonds priced using
the Fama-Bliss extracted term structure are within quoted bid-ask spreads. This is notably
higher than the average hit-rates generated using other procedures, which range from 63%
to 73%. Further in-sample errors from the Fama-Bliss procedure yields an error reduction
of approximately 50% relative to other term structure extraction methods. In particular
for bonds with a time-to-maturity of less than one year, comprising of Treasury bills, the
average absolute error is approximately 20 to 40 times smaller.

Focusing on the other term structure extraction methods we find that on average the
in-sample absolute pricing error is 3.27 cents, 3.69 cents and 4.23 cents outside the bid-
ask spread for the LMNT, McCulloch-B and McCulloch-A methods respectively. Note that
these errors are listed in “performance order” with the scheme providing the smallest mean
absolute pricing error first. However Table 1 shows that the mean absolute pricing error
is consistently smaller at the short end of the term structure and that error magnitudes
increase as the maturity of bonds increases. Roughly speaking, the mean absolute pricing
error outside the bid-ask spread for all three fitting procedures grows from 1 cent for short

maturity bonds to 7.5 cents for long maturity bonds. Given this heteroskedastic behavior in
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the error, Bliss (1997) suggests weighting errors by their respective bond’s duration inverse
to prevent the pricing errors of long term bonds dominating the comparison results. The
resulting in-sample weighted mean absolute pricing errors outside the bid-ask spread are 1.21
cents, 1.91 cents and 2.23 cents for the LMNT, McCulloch-B and McCulloch-A methods
respectively. Note that the performance order remains unchanged. Considering bonds in
terms of their yield-to-maturity instead of their price shows that larger yield errors occur at
the very short end of the term structure. This is particularly true for both implementations
of the McCulloch procedure. Ordering the in-sample mean absolute yield-to-maturity errors
results in an unchanged performance order with mean absolute yield errors outside of the
bid-ask spread of 1.51 basis points, 2.47 basis points and 3.06 basis points respectively for
the LMNT, McCulloch-B and McCulloch-A procedures. Consideration of hit-rates again
leaves the performance order unchanged with respective overall hit-rates of 73%, 67% and
63%.

In summary irrespective of the performance measure the in-sample results suggest that
the LMNT method is preferred to the McCulloch-B scheme, which in turn is preferred to
the McCulloch-A scheme. The arguments for this ordering are based on overall performance
measures however the results provided in Table 1 shows that this ordering is preserved within

each bond maturity region as well.

TABLE 2 ABOUT HERE

As expected the out-of-sample performance measures provided in Table 2 are not as good
as their in-sample counterparts. This is particularly true for the Fama-Bliss bootstrapping
procedure. It is interesting to observe that based on overall out-of-sample mean absolute
pricing error the Fama-Bliss procedure is now the worst performer with an average absolute
pricing error of 6.01 cents outside the bid-ask spread. The best performer is the LMNT pro-

cedure with 4.96 cents then the McCulloch-B and McCulloch-A procedures with 5.34 cents
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and 5.49 cents respectively. Once again notable heteroskedastic behavior in the maturity
dimension is observed suggesting that ordering the performance of curve fitting methods
based on mean absolute pricing error may be misleading. In particular mean absolute pric-
ing errors at the long end are in the order of 15 cents whereas they are approximately 1 cent
at the short end. Focusing on both the overall weighted mean absolute pricing error and the
overall mean absolute yield error, which attempt to correct for this heteroskedastic behav-
ior, improves the relative performance of the Fama-Bliss scheme to the point where it now
performs better than both McCulloch schemes. In particular the Fama-Bliss, McCulloch-B
and McCulloch-A methods result in an out-of-sample overall weighted mean absolute pricing
error of 1.61, 2.25 and 2.49 cents respectively with corresponding overall mean absolute yield
errors of 2.05, 2.94 and 3.44 basis points. Note however that the Fama-Bliss procedure does
not perform notably better or worse than the LMNT procedure. The LMNT method has an
overall weighted mean absolute pricing error of 1.56 cents and a overall mean absolute yield
error of 2.03 basis points both of which are negligibly better than the corresponding measures
provided by the Fama-Bliss method. The comparable performance between the Fama-Bliss
and LMNT methods is reiterated with a small 0.7% difference in the out-of-sample overall
hit-rate in favor of the Fama-Bliss procedure. The reason for the improvement in the Fama-
Bliss method can be obtained by observing what happens across bond-maturity regions.
Notice that the only region where the Fama-Bliss bootstrapping procedure performs better
than other schemes is in the Treasury bill region - bonds with a time-to-maturity of less than
one year. Within this region the Fama-Bliss procedure yields a mean absolute pricing error
of 0.36 cents and a mean absolute yield error of 1.17 basis points and these small errors have
a significant impact on the WMAPFE and the M AY E performance measures. To further
emphasize the heavy influence of this notably high performance at the short end observe
that the Fama-Bliss procedure is consistently the worst performer when bond maturity is

greater than one year.
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How to choose from the term structure extraction schemes based on out-of-sample per-
formance is not clear cut. This is because the performance order does vary within maturity
regions, in particular the striking change in performance order of the Fama-Bliss method.
However, based on overall performance and controlling for the heteroskedastic behavior
along the maturity dimension |[by using the weighted mean absolute pricing error and the
mean absolute yield error metrics| suggests the performance ordering: LMNT, Fama-Bliss,
McCulloch-B and then McCulloch-A. This is consistent with the in-sample ranking given
the exclusion of the Fama-Bliss scheme because of its in-sample construction. The only
deviation from this ordering is a reversal in order of the Fama-Bliss and LMNT procedures
when using the overall hit-rate metric. We choose to ignore this reversal given: i) that this
reversal is based on a mere 0.7% difference in hit-rate, ii) our previous observation that the
LMNT scheme is consistently superior to the Fama-Bliss scheme in all bond maturity regions
beyond one year, and iii) for bonds with a maturity of less than one year the difference in
mean absolute pricing error is 0.26 cents and the difference in mean absolute yield error is
1.45 basis points both of which are economically small.

A feature that has been ignored in the above discussion is how these performance mea-
sures behave over time. For ease of exposition only the time series of the overall out-of-sample
LMNT performance measures are provided in Figure 1 as all other schemes result in similar

behavior both in-sample and out-of-sample.

FIGURE 1 ABOUT HERE

It is interesting to observe that the decade prior to 1980 is a time period when term structure
extraction procedures work relatively well. However the early to mid-1980s, encapsulating
the period of what is referred to as the “fed-experiment”, marked a time of relatively poor
performance with absolute errors more than doubling. After the mid to late 1980 absolute

error magnitudes steadily fell nearing levels observed in the 1970s even though the number
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of bonds out of sample more than doubled; from January 1989 to December 1998 there
were a total of 8333 out-of-sample bonds, whereas from January 1970 to December 1979 the
out-of-sample bonds numbered 3791.

When comparing term structure extraction procedures it is important to control for the
systematic variation in performance measure magnitudes over time. This is achieved by
using each metric to determine which term structure extraction method is preferred on each
day when performing pair-wise comparisons. We then compute the fraction of time that one
scheme is strictly preferred to another noting that the times when both schemes perform

equally well are excluded. We refer to this comparison metric as “percentage preference”:

T
> i1 lixisv
T T
Zt:l I[Xt>Yt] + Zt:l I[Yt>Xt]

Percentage Preferenceeiric =

where 1" = 348, which is the number of days in the sample and I[x,-y, is the indicator
function taking on the value 1 when term structure extraction procedure X indicates a
better fit than term structure extraction procedure Y at time ¢ under a given metric (namely
one of MAPE, WMAPE, MAYFE or HR). By aggregating preference orders over time
in this manner we are ensuring that the high error magnitudes observed in the 1980s do
not dominate the conclusions drawn. In-sample and out-of-sample percentage preferences
for each comparison metric appear in Tables 3 and 4 respectively. For completeness the
in-sample percentage preference of the Fama-Bliss procedure is included in Table 3 even
though it should be ignored since, by construction, its percentage preference will be close to

100%.

TABLE 3 ABOUT HERE

From Table 3 it is apparent that in-sample the LMNT procedure consistently out per-
forms the original McCulloch scheme (McCulloch-A); within all maturity regions the LMNT
procedure is consistently preferred 70%-85% of the time under all performance measures. The

extended McCulloch scheme, that is McCulloch-B, should perform better in-sample than the
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original McCulloch-A scheme. This is indeed reflected in Table 3 however it is interesting
to observe that the majority of the benefit appears at the long end of the term structure;
all performance measures suggest that the McCulloch-B scheme is preferred only 55% of the
time in the Treasury bill region however this preference for the McCulloch-B method grows
to 70% and higher in the five to ten year maturity region. This variation in percentage
preference across maturity explains the 76% overall preferential given by the M APFE metric,
which over-weights the importance of the long end, whereas both the WMAPE and MAY E
metrics, which standardize for error heteroskedasticity, provide an overall percentage prefer-
ence of 57%. Comparing the LMNT and McCulloch-B procedures we again see variation in
percentage preference across maturity. Within the one year or less bond maturity region the
LMNT procedure is preferred to the McCulloch-B procedure more than 75% of the time but
this percentage preference slowly decreases to approximately 50% in the five to ten year bond
maturity region. It is clear however that even though there is no clear preference between
the LMNT and McCulloch-B schemes at the long end of the term structure there is a distinct
preference for the LMNT procedure for shorter maturity bonds. This is reiterated by the
overall percentage preference figures ranging from 76% to 84% across all performance metrics
in favor of the LMNT procedure relative to the McCulloch-B procedure. In summary the
in-sample results suggest a clear performance ordering, First the LMNT procedure followed

by the McCulloch-B scheme and finally the McCulloch-A method.

TABLE 4 ABOUT HERE

Turning to the out-of-sample results reveals some striking differences to their in-sample
counterparts. First comparing the two McCulloch implementations we see that the heavy
in-sample preference of the McCulloch-B method over the McCulloch-A scheme at the longer
end of the term structure has eroded and in fact in the three to five year bond maturity bin

the McCulloch-A scheme is slightly preferred. This is suggestive that the superior in-sample
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performance of the McCulloch-B method is due to over-fitting. The overall percentage
performance figures still suggest a slight benefit of the McCulloch-B procedure however this
is primarily due to the marginally better performance in maturities less than three years. The
hit-rate performance measure is the strongest supporter of the McCulloch-B scheme over the
McCulloch-A method suggesting an overall percentage preference of 62%. However we must
realize that the hit-rate measure does not distinguish between error magnitudes outside the
bid-ask spread and hence does not penalize those methods that result in larger errors. The
remaining metrics (M APE, WMAPE and M AY E) do not suffer from this deficiency and
provide overall percentage preference figures in the range of 52% to 54%, which suggests the
benefit of adding parameters to the original McCulloch cubic spline procedure is negligible.

Comparing the LMNT procedure to both McCulloch implementations indicates a 75%
percentage preference for the LMNT method when using the overall maturity spectrum
across all metrics. Consistently the LMNT procedure is preferred to both McCulloch schemes
approximately 75% of the time in the Treasury bill region, 65-69% of the time in the one
to three year bond maturity region, 52-60% of the time in the three to five year maturity
region, and approximately 62% of the time in the five to ten year maturity region. Occasional
exceptions to these figures arise when considering the hit-rate metric where a lower preference
for the LMNT method is sometimes observed. Given the hit-rate measure’s lack of penalty
toward larger errors outside the bid-ask spread and the stronger preference for the LMNT
method when considering other performance measures, we choose not to place an emphasis
on hit-rate percentage preference numbers.

Finally considering the Fama-Bliss scheme reveals several interesting observations. In the
Treasury bill region the Fama-Bliss method is strongly preferred out-of-sample to both Mc-
Culloch implementations and the LMNT procedure. Depending on the performance measure
considered the percentage preference is an extraordinary 81-88% over the LMNT procedure

and a massive 90-97% over both McCulloch schemes. However this strong preference rapidly
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dwindles almost to the other extreme when considering bonds with a maturity of greater
than one year. In the one to three, three to five, and five to ten year bond maturity bins
the approximate out-of-sample percentage preference over the Fama-Bliss method by i) both
McCulloch schemes is 65%, 74% and 56%, and ii) the LMNT procedure is a massive 71%,
77% and 64%." These observations provide strong evidence to suggest that beyond the one-
year maturity region the Fama-Bliss procedure is the last method of choice, however in the
Treasury bill maturity region it is the preferred method. Aggregating such a diverse rank-
ing across maturity is virtually an impossible task since it depends on the users subjective
weightings regarding which maturity regions are more important. If all bonds are treated as
equally important, irrespective of their maturity, then the overall percentage preference fig-
ures should be used. Adopting either the overall WM APE or the M AY E based percentage
preference measures to rank term structure estimation procedures, because they attempt to
standardize error magnitudes across time and maturity, the Fama-Bliss procedure is pre-
ferred out-of-sample to both McCulloch schemes at least 70% of the time and the LMNT
scheme is preferred marginally to the Fama-Bliss scheme (55% of the time out-of-sample).
To summarize, in-sample results suggest a clear ranking of the term structure estimation
procedures studied; first the LMNT procedure followed by the McCulloch-B scheme and
finally the McCulloch-A method. The Fama-Bliss scheme is excluded from this ranking since
by its construction it will almost always be ranked first. Ignoring the Fama-Bliss scheme the
out-of-sample results reaffirm the above ranking. Placing the Fama-Bliss scheme within this

ranking unfortunately is not as clear-cut. If one is predominantly interested in the short end

15These numbers do not include the percentage preference figures based on the hit-rate metric however
this metric does in part support the above arguement. The only exception is in the five to ten year bond
maturity spectrum where the hit-rate percentage preference suggests a slight preference for the Fama-Bliss
scheme over other methods. Once again we explain this result by resorting to the deficiancy of the hit-rate

metric, namely it fails to penalize larger errors.
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of the term structure (less than one year time-to-maturity) then the Fama-Bliss scheme is
the preferred choice above the LMNT procedure. If one is interested in maturities greater
than one year then the Fama-Bliss scheme ranks last, below the LMNT, McCulloch-B, and

McCulloch-A schemes.

4 A Proxy for the Short Rate

Several recent articles have raised the issue of which interest rate to use as a proxy for
the short term interest rate. Duffee (1996) argues that the three month Treasury bill rate
is preferable to the one month rate and a recent paper by Chapman-Long-Pearson (1999)
shows that severe biases can arise in the short rate’s drift and diffusion estimates when using
these Treasury bill rates as short rate proxies. An additional issue that is not addressed in
either study is the effect of observation error in bond prices. If observation errors are present
a reasonable conjecture is that using an estimated short rate from a curve fitting procedure
should be superior to both the one month and three month Treasury bill rate proxies. This
conjecture is based on the idea that a curve fitting procedure averages observations at the
short end of the term structure and extrapolates back to the origin providing a short rate
estimate with higher precision. Evidence to support this is provided below via a simulation
where it is demonstrated that: i) the estimated short rate from the LMNT curve fitting
procedure results in a smaller mean error and a smaller error variance, and ii) estimated
drift and diffusion coefficients for the short rate process are more accurate when using the
LMNT based short rate estimate as a proxy for the short rate. The LMNT term structure
extraction method is used here since it was concluded in Section 3 that the LMNT procedure
performs better than both McCulloch cubic spline implementations. The Fama-Bliss scheme
is not considered since it is not a curve fitting procedure in the sense that it is not regression

based and hence does not have the ability to average observation errors. Note that even
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though it was concluded in section 3 that the Fama-Bliss method for estimating the term
structure is preferred in the Treasury bill region, it is also true that Treasury bills with
very short maturities [less than one month| were excluded from the sample and under ideal
circumstances these Treasury bills should be used to determine a proxy the short rate. As
will be seen in the following simulation, in less then ideal circumstances it is in these very

short term securities that large errors occur when estimating the short rate.

4.1 The Simulation

When estimating a term structure model it is typical that the data consists of Treasury bill,
note and bond prices. To simulate the prices of these securities a time-series of zero-coupon
bond yield curves is simulated. This is achieved using the Cox-Ingersoll-Ross (1985) term
structure model, which is chosen purely for the convenience of having a closed for solution.

In particular the evolution of the short rate is characterized by the mean-reverting process

dr(t) = k(0 — r(t)) dt + o/r(t)dW (),

where r(t) is the short rate at time ¢ and W(t) is the Brownian motion characterizing
uncertainty in the bond market. Further the market price of interest rate risk takes the form
A
—+/7(t) and the resulting functional form for the yield curve at time ¢ with time-to-maturity
o

T 18

_ byt Ll
y(r) = T log (¢2 (e — 1) + ¢1> * T <¢2 (en™ —1) + ¢1> "o

where ¢, = \/(k+ A2+ 202, ¢, = (k+ A+ ;) /2 and ¢3 = 2k60/0?. For the simulation
the short rate process is simulated daily over a ten year time horizon using parameters from
Chen and Scott (1993); x = 0.4697, 6 = 0.06182, 0 = 0.08248, A = —0.04544. Given

this time-series realization of yield curves the prices of Treasury securities are constructed
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each with a face value of $100. To ensure that the maturity and coupon structure of these
securities are as realistic as possible we use the structure observed in the CRSP bond data
set from January 1989 to December 1998 on a daily basis, which provides 2501 days of
simulated prices.'® We choose the structure implied by government securities over the most
recent ten year period purely because more securities are observed in later years. Finally
these simulated security prices are contaminated with Normally distributed i.i.d. random
numbers that are mean zero and have a standard deviation of 5 cents, 15 cents, 25 cents and
35 cents for securities with a time-to-maturity 7 in yearsof 0 < 7 < 1,1 <7< 3,3<7<5
and 5 < 7 < 10 respectively.

Using the above contaminated prices three proxies for the short rate are computed; the
yields implied by the one and three month Treasury bills and the estimated short rate
from the LMNT procedure. Table 5 presents the mean and standard deviation of the error
associated with each short rate proxy. From this table the LMNT based short rate estimate
has a lower bias and a higher precision (its mean error is 6.8 / 3.6 times smaller and its error
standard deviation is approximately 4.6 / 1.7 times smaller than the one / three month

Treasury bill rate based proxy).

TABLE 5 ABOUT HERE

The benefit of using the LMNT short rate estimate as opposed to the above two Treasury
bill proxies is further highlighted when estimating the short rate process itself. In particular
suppose that we do not know the functional form of the process describing the evolution
of the short rate and we are interested in learning about it through the data. This can
be achieved using nonparametric techniques such as those in Ait-Sahalia (1996a), Stanton

(1997), Jiang and Knight (1997) and Bandi and Phillips (1998). Typically these methods

16The only regular exception is the addition of both a one-month and a three-month Treasury bill.
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assume that the short rate process follows a time-homogeneous univariate Markov diffusion
and the objective is to estimate the drift and diffusion coefficients nonparametrically. Here
we use Stanton’s method where the drift and diffusion estimators are based on standard
kernel smoothing methods with the normal kernel K(z) = \/% exp (—%xQ). The drift and

diffusion estimators are respectively

S (r(tse) — (1) K (1)
lu’ r = Azn_l lK (T(t,‘,)*’l")

i=1 h h

S (r(tin) = () K (%)
A 2?211 %K (W)

where n is the sample size and A = t;,1 — t; for all 7. The bandwidth parameter h chosen

5(r) =

by Stanton is 4v/Vn~/% where V is the sample variance of changes on the short rate.!” The
results from implementing these estimators using the three short rate proxies is provided in
Figure 2 along with the “true” drift and volatility functions from the original Cox-Ingersoll-

Ross model that formed the foundation of the simulated data.

FIGURE 2 ABOUT HERE

The results in Figure 2 indicate that the benefits from using a curve fitting based estimate
of the short rate is not inconsequential. Both the drift and volatility estimates are notably
closer to the true drift and volatility when using the LMNT based short rate proxy. All
drift estimates demonstrate a notable error in their slope, corresponding to the speed of
mean reversion, and the volatility estimates are upward biased. The cause of the bias in
the volatility estimate is clear. It stems from the additional noise in the short rate proxy
from observation noise. It is also interesting to observe the dramatic improvement of the
three month Treasury bill rate proxy over the one month proxy even though the former is

theoretically closer to the short rate if observation noise is ignored. The improvement by

17This bandwidth choice by Stanton is reported in Chapman and Pearson (1999) footnote 4.
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using the three month Treasury bill arises from the fact that for a given error in price the
corresponding error in yield will be greater for shorter maturity securities. The presence
of errors in short rate proxies can also explain the error in the slope of the drift function’s
estimate. To see this consider the case where the short rate is indeed reverting toward some
mean level 6. Any proxy for the short rate that has noise will have higher volatility than
the true short rate. Consequently the proxy will cross the value 6 more frequently than the
true short rate. This makes the estimation of the rate of mean reversion more difficult and
the higher the proxy error variance the more difficult it will be.

In short, given observation noise in prices, the LMNT based short rate proxy provides a
better estimate to the short rate than the three month Treasury bill rate, which in turn is
a better estimate than that provided by the one month Treasury bill rate. The importance
of using a better estimate is highlighted when using it to estimate the time series properties
of the short rate. In particular the variance of the noise in the proxy determines the bias
in short rate volatility and strongly influences the ability to estimate the slope of the drift

function.

5 Summary and Conclusion

Using month end bond price data from January (1970) to December (1998) three highly
flexible term structure extraction methods have been compared: McCulloch’s (1975) cubic
spline, the Fama-Bliss (1987) bootstrapping procedure and the LMNT (2000) nonparametric
estimation method. Two versions of the McCulloch cubic spline procedure were considered,
namely that originally proposed by McCulloch (1975) and a version with twice as many
knot points. Despite this additional flexibility of the latter version, out-of-sample results
suggest that there is almost no benefit of increasing the number of knot points beyond

that proposed by McCulloch. Ranking the performance of the three methods, based on
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analyzing both in-sample and out-of-sample pricing and yield errors, we conclude that the
LMNT (2000) method is the preferred method of choice when estimating the term structure
beyond one year. This is followed by McCulloch’s cubic spline and then the Fama-Bliss
bootstrapping method. It is interesting to observe that when considering the maturity region
of less than one year the Fama-Bliss procedure is now the preferred method followed by the
LMNT procedure and then McCulloch’s cubic spline. Given that the Fama-Bliss procedure
is the least parsimonious method, since all in-sample bonds are priced exactly, the last result
suggests that additional flexibility in the Treasury bill region needs to be incorporated into
the other two term structure estimation methods.

Use of LMNT curve fitting method is shown via simulation to aid in the estimation of
the unobservable short rate. Even though it was concluded that the Fama-Bliss method is
the preferred term structure extraction method in the Treasury bill region it is also true that
this conclusion was based on reconstructing Treasury bill prices and yields with maturities
ranging from one to twelve months. When focusing on estimating the short rate the simu-
lation shows that if observation noise is present in prices then using the yield from a very
short maturity Treasury bill [maturity of one month] as a proxy for the short rate has a lower
precision then a yield from a longer term Treasury bill [maturity of three months]. This is
because a small error in price has a larger impact on the error in yield as the maturity of
the Treasury bill decreases. The benefit of using the LMNT procedure arises from the fact
that errors from a number a short dated Treasury bills are averaged providing a short rate
estimate with higher precision. The simulation further demonstrates that using the LMNT
based estimate is not inconsequential when estimating the time series properties of the short
rate. The higher precision of the short rate estimate results in a lower bias in the short rate

volatility estimate and smaller error in the slope estimate of the short rate’s drift function.
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TABLE 1

In-Sample Performance: January 1970 to December 1998

The four performance measures are presented for each term structure extraction procedure; LMNT, McCulloch and Fama-
Bliss. Two versions of the McCulloch scheme are implemented, the originally proposed scheme denoted McCulloch-A
and one where twice the number of knot points is used which is denoted McCulloch-B. The sample consists of N = 18233
bonds observed at month end over the January 1970 to December 1998 period with a time-to-maturity 7 of less than or]
equal to 10 years. Variation in performance across time-to-maturity is obtained by calculating the performance measures|
for bonds grouped by their time-to-maturity. In particular the groupings consist of 0 <7 <1 where N =4613, 1 <T <3

where N = 6666, 3 <T <5 where N =3809, and 5 < T <10 where N = 3145.

Overall
0<T<1 1<T <3 3<T<5 5<T<10 0<T <10

MEAN ABSOLUTE
PRICING ERROR
LMNT 0.005697 0.019393 0.053003 0.070863 0.032697
McCulloch-A 0.016603 0.024800 0.066291 0.088555 0.042304
McCulloch-B 0.013147 0.021399 0.062155 0.076589 0.036877
Fama-Bliss 0.000715 0.014230 0.030867 0.029903 0.016648
WEIGHTED MEAN
ABSOLUTE PRICING ERROR
LMNT 0.005938 0.017413 0.050523 0.070635 0.012078
McCulloch-A 0.017536 0.022757 0.063674 0.090501 0.022333
McCulloch-B 0.014901 0.019140 0.059508 0.078987 0.019053
Fama-Bliss 0.000368 0.012991 0.029426 0.030967 0.004711
MEAN ABSOLUTE YIELD-TO-
MATURITY ERROR
LMNT 0.000241 0.000108 0.000157 0.000136 0.000151
McCulloch-A 0.000716 0.000142 0.000197 0.000174 0.000306
McCulloch-B 0.000605 0.000119 0.000184 0.000153 0.000247
Fama-Bliss 0.000015 0.000081 0.000095 0.000063 0.000063
HIT RATE
LMNT 0.666278 0.822913 0.681897 0.631494 0.729445
McCulloch-A 0.468617 0.771555 0.618559 0.564353 0.631289
McCulloch-B 0.511434 0.796227 0.639704 0.610843 0.671944
Fama-Bliss 0.993225 0.931474 0.946780 0.962618 0.956376




TABLE 2

Out-of-Sample Performance: January 1970 to December 1998

The four performance measures are presented for each term structure extraction procedure; LMNT, McCulloch and Fama-
Bliss. Two versions of the McCulloch scheme are implemented, the originally proposed scheme denoted McCulloch-A
and one where twice the number of knot points is used which is denoted McCulloch-B. The sample consists of N = 18057
bonds observed at month end over the January 1970 to December 1998 period with a time-to-maturity 7 of less than or]
equal to 10 years. Variation in performance across time-to-maturity is obtained by calculating the performance measures|
for bonds grouped by their time-to-maturity. In particular the groupings consist of 0 <7 <1 where N =4616, 1 <T <3

where N = 6655,3 <T <5 where N =3814, and 5 <T < 10 where N =2972.

Overall
0<T<1 1<T <3 3<T<5 5<T<10 0<T <10

MEAN ABSOLUTE
PRICING ERROR
LMNT 0.006262 0.026827 0.078006 0.144572 0.049601
McCulloch-A 0.017002 0.029838 0.075482 0.152052 0.054858
McCulloch-B 0.013376 0.028281 0.079640 0.152175 0.053446
Fama-Bliss 0.003636 0.032672 0.104921 0.160128 0.060094
WEIGHTED MEAN
ABSOLUTE PRICING ERROR
LMNT 0.006387 0.023688 0.074736 0.143162 0.015632
McCulloch-A 0.017886 0.027118 0.071977 0.150687 0.024884
McCulloch-B 0.015220 0.024957 0.076113 0.151089 0.022468
Fama-Bliss 0.002846 0.029423 0.100946 0.158993 0.016064
MEAN ABSOLUTE YIELD-TO-
MATURITY ERROR
LMNT 0.000260 0.000148 0.000231 0.000282 0.000203
McCulloch-A 0.000731 0.000169 0.000222 0.000301 0.000344
McCulloch-B 0.000616 0.000156 0.000235 0.000297 0.000294
Fama-Bliss 0.000117 0.000183 0.000310 0.000312 0.000205
HIT RATE
LMNT 0.663389 0.779331 0.605307 0.457735 0.681398
McCulloch-A 0.464781 0.753508 0.591462 0.436348 0.604877
McCulloch-B 0.502854 0.762980 0.586943 0.454743 0.629343
Fama-Bliss 0.787265 0.750037 0.546485 0.474790 0.688797




TABLE 3
In-Sample Percentage Preference

Using in-sample data the percentage preference for a each pair of term structure extraction procedures is computed
based on each of the four performance measures MAPE, WMAPE , MAYE and HIT RATE . The notation X > Y refers
to the consideration of the case where term structure extraction procedure X is preferred to procedure Y with the
corresponding number indicating the fraction of time that X is indeed preferred to ¥ under the given metric within the
given maturity bin. Maturity bins include 0 <7 <1, 1 <7 <3, 3<T <5, 5<T <10 and the overall spectrum 0 <
T <10 where T' denotes the security's time-to-maturity. Percentage preference of method X relative to Y is computed
via

Nunber(X>1)
Number (X >Y) + Number (Y> X)
where Number (X > V') is the number of times that term structure extraction procedure X is strictly preferred to method

Y. Note that the number of times that procedures X and Y perform equally well is excluded from this metric and hence
the percentage preference of method Y relative to X is one minus the percentage preference of X relative to Y.

percentage preference =

Overall
0<T<1 1<T <3 3<T<5 5<T<10 0<T <10

LMNT > McCulloch-B
MAPE 78.70% 69.02% 68.54% 46.86% 75.79%
WMAPE 77.78% 71.04% 67.88% 49.45% 83.57%
MAYE 77.78% 71.33% 69.00% 49.08% 83.86%
HIT-RATE 75.52% 70.74% 64.95% 53.85% 79.73%
LMNT > McCulloch-A
MAPE 82.39% 83.39% 77.20% 70.61% 89.05%
WMAPE 77.01% 85.99% 78.50% 74.55% 86.74%
MAYE 77.01% 85.95% 79.08% 74.19% 86.71%
HIT-RATE 83.75% 82.79% 68.78% 69.76% 86.20%
McCulloch-B > McCulloch-A
MAPE 57.52% 68.59% 61.02% 74.73% 76.15%
WMAPE 52.51% 69.55% 61.98% 75.09% 57.18%
MAYE 52.80% 69.87% 61.66% 75.45% 57.47%
HIT-RATE 57.38% 64.68% 57.75% 69.75% 67.20%
Fama-Bliss > LMNT
MAPE 97.59% 79.42% 91.34% 91.51% 93.01%
WMAPE 98.28% 80.87% 92.06% 90.73% 95.44%
MAYE 98.28% 79.71% 89.89% 91.51% 95.74%
HIT-RATE 99.65% 92.05% 98.15% 98.02% 99.07%
Fama-Bliss > McCulloch-B
MAPE 98.41% 85.42% 93.67% 91.82% 95.66%
WMAPE 99.04% 85.76% 94.67% 91.82% 97.98%
MAYE 99.04% 85.08% 93.33% 92.19% 97.69%
HIT-RATE 99.68% 97.13% 98.98% 96.64% 99.71%
Fama-Bliss > McCulloch-A
MAPE 98.78% 87.58% 94.14% 94.58% 98.27%
WMAPE 99.39% 88.24% 94.46% 94.58% 99.13%
MAYE 99.39% 87.58% 93.49% 94.58% 98.84%
HIT-RATE 100.00% 96.94% 99.33% 97.83% 99.71%




TABLE 4
Out-of-Sample Percentage Preference

Using out-of-sample data the percentage preference for a each pair of term structure extraction procedures is computed
based on each of the four performance measures MAPE , WMAPE , MAYE and HIT RATE. The notation X > Y refers to
the consideration of the case where term structure extraction procedure X is preferred to procedure Y with the)
corresponding number indicating the fraction of time that X is indeed preferred to Y under the given metric within the
given maturity bin. Maturity bins include 0 <7 <1, 1 <7 <3, 3<7 <5, 5<7 <10 and the overall spectrum 0 <7
<10 where 7" denotes the security's time-to-maturity. Percentage preference of method X relative to ¥ is computed via

Nunber (X>Y)

percentage preference =
Number (X>7Y) + Number (Y> X)

where Number (X > Y') is the number of times that term structure extraction procedure X is strictly preferred to method
Y. Note that the number of times that procedures X and Y perform equally well is excluded from this metric and hence|
the percentage preference of method Y relative to X is one minus the percentage preference of X relative to Y.

Overall
0<T<1 1<T <3 3<T<5 5<T<10 0<T <10

LMNT > Fama-Bliss
MAPE 18.59% 71.52% 77.12% 64.87% 75.29%
WMAPE 18.27% 70.90% 77.12% 63.92% 55.17%
MAYE 18.01% 70.90% 77.74% 63.61% 54.60%
HIT-RATE 12.20% 68.40% 71.73% 43.69% 44.95%
LMNT > McCulloch-B
MAPE 76.15% 64.78% 58.93% 61.39% 75.79%
WMAPE 75.23% 64.78% 59.56% 61.71% 76.08%
MAYE 75.23% 65.19% 60.19% 60.76% 75.79%
HIT-RATE 78.24% 61.86% 62.73% 46.43% 76.09%
LMNT > McCulloch-A
MAPE 78.76% 65.74% 52.02% 65.94% 77.01%
WMAPE 75.52% 68.83% 52.34% 62.50% 75.86%
MAYE 75.52% 69.04% 52.50% 63.64% 76.15%
HIT-RATE 79.86% 66.98% 57.78% 53.33% 80.06%
Fama-Bliss > McCulloch-B
MAPE 89.75% 37.04% 24.84% 42.72% 38.79%
WMAPE 93.17% 37.35% 25.16% 42.41% 71.55%
MAYE 92.86% 37.46% 24.30% 42.41% 70.69%
HIT-RATE 95.89% 43.03% 32.00% 54.84% 72.93%
Fama-Bliss > McCulloch-A
MAPE 92.22% 38.23% 26.32% 45.45% 42.82%
WMAPE 94.01% 38.53% 26.63% 45.77% 73.28%
MAYE 94.01% 38.77% 26.32% 46.08% 72.70%
HIT-RATE 97.07% 44.66% 39.00% 61.93% 79.22%
McCulloch-B > McCulloch-A
MAPE 57.31% 53.89% 41.77% 49.36% 52.30%
WMAPE 52.05% 55.14% 42.41% 50.32% 54.31%
MAYE 52.34% 55.49% 42.86% 49.84% 54.18%
HIT-RATE 56.31% 56.42% 49.72% 57.05% 61.56%




TABLE 5
Means and Standard Deviations of Proxy Errors

Three proxies for the short rate are the extrapolated short rate from the LMNT procedure,
the one month Treasury Bill rate and the three month Treasury Bill rate. The LMNT
estimate controls for the possibility of observation errors present in bond prices whereas the
latter two do not. Based on a simulated Cox-Ingersoll-Ross (1985) model for the term
structure's evolution over a ten year time-horizon and mean zero observation errors with
calibrated standard deviations, the mean and standard deviation of the proxy errors are
provided: the proxy error at time ¢ is computed via

proxy error(t) = proxy(t) - r(t)

where proxy (¢) and r (¢) are the values of the proxy of the short rate and the short rate from
the Cox-Ingersoll-Ross model respectively.

Proxy Error Proxy Error
Proxy .
Mean Standard Deviation
LMNT Based Estimate 0.000243 0.006120
One Month T-Bill 0.000465 0.002178
Three Month T-bill 0.000069 0.001320
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Time Series of Overall LMNT Out-of-Sample Performance Measures

-

A0 4> 46 12 b b ed o\ o

sl

Y ™ @™ ™ @™ o o™ T o

Time

Mean Absolute Yield-to-Maturity Error

0.0018 -
0.0016
0.0014
0.0012
0.0010
0.0008
0.0006
0.0004
0.0002
0.0000

b C I L LI I LS A
NN YNGR A S R MY A\

WMAPE ($)

HR

Weighted Mean Absolute Pricing Error

0.14 -
0.12 -
0.10 -
0.08 -
0.06 -
0.04 -
0.02 -

0.00 -

A0 ad A a9
NSRRI

Hit Rate

0.0 -~ T T T T T T T T T

A0 4> © 19 @ P P o\ o dl
AN AN N A AU AU A

time



Drift Estimate

FIGURE 2

Nonparametric Drift and Diffusion Estimates of the Short rate Process

Using Various Short Rate Proxies
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