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MARKET PRICES OF RISK AND RETURN
PREDICTABILITY IN A JOINT STOCK—BOND
PRriciNnG MODEL

Abstract

This paper examines the related questions, of the time-series behavior of expected
returns and of return predictability, within the framework of the stock—bond pricing
model proposed in Mamaysky (2002). The key advantage of the model-based ap-
proach adopted in this paper is that the quantities of interest (i.e. expected returns,
prices of risk, and R?’s of forecasting regressions of returns on their true conditional
expectations) are directly observable (once the model has been fitted to the data).
Furthemore, the fact that the present model accomodates jointly the pricing of both
bonds and stocks allows us to derive estimates of prices of risk and of expected returns
that incorporate, by construction, the relevant information from both bond and stock
markets. Estimation of the model using U.S. data reveals a rich dynamic structure of
prices of risk, some pro- and some countercyclical, and of expected returns. Also, the
paper suggests that excess return predictability (as measured by the above mentioned
R?'s) for a broad market index is a hump-shaped function of the forecasting horizon,
achieving a maximum value of roughly 13.5% at a time horizon of five years.

JEL Classification: G12, G13.



1 Introduction

Expected returns, justifiably, have aroused much interest among both finance scholars and
practitioners.! After all, many asset pricing models are most conveniently expressed in terms
of their implications for expected returns on securities, which makes examination of the latter
necessary for testing pricing models. Practitioners, on the other hand, are concerned with
knowing expected returns because such information helps to determine whether securities
are correctly or incorrectly priced in markets. However, the obvious difficulty with studies
involving expected returns is that expected returns are not directly observable.

This inconvenience is solved by conjecturing that future asset returns are a function of
today’s value of a set of observable economic variables coupled with a noise term assumed
to be orthogonal to any information that may be available today. Expected returns are then
given by the the above function evaluated using the set of present observables. While this
approach is fundamentally sound (indeed what other approach is possible), its implementa-
tion suffers from the unfortunate fact that the theoretically motivated explanatory variables,
such as market betas and covariances with consumption growth, are themselves difficult to
observe, and by the fact that estimated betas and covariances seem to perform very poorly
in-sample as determinants of expected security returns. In response to this, selection of the
commonly used set of explanatory variables has been guided not by any ex-ante theoretical
consideration, but by satisfactory in-sample performance. However, satisfactory in-sample
performance does not necessarily imply satisfactory out-of-sample performance. Indeed,
whether or not the current set of candidate explanatory variables for expected returns (such
as size, value, possibly momentum) withstands the test of time is a question whose answer
is not yet known.

This paper proposes and implements a theoretically motivated approach which offers
some guidance for determining the importance of a given set of explanatory variables for
expected returns. The general idea is to note that if a particular variable is truly important
for the determination of expected returns, then this variable must represent a risk that is
priced in the economy. That is, owning a security whose return depends on the chosen
explanatory variable must entitle that security’s owner to some amount of compensation, in
the form of expected returns, for bearing the risk for which the chosen explanatory variable
proxies. This idea is implemented by first conjecturing a pricing model, based on the idea
of no arbitrage, for the relevant set of security prices. A security’s dependence on a given
explanatory variable is then represented as a loading of that security’s return on a pricing
factor associated with the risk in question. Within the model’s framework, expected returns
for a security are then shown to be functions of that security’s loading on the risk factors
in the economy multiplied by the market prices of risk which these risk factors command.
Finally, we assume a tranformation which allows us to move between the physical measure of
the data and the risk neutral measure used for pricing. With these ingredients in place, the

1Unless otherwise noted, expected returns in this paper refer to expected returns above a riskless interest
rate, i.e. expected excess returns. Also, all returns in this paper are in nominal terms.



model is estimated using historical prices of the securities in question, and prices of risk for
the conjectured explanatory variables (as well as security expected returns) are then directly
observable within the framework of the model.

This approach has been extensively used in the analysis of returns in fixed income mar-
kets. Indeed, within the class of affine term structure models (such as Vasicek (1977) or Cox,
Ingersoll, and Ross (1985), and their extensions), the above three concepts (risk factors, ex-
pected returns, and prices of risk) are all very naturally and conveniently tied together.
However, such affine term structure models have to date been used, as the name suggests,
only for the study of bond prices. However, Mamaysky (2002a) shows that it is possible to
use the technology of affine term structure models to derive an affine security pricing model,
capable of jointly pricing bonds and stocks in a unified framework. Within the context of
Mamaysky (2002a), it is then possible to set up and estimate a model where a cross section
of bond and stock prices jointly depends on a parsimonious set of pricing factors. The end
result of this procedure is a set of pricing factors and their associated prices of risk. If it can
then be demonstrated that the extracted pricing factors account for a substantial portion
of cross sectional return variation for any given set of securities (such as stocks), then using
the model’s formulas we are able as well to compute an instantaneous expected return for
any security of interest.

To make ideas more concrete, let us note that in the present paper a bond is a security
which promises its owner a fixed set of nominal cash payments at some future dates. A stock,
on the other hand, entitles its owner to a stream of stochastic nominal dividend payments.?
By choosing convenient processes for the instantaneous interest rate in the economy and for
the instantaneous stochastic dividends paid by stocks, Mamaysky (2002a) shows that bond
and stock prices can both be expressed as exponential affine functions of the state variables
in the economy. Indeed, the bond prices produced by the model are exactly the bond prices
of standard affine term structure models (see Duffie and Kan (1996) for a general treatment
of affine term structure models). The existence of such closed form solutions for both bond
and stock prices makes the model amenable for a unified empirical study of prices in both
markets. Furthermore, the model allows for quite general interdependence between bond
and stock prices: Bond and stocks are allowed to depend on a set of joint pricing factors
which possess stationary distributions; Furthermore, stocks are allowed to depend on a set of
factors which follow random walks. Together these two sets of factors give the model a great
deal of empirical flexibility for matching the historical behavior of bond and stock prices.

The main payoff of the present approach, however, comes from the fact that in addition to
closed form bond and stock prices, the Mamaysky (2002a) model also produces closed form
solutions for the prices of risk associated with the model’s pricing factors, and therefore for

2All securities in the present model are assumed to be free of default risk. A theoretical development of
a joint stock—bond pricing model with default risk is in Mamaysky (2002b). The assumption of no default
risk essentially restricts the focus of the present paper either to portfolios of stocks, where default risk is less
of an issue, or to extremely high quality credits. If this paper, the focus is on government bond prices and
on the returns on large equity portfolios.



bond and stock expected returns. All of these quantities are shown to depend on the model’s
parameters, as well as on the time series of pricing factors extracted during estimation of
the model. Therefore, estimation of the model makes factor prices of risk and security
expected returns directly observable! Furthermore, these quantities depend only on the
security prices used in the model’s estimation, and in particular do not depend on any set
of economic variables which must be exogenously chosen by the econometrician.

The question of whether or not a given set of exogenously chosen explanatory variables
is truly an important determinant of expected returns can then be naturally addressed in
the present framework. To proceed with this analysis we estimate the model using returns
on those securities which possess characteristics important for the determination of expected
returns in historical data. We then extract a pricing factor associated with each of these
security characteristics. Since the model produces a price of risk for each factor, the historical
importance of a given factor loading for expected returns is then immediately obvious. For
example, if a security has a high loading on a factor at a time when that factor’s price of risk
is high, then that factor is an important determinant of the instantaneous expected returns
of that security.

More precisely, we estimate the model using a time series of government bond prices
across a wide span of maturities, as well as using the returns of a broad market index, of
a portfolio containing small stocks, and of a portfolio containing stocks with high book-
to-market values. The inclustion of these three stock portfolios allows us to extract three
stock-specific factors, having to do with broad market exposure, with the size effect, and with
the value effect respectively. We then use an estimation approach proposed by Chen and
Scott (1993) to extract five pricing factors which best explain the historical behavior of the
prices of the securities used in model estimation. Of these factors, two are stationary factors
which are joint between bonds and stocks (and which drive prices of risk in the model), and
three are the above mentioned stock-specific pricing factors.

By assuming that the moments of the pricing kernel in the model depend on the joint
bond-stock factors, we also are able to derive a time series of prices of risk for the above
mentioned factors. These prices of risk in turn produce a series of expected returns for the
securities used in the model estimation. We then show that the extracted model factors
are important determinants of returns across a wide cross-section of stock portfolios, which
suggests that knowledge of the prices of risk of the five model factors, together with the
knowledge of the loadings of a given security (stock or bond) on these factors, produces an
estimate of that’s securities instantaneous expected return. An important advantage of the
present approach is that the factors which drive prices of risk and expected returns in the
model have been derived from an estimation which uses jointly bond and stock price data.
Hence, the relevant information for expected returns is naturally extracted from both bond
and stock markets.

As an additional benefit of the model, it is shown that security returns can be naturally
decomposed into expected returns (known once the model has been estimated) and an or-



thogonal error term (whose variance depends on model parameters). This decomposition
allows for a very natural measure of return predictability to be derived: We simply look at
what fraction of the variability of security returns is attributable to the variability of that
security’s expected return series. This amounts to computing the R? from a regression of a
security’s return on that security’s frue conditional return expectation. Furthermore, this
R? measure can be derived in closed form as a function of the model’s parameters, and of
the time horizon of the forecasting regression. It should be noted that such an R* can not
be derived without recourse to a pricing model because true conditional expectations, as has
already been pointed out, are unobservable. Furthermore, let us emphasize that the model
produced R? measure does not involve actually running any regressions; instead, knowledge
of the model parameters and of a given security’s loadings on the model factors is sufficient
for the computation of the above R? for the security in question. This is of great benefit
because the R?’s of forecasting regressions are very sensitive to the sample period being used
(see Kirby (1997), for example).

Estimation of the model shows that the above mentioned five pricing factors can ade-
quately account for the time series variation of a cross section of government bond prices
and of a cross section of stock prices in the U.S. over the last three decades. Interestingly,
the extracted model factors are important determinants of a cross section of the returns of a
large set of stock portfolios not used in the estimation of the model. This suggests that the
prices of risk of the extracted model factors are indeed important determinants of expected
returns for a wide cross section of stocks and bonds. It should be noted that the emphasis of
the present analysis is on the prices of risk of the stock-specific factors in the model. Careful
analysis of bond market prices of risk in an affine framework already exists in the literature
(see Duffee (2001) and Dai and Singleton (2001) for example), and for this reason it seems
more fruitful for this paper’s focus to be on the prices of risk for the stock factors.3

The price of risk associated with the market factor is shown to have a rich dynamical
behavior, exhibiting substantial time series variability, as well as a pronounced countercycli-
cal behavior. The mean value of this price of risk is approximately 0.40. The size factor
price of risk also exhibits a substantial amount of time series variation, but has a long run
mean of only 0.08 (despite the fact that this price of risk has assumed values as high as 0.5
historically), suggesting that a security’s size is not a significant long run determinant of
that security’s expected return. Finally, the price of risk associated with the value factor
is extremely stable over time, and assumes the high steady state value of approximately
0.53. This suggests that the “valueness” of a given security is an important determinant of
that security’s long-run expected returns. We also document that expected returns on all

3This emphasis in not in name only. The present model is fairly complex (with 2 common and 3 stock-
specific factors), and as such certain compromises were necessary for the model’s implementation. Such
necessary reductions in model complexity were often accomplished at the expense of accuracy for the bond
price of risk estimates, while all efforts were made to be very careful about the stock factor price of risk
estimates produced by the model. Details about these issues are in the text.

“Here countercyclical means that a given variable is low during NBER classified business cycle peaks,
and is high during NBER classified business cycle troughs.
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three of the stock portfolios used in the model estimation exhibit countercyclical behavior.
Finally, we show that is is the prices of risk associated with the stock-specific factors, rather
than with the joint bond—stock factors, that are the major determinants of expected returns
for equity portfolios. It should be noted that the joint factors, while not having prices of
risk which are important for stock expected returns, are nevertheless importnant for stock
expected returns because stock expected returns are functions of the values of these joint
bond-stock factors!

Finally, a diagnostic test is derived which shows that the present model does a good job
of accounting for the amount of data-observed predictability of expected excess returns for
actual excess returns. This diagnostic suggests that the model assumed factor dynamics are
sufficiently rish so as to properly account for the time series behavior of prices of risk of the
stock-specific factors extracted during model estimation. As has already been mentioned,
this predictability is measured as the model implied value of the R? over a certain forecasting
horizon of a regression of excess returns on their true conditional expectations. It is proven in
the paper that this R? must be a hump-shaped function of the forecasting horizon, starting
at zero for short time periods, and again going to zero at long forecasting horizons. The
parameter estimates obtained in estimation of the model suggest that for a broad market
index the maximal value of the model forecasting R? is equal to 13.5% at a time horizon of
five years.

The remainder of the paper proceeds as follows. Section 2 develops the model. Section
3 discusses the data sources, as well as the estimation procedure for the model. Section 4
presents the results of model estimation, as well as a series of diagnostic tests meant to assess
the validity of the model’s implementation. Section 5 concludes. All derivations are in the
Appendix.

2 A Joint Model for Stocks and Bonds

The model presented in this section is a special case of the model developed in Mamaysky
(2002a). To conserve space, we will keep the development as free of technical details as
possible, and simply refer the interested reader to Mamaysky (2002a). We assume the
usual regularity conditions on the economy in question (such as the existence of a filtered
probability space and market completeness), and in particular we assume the existence of an
equvalent martingale measure @, under which all discounted gains processes are martingales.
Under certain regularity conditions (see Harrison and Pliska (1981), Dybvig and Huang
(1988), or Duffie (2001) for a textbook treatment), the existence of Q is equivalent to the
absence of arbitrage opportunities in the economy. Going forward let us refer to the actual
(or physical) probability measure as P.

In the present setting, we assume that bonds and stocks are default-free. Hence any
promised payment is guaranteed to be made in the model. A joint model for pricing bonds
and stocks in a setting with default risk is given in Mamaysky (2002b).



2.1 Bonds

Bonds are the standard bonds of affine term structure models.® As such, bonds are assumed
to pay a one dollar dividend at some point in the future. Under Q, the fact that discounted
gains processes are martingales is equivalent to the price of a bond which pays $1 at time T

Pr(t) = B2 [exp (- /t Tr(u)du)] | ()

Here r(t) is the short term interest rate, or simply the short rate. In order to solve for
the expectation in (1), we need to specify the behavior of this short rate. In particular, we

being given by

assume that the short rate r(¢) is given by
r(t) = ro+ 1y Y (1) (2)

where 7y € R and ry € RN are constant, and Y (¢) is an N-dimnesional vector of state
variables. We will often write ry,, to indicate the n element in the vector ry. As is usually
done in term structure models, we will assume that these Y-type factors are stationary. The
expectation in (1) can be solved for quite a general Y process (within the affine class), as
shown in Duffie and Kan (1996), but we will have no need for such generality in this paper.
Instead we assume that each of the N Y-tpye factors follows an Ornstein-Uhlenbeck process
with dynamics under Q given by (forn=1,...,N)

dY,(t) = Ky (0, — Yy (t))dt + oy ndWi(t), (3)

where IN{Y,H, 0, and Oy, are all constants, and where Wi (t) is a standard Brownian motion
under @, and is independent of all other Brownian motions in the economy. Stationarity is
insured by requiring that Ky, > 0 for all n. We will write © for the vector given by

CH
0=

On

Also, we will write Ky for the N x N matrix whose diagonal elements are given by IN(y,n.
Given these assumptions for the dynamics of the Y-type factors, we have specified a multi-
dimensional Vasicek-type model (the original one-dimensional version of this model is in
Vasicek (1977)).

The solution for bond prices in such a setting are widely known (see, for example, Ma-
maysky (2002a)), and are given by

Pr(t) = exp(Ar(t) - Br(t)Y(®)), (4)

5To date, the most general treatment of affine term structure models is in Duffie and Kan (1996).



where the A and B functions are given by

Ap(t) = —(rg + B'ry)(T — 1) + &'Br(t) + % S o2, /t By (u)2du, (5)
and where , )
Br(t) = 2= (1= o T0). (©)

We will write [-],, to indicate the ™ element of a vector, and [-],, to indicate the element in
the n™* row and m** column of a matrix.®
Spot rates, or yields on zero-coupon bonds, are given by

log Pr(t) 1 (
. - —A Br(t)'Y )

B - (-4 + By ()
It is easy to check that the yield on an infinitely lived bond, i.e. as T — t goes to infinity, is
given by

= ’
o = (:)I _ - 0-1/717’ TY,TL
o=y =13 (2702 g

and is simply a function of the model’s parameters, not dependent on the current values of
the Y-type factors.

2.2 Stocks

Stocks in the present model entitle their owners to two types of dividend payments. First,
the owner of stock i receives an instantaneous dividend of D;(t) per unit time, implying that
the cumulative dividend paid by the stock through time ¢’ is given by

/0 " D)

Furthermore, the stock entitles its owner to a terminal dividend D;(T) paid at some time T
in the future. After the terminal dividend D;(T) is paid, the owner of the stock is entitled to
no future dividend payments. Let us write S; 7(¢) for the price of a stock with this dividend
process. Then the fact that discounted gains processes for stocks must be martingales under
Q is equivalent to the following formula for the price S; r(t) of stock i:

T
Sin(t) = Etg [/ e ftu T(s)dsDi(u)du + e ft r(s)dsDi(T)] . (8)

t

6Given Br(t) in (6), it is to check that

T r2 9 B 1 B
Br(w)Pdu = —2" |7 — — 1—exp(—K +— 1 — exp(—2K ,
| 1B N [ (1= exp(-Kyn)) + 52— (1 - exp(=26r,7))

where =T —¢.



While this representation for the stock price is completely standard, finding a closed form
solution for S; () may not always be possible. In particular, the choice of the dividend
process which the stock pays out is crucial in order to be able to solve the above expectation
in closed form. While a closed form solution for the stock price in (8) is not, strictly speaking,
necessary because the integral may be computed numerically, the existence of such a closed
form solution clearly makes implementation of the model susbtantially simpler.

With these considerations in mind, Mamaysky (2002a) shows that a particular choice of
intermediate and terminal dividend processes leads to a very simple solution for the stock
price. The crucial feature of the dividend process which leads to closed form solutions is
that the intermediate dividend turns out to equal the stock price multiplied by an affine
dividend yield. Before proceeding to specify the actual dividend process, we note that the
only factors in the economy (i.e. the Y-type factors of the previous section) are stationary
by assumption. Since ample empirical evidence points to the possibility that stock prices
contain a random-walk component, a model with only stationary factors will most likely be
unable to provide an adequate match to actual stock prices. Because of this we introduce
into the economy another set of factors, which we will call the Z-type factors. We will
assume that the Z(¢) is an M-dimensional vector which gives the time ¢ values of the Z-type
factors, and that the dynamics of Z(¢) are given by

dZ(t) = jidt — K;Y (t)dt + SzdW (t), (9)

where i € RM, K; € RM*N and ©; € RY*(N+M) The N 4 M-dimensional process W (t)
is assumed to be vector of standard, independent Brownian motions, the first N of which
are the Brownian motions from (3). Also we assume that X7 only has elements along its
right diagonal (i.e. locations {M,N + M}, {M — 1, N + M — 1}, and so on). Note that we
have assumed that the Z-type factors have constant volatilities, an assumption which can
be relaxed (as is done in Mamaysky (2002a)), but one which suffices for the purposes of this
paper.

With the Y and Z-type factors defined, we assume that the intermediate dividend D;(t)
which is paid by stock ¢ is given by the following formula:

Dy(t) = (80 + 0}y Y (2)) exp(ai(di0, 8y, C) = Bilbiy, CYY () — CIZ(1)),  (10)

where 6i,0 € R, 5i,Y € RN, C; e RM, and where q; : (5@0, (5iyy, C; = R and B;: (5iyy, C; - RY
are functions depending on the values of {;9,0;v,C;}. Indeed we assume that q; is given
by

N M
J— 1 1
a; =79 — 5i,0 + @IKQBZ -+ [J/CZ - 5 E O%H[Bz]i — 5 E o%ym[Ci]fn, (11)
n=1 m=1

and that B; is given by
B = (K;,) - (TY — Gy — K’ZC) (12)



Going forward, we will suppress the dependence of a; and B; on {d;,d; v, C;}, though these
two quantities are assumed to satisfy (11) and (12) throughout the paper. We furthermore
assume that the terminal dividend D;(T) is given by

Di(T) = exp (ait —BY(t) - C;Z(t)). (13)

This is the same as the exponential in (10), but without the affine multiplicative term in
front.

Before we proceed, let us comment briefly on this choice of dividend process. In order
to have a workable model for stock prices, we must specify a dividend process so that the
expectation in (8) may be computed. An important feature of the chosen dividend process
is that is have enough empirical flexibility to be able to provide an adequate description for
the data. On the other hand, in order to maintain the tractability of the model, we cannot
choose an arbitrary dividend process.

It is the hope that the dividend process specified in (10) and (13) provides us with a
good compromise with regard to these two objectives. First off, we do have a great deal
of empirical flexbiility in writing down the dividend process. The quantities {d;0,d;v,C;}
can all be specified exogenously (subject to some parameter restrictions which will be given
later). Hence the dividend can load arbitrarily on the Z-type factors in the economy, and
also can load arbitrarily on the Y-type loadings, as long as this dependence occurs outside
the exponential in (10). Compromises for tractability take two forms. First, we assume
that the instantaneous dividend is given by the product of an exponential affine function
and an affine function, and that the terminal dividend is given by the exponential inside
the instantaneous dividend. Second, we must restrict the dependence of the exponential on
the Y-type factors.” Together, these two restrictions lead to a very simple solution for the
expectation in (8).

It is shown in Mamaysky (2002a), that given the dividend process in (10) and (13), the
stock price (which is equal to the expectation in (8) is given by

Si(t) = exp(ait —BY(t) - c;Z(t)). (14)

Note that a; and B; are assumed to satisfy equations (11) and (12) respectively. We note
as well that the stock price does not depend on the date of the terminal dividend D;(T).
This is why we write S;(¢) in (14), instead of S;r(t), and we will continue to neglect the
dependence of the stock price on T for the remainder of the paper.

Given the stock price in (14) and the instantaneous dividend process D;(t) in (10), we
see that the instantanoues dividend is in fact equal to

Di(t) = (5i,o + 5§7YY(t)) Si(b).

"The reason for doing so is to accomodate the no-arbitrage restrictions which are placed on these coeffi-
cients for any security whose price is exponential affine in the model’s factors (which we will soon see to be
the case for the stock price). The loadings inside the exponential on time and on the Y-type factors must be
restricted to allow for the stock plus dividend process to have a return equal to the risk-free rate under the
risk neutral measure Q. The derivation of the stock price in Mamaysky (2002a) makes these points obvious.




Note that this relationship is a result, rather than an assumption: We start with a dividend
process of the form in (10), solve for the stock price, and then it turns out that the exoge-
nously specified instantaneous dividend and the endogenously determined stock price satisfy
the above relationship. Let us define 6;(¢) as

5i(t) = 1o + By Y (2). (15)
Going forward, we will refer to d;(¢) as the dividend yield on stock i.

The Transversality Condition

Our intuition for the way in which stock prices are determined tells us that as the terminal
dividend becomes ever farther away in the future, the value of a given stock should be
mostly determined by the value of the interemediate dividend stream. This intuition is
made concrete in the present setting by imposing a transversality condition on the present
value (under the risk neutral measure) of the terminal dividend: We require that as the
date of the terminal dividend goes to infinity, the value of the terminal dividend (and hence
its contribution to the stock price) should go to zero. This means that we require that the
following limit exists, and that it equal zero:

lim ES [e_ ftT““)d“Di(T)] =0. (16)

T—o0
Since from (13) and (14), we see that S;(t) = D;(t), the tranversality condition in (16) also
implies that the present value of a share of stock given infinitely far off in the future is zero.

It is shown in Mamaysky (2002a), that for the model we have specified in this paper,

the transversality condition in (16) holds as long as the following parameter restriction is
satisfied

N
~ 6Z nO'2 n 1 ~
Sip+ 0O+ % (5[@,;,]” — Ty + [chZ]n) > 0. (17)

Going forward, we will assume that this restriction is indeed satisfied.

n=1

It is furthermore shown in Mamaysky (2002a) that imposing the transversality condition
allows us to define an infinitely lived stock (i.e. one which pays D;(t) forever, with no
terminal dividend) whose price will be equal to S;(t), the price of any finitely lived stock.
However, this point is of no practical interest for the questions at hand, and so going forward
in this paper we wiil assume that all stocks are finitely lived, though with a terminal dividend
which is potentially very far off in the future. Also, as has been shown in (14), the date of
the terminal dividend does not affect the stock price.

2.3 Total Returns Processes

While it is possible to estimate the present model using data on stock prices and on the
associated dividend processes, doing so is often unnecessary for the questions at hand. For

10



example, to look at the risk premia implied by the present model, separate data on stock
prices and dividends is unncecessary. Instead, it is often more convenient to work with a
total returns process associated with a given stock. The total returns process is the value of
a portfolio which starts off holding one share of the stock, and then reinvests all dividends
back into the stock itself.

If we write s;(t) for the value of a total returns process associated with stock 4, then the
“full reinvestment of dividends” condition allows us to write the dynamics of s;(¢) as written

* dsi(t) _ dSi()

Details are provided in Mamaysky (2002a). We would now like to construct a convenient

+ 6;(t). (18)

solution for s;(t), just as we have done for S;(t). Mamaysky (2002a) shows how this may be
done, and we will follow that construction.

Let us select a set of M stocks. For these stocks, referenced by m = 1,..., M, let us
define the following two matrixes:

CE[Cng---CM],

and
oy = [51,1/ 52,Y s 5M,Y]-

We see therefore that C € RM*M and that dy € RV*M. Also we assume that the stocks
are chosen so that C is invertible (i.e. the M stocks’ loadings on the Z-type factors are not
colinear). Let us now define a new set of state varuiables, which we will call z(¢). These
will be M-dimensional, and we will assume that z(0) = Z(0). The 2’s differ from the Z’s
because their dynamics are given by

dz(t) = fidt — kzY (t)dt + SzdW (¢), (19)

RMXN

where INcZ € and is given by

]NCZ = KZ + (C')_16§,. (20)

Mamaysky (2002a) then shows that for any of the above M stocks, the total returns process
sm(t) may be solved for explicitly, and that it is given by

sml(t) = exp((am +6m0)t — BLY(t) - c;nz(t)). (21)

There are two differences between s,,(t) and the stock price S, (t). First, the loading of s,,(t)
on time is given by a,, + 6,0, while for the stock price it is given by a,,. Second, the stock
loads on the Z(t)’s, whereas the total returns process loads on the z(¢)’s. We now make the
following two observations. First, given the form of a,, in (11), we see that a,, + 0o does
not depend on the behavior of the dividend yield. Let us define al® = a,, + 1 0. Second,
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given the form for B,, in (12) and the definition of kz in (20), we see that B,, can be written
as

By = (K;,) - (TY - JE’ZCm). (22)

TR nor B; depends on any of the dividend yield paramters or on the

m
parameters of the Z(t) process directly. Instead, the dependence goes through the kz matrix,

which can be estimated directly, without needing to know Ky or 8y separately. Also notice
that the loadings of the total returns process of stock on the Z(t) is exactly the same as the

Therefore, neither a

loadings of the associated total returns process on the z(¢)’s. With this, we can write the
total returns process as

sm(t) = exp (a,TnRt ~BLY(t) - c,'nz(t)). (23)

Conveniently, therefore, the total returns process on a stock also has a closed form solution,
and is also exponential affine in the model’s state varuiables (once a change of variables is
performed on the Z-type factors). We note that in the empirical implementation we will be
working with total returns processes, and hence will be using equation (23).

We make one additional point. The parameter condition in (17) which guarantees that the
transversality condition in (16) holds is stated in terms of the parameters of the stock price
process. For stocks m = 1,..., M this condtion can be restated in terms of the parameters
of the total returns process as follows

N
- OmYInoo, [ 1 -
Omo + Oy © + % (-5[5,”,;,]” —Tyn+ [Cgkz]n> > 0. (24)

n=1

Portfolios Versus Stocks

So far, we have been refering to S;(t) as the price of a single stock with a dividend process
parameterized by {d;0,d;y,C;}. However, in the empirical implementation of the present
model we will be working with portfolios of stocks, rather than with stock individually. It
is shown in Mamaysky (2002a) that when factor innovations are Gaussian (and only when
factor innovations are Gaussian), as is the case here, the total return on a portfolio of stocks is
exactly equal to the total return on a single stock, whose dividend specification {d; 9, d; v, C;}
is the average of the dividend specifications of each of the stocks in the portfolio. Therefore,
in this paper, we are justified in treating the portfolios used in the estimation as if they
were individual stocks. The one caveat with this is that the portfolio weights must remain
constant in order for the argument in Mamaysky (2002a) to go through. This will likely not
be the case for the portfolios used in this paper, but we will proceed with parameterizing a
portfolio as a single stock despite this fact. See Mamaysky (2002a) for a derivation of the
total returns process for a portfolio of stocks in a more general setting than the one used in
this paper.
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2.4 The Pricing Kernel

The final step in specifying the model is to write down a pricing kernel, which allows us
to change between the physical measure P and the equivalent martingale measure Q. The
development presented in this section is from Mamaysky (2002a), and the interested reader
should refer there for more details.

Let us write m(t) for the pricing kernel in the model. Let us write the evolution of the

pricing kernel as

dm(t)

—= = —r(t)dt — A(t) dW (¢ 25

) = =T = A (), (25)
where 7(t) is the short rate process, W (t) is a standard N + M-dimensional Brownian motion
under P, and where A(t) is a N + M-dimensional process which is called the price of risk.
This name is justified because of the following result. Let us write the evolution of stock

and bonds prices as follows

dlfTT(%) = ur(t)dt + op(t)dW (1),
dssig) = wilt)dt + oi(t) dW (2).

An application of Ito’s lemma to bond and stock prices in (4) and (14) shows that or(t) =
—Br(t)'Yy and that 0;(t)’ = —B[Xy —Ci¥7.® Also, from standard results (see, for example,
Mamaysky (2002a)) we have that

pr(t) —r(t) = A@)'or(t), (26)
and that
wi(t) + 6;(t) — r(t) = A(t) o4(2). (27)
Therefore the time-varying vector A(t) determines how much excess return each security is
entitled to by virtue of its loadings on each of the sources of uncertainty in the economy (i.e.
the N + M-dimensional vector of Brownian motions W (¢)). Thus the name: price of risk.
It is important to note that one of the main advantages of the present model is that
it gives us risk premia processes for both stocks and bonds. Therefore we can use data
from both bond and stock markets to study the behavior of risk premia in the economy.
Furthermore we have a unified framework for seeing how prices of risk translate into risk
premia across different asset classes. For example, given the present specification, we have
N + M price of risk processes in the economy (one for each Brownian motion). Bonds can
load only on the first IV prices of risk (i.e. those associated with the Y-type factors), whereas
stocks can load on all N 4+ M prices of risk. Therefore, an empirical estimation of the model
should reveal which prices of risk are joint between stock and bond markets, which prices of
risk are specific only to stocks, and how the behaviors of these prices of risk differ from one
another. This analysis is pursued in Section 4.

8Here, Xy is a N x (N + M) matrix with element [¥z],, equal to oy,, for n = 1,..., N and where all
other elements are zero.
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Specification of the Price of Risk Process

It remains for us to specify the behavior of the price of risk process A(t). It is shown
in Mamaysky (2002a) that the “essentially affine” price of risk process proposed in Duffee
(2001) (see also Dai and Singleton (2001)) works as well in the context of a joint bond-stock
pricing model. We will assume that the N 4+ M-dimensinoal process A(t) is given by

A(t) = do+ Ay Y (D), (28)

where \g € RM*M and \y € RV*M x N. That this is a valid price of risk process in the
context of a model having factors with Gaussian innovations is shown in Dai and Singleton
(2001). It is shown in Mamaysky (2002a) that with this price of risk process, factor dynamics
under P may be written as follows:*

dY (1) = KY(@ - Y(t))dt + Sy dW (1), (29)
d2(t) = pdt— kzY (£)dt + dW (8), (30)

where Ky € RV*Y O ¢ RV, p € R¥, k; € RMXYN  where ¥y and ¥z have already been
defined, and where

Ky = Ky-TSyly,

o = K;l(kyé+zYA0),
krz = INCZ_EZ)\Ya

uo= [+ Xzl

Given factor dynamics under both measures, it is straightforward to check that Ay and Ay
satisfy the following:

ce [T ()
v (2] (58

Therefore estimation of the model (discussed in Section 3 below) will allow us to compute
the price of risk process in (28). With this we will be able to analyze the commonalities and
differences in the behaviors of the risk premia of across stock and bond markets in a unified,
theoretically coherent framework.

So far we have discussed how to obtain the price of risk process using the parameters of
the total returns process under both measures. We now note that the A(¢) process implied

9This follows from the fact that the N 4+ M-dimensional Q Brownian motion W (t) has the following
decomposition W (t) = f(f A(u)du + W (t), where W (t) is our standard N + M-dimensional Brownian motion
under P.
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by (31) and (32) is the same one that we would have obtained had we used stock price and
dividend data, rather than total returns data. To see this observe that changing measures
from Q to P yields the following relationship between Kz and Kz

KZ :Kz—zsz.

Hence K; — K7 = ky — k5, and the estimate of Ay in (32) does not change regardless of
our choice of stock price versus total returns data. Also note that this data choice does not
affect 0;(t). Hence the equity risk premium p;(t) + 6;(t) — r(¢) in (27) can be recovered using
only total returns data.

2.5 Forecasting Returns

In equations (26) and (27), we derived instantaneous risk premia on securities in the model.
It is also relatively straightforward to compute expected conditional returns over longer time
horizons. From (23) we see that log total returns on stocks are affine functions of the state
variables. Hence we can express the continuously compounded return on a stock over a given
time horizon 7 as follows

si(t+T)
$;(t)

We can therefore write

R;(t,7) = log — " x 71— B (Y(t ) — Y(t)) —c (z(t ) — z(t)). (33)

E[R;(t,7)] = af " x 7 = By (B[ (t+7)] = V(1) - C§(Blo(t+7)] - 2(8)).  (34)

These conditional expectations are rather straightforward to compute. This is done in Propo-
sition D.2 in the Appendix. Note that since we are interested here in making statements
about the predictability of returns, all moments are being computed under P, the physical
measure.

Another quantity of interest is the log return from rolling over investments at the short
rate over a given time period. This quantity is given by

R.(t7) = /t 7 W, (35)

Under the factor dynamics assumed in this paper, it is possible to compute E;[R,.(¢,7)] in
closed form. This is done in Proposition D.1 in the Appendix.

Given equations (33) and (34), we see that it is possible to write the log return of an
investment in any stocks, or of a rolled over investment growing at the short rate, as follows

Rj(t,’r) = E[Rj(t,’r)] + Gj(t+T),

where the error term is, by definition, orthogonal to the conditional expectation.
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This decomposition allows us to compute, in closed form, the R? of a forecasting regression
of the actual return on its expectation, as a function of the forecasting time horizon 7. This
quantity is given by

Var(IE,[R;(t,7)]) Var (& [R; (¢, 7)])

B0 = ) = Va@R o) + Vare G 1)

(36)

since the error term is orthogonal to the conditional expectation. Also note that we are
computing unconditional variances. This calculation is possible because from (34), and the
factor dynamics, we see that E;[R(¢,7)] is stationary, and hence has a long-run variance. In
a specialization of the model, we will later see that this R? can be computed in closed form.
The R¥’s for forecasting regressions of stock returns, stock returns in excess of the short rate,
and of rolled over investments at the short rate are given in Propositions D.1 and D.2 in the
Appendix.

This analysis is extremely useful for the following reason: The conditional expectation
used in the forecasting regression above is derived within the framework of the model. Hence
any strategy for estimating the present model will yield an estimate for the predictive power
of the true conditional expectation of a given return, were such an expectation actually
known. This exercise is by construction free of any data snooping bias (though not free from
problems of model misspecification). On the other hand, any purely empirical attempt to
calculate predictive power must necessarily rely on actual forecasting variables. Since the
forecasting variables must be found empirically, it is always possible to data mine and find
“overly predictive” variables. To the extent that the present model provides an adequate
description of the data, the measure of R? derived above is likely to be more accurate (and
lower) than a purely empirical measure.

3 Model Estimation

This section provides details of the estimation of the model set out in the previous section.

3.1 Data

All data are in nominal terms and at a monthly frequency. The time period of the sample is
from February 1973 through December 2000. The sample therefore contains 335 months of
data. This choice of time period deserves some justification. The data used for this study
actually goes back to June 1952 (some goes further back than that). However, the present
model, when estimated from June 1952 to December 2000, does an extremely poor job of
pricing long term government bonds in the time period prior to 1973. Furthermore, the
correlation between the dividend yield and the short rate switches signs around the early
seventies. For example, in the time period from June 1952 to January 1973, the correlation
between the average annual dividend yield of the CRSP value weighted index and the one
year governemtn spot rate (from the Fama-Bliss zeros file, see below) is -0.7743. In the
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time period from February 1973 to June 2000, this correlation is 0.6040. Since a critical
component of the present model is the relationship between dividend yields and interest
rates, it is important to estimate the model over a time period during which this relationship
does not undergo regime shifts, as apparently hapenned sometime around the early seventies.
For these two reasons, the time period for this study does not include data prior to 1973.

Data on government bonds is obtained from two sources in CRSP. First, we use the
CRSP fixed term indexes file. This file provides monthly data on the seven government
bonds whose maturities are closest to 1, 2, 5, 7, 10, 20, and 30 years. The data runs from
1952 to 2000. In some months, there may not be information on all seven bonds in the
sample (for example, the bond with maturity closest to 20 years may also be the bond with
maturity closest to 30 years). Also we use the CRSP Fama-Bliss zero coupon bond prices.
This series runs from 1952-2000, and gives in every month the prices for zeros of maturities
equal to 1, 2, 3, 4, and 5 years. Details on how these zero prices are extracted from coupon
bond prices are available from CRSP.

Stock data is taken from CRSP and from Ken French’s website

http://mba.tuck.dartmouth.edu/pages/faculty /ken.french/

at Dartmouth. From CRSP we use the value-weighted market index from 1952-2000. From
French’s website we have data on five sets of decile portfolios, where the sorts are based on
the following equity characteristics: size, book to market, dividend to price ratio, earnings
to price, and cashflow to price. Descriptions of how these portfolios are formed are available
on the above website. We use monthly return data on the 3™ decile size portfolio (small
stock) and on the 8" decile book to market (high book to market, or value) portfolio.!? All
stock data are total returns.

3.2 Model Specification

We will assume that there are two Y-type factors in the economy. For specifying the bond
portion of the model we follow the estimation strategy of Chen and Scott (1993) who assume
that certain bond prices are exactly in agreement with the model, and that certain other
ones are observed with error. The advantage of this strategy (see also the discussion in Duffie
and Singleton (1997)) is its simplicity and the fact that the assumption that certain bonds
are priced exactly according to the model renders the Y-type factors directly observable.

We assume that the two and five year zeros from the Fama-Bliss file are priced exactly
by the model, which, together with equation (4), implies that

ot | 3 e o) | = |ty ) = | ey | 7O &)

10We do not use the extreme size or value portfolios (i.e. the first and tenth deciles respectively) in order
to exclude the small, distressed, and/or thinly traded companies which these portfolios contain.
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For the bond prices which are oberved with error, we use the CRSP fixed term index bonds
closest in maturity to ten and twenty years, as well as the one, three, and four year zeros
from the Fama-Bliss files. The ** error ¢;(t) is given by

€;(t) = Price of Bond(t) — Model Price for Bond(t).

We will write €(t) for the vector of the stacked pricing errors. We assume that the pric-
ing errors associated with these bonds are independently (cross-setionally and over time)
and Normally distributed in each month of the sample, with means of zero and standard
deviations given by o1, ..., 0.5 respectively.

We assume that there are three Z-type factors in the economy. Among the stock port-
folios, we assume that the CRSP value weighted index, the 3" size decile portfolio, and the
8" book to market decile portfolio are all priced exactly by the model. From equation (23),
this means that

CRSP VW Index(t) al® B 1 00
log 3"Decile Size(t) =|a®|t-— | By |Y®) — | e 1 0] Z(¢).
8" Decile Book-to-Market (t) al® B} co c3 1

(38)
Notice that the left hand side in the above equation is a vector of the total returns processes
associated with the three equity portfolios. Recall that a] ® and B; are not free parameters,
but must satisfy the pricing equations of Section 2. The loadings of the total returns processes
on the Z-type factors are left unrestricted by the model (and arise from the fact the associated
dividend processes of these portfolios may depend on the Z-type factors). The exact nature
of this dependence, therefore, must be specified by the econometrician. We choose the
loadings in equation (38) because this is the most restrictive specification of the loadings of
total returns processes on the Z-type factors which allows for all innovations in the Z’s to be
independent (which has been the maintained assumption in the development of the model
in Section 2).
With the loadings on the Z’s given in (38), the role that each of the Z-type factors plays
in the economy is easily delineated. For

we see that Z;(t) is the portion of total returns of the CRSP value weighted index which is
not due to its dependence on the Y-type factors. Hence we will refer to Z;(t) as the market
factor. Z,(t) is the portion of total returns on the small stock portfolio which is not due to
the Y-type factors or to the market factor. We will refer to Z,(t) as the size factor. Finally,
Z3(t) is the portion of the total returns on the value (high book to market) portfolio which
is not due to the Y-type factors, or to either of the market or the small stock Z-type factors.
We will therefore refer to Z3(t) as the value factor.
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3.3 Estimation of the Model

The present model is estimated in a single step. One estimation strategy would have been
to first estimate the parameters of the term-structure portion of the model, and then to use
these parameter estimates and the extracted Y-type factors as given in estimation of the
stock portion of the model. This approach, while computationally far less intensive than
the one adopted in this paper, has the obvious drawbacks (1) of not using stock return data
in the estimation of the Y-type factors, which drive prices of risk in the model, and (2) of
leading to incorrect standard errors in the second step of the estimation (i.e. the one for
stocks). For these reasons, the model is estimated in one step, which results in an extremely
large number of parameters (see Table 1) that need to be estimated.

Because we are using a Chen and Scott (1993) type approach, the five factors in the
economy

X(t) = (M), Ya(t), Z1(1), Z2(1), Z5 (1) }
are all directly observable from the prices of the two and five year zero, and from the total
returns of the CRSP value weighted index, the size portfolio, and the value portfolio. Be-
cause all factor innovations are assumed to be Gaussian, the likelihood function for factor
transitions is known in closed form. Let us refer to the density function for X (s) condi-
tional on X (¢) for ¢t < s as f(X(s)|X (¢)). This density function is given in Section B of the
Appendix.

Also let us write A(:) for the inverse of the price function for the above five securities
(i.e. for a price vector P(t) we have that X(t) = h(P(t)). h(:) is obtained by inverting
the system of linear equations in (37) and (38), which then tells us what factors at time ¢
generate the bond prices and total returns process values which we observe at that time.
Then standard results (see, for example, Billingsley (1995)) allow us to conclude that the
conditional density function for the P(t) vector is given by

On(P(s))

s (POIP®) = 1 (WPEIREPE) [aet T, (39)

where the | - | term is the absolute value of the determinant of the (N + M) x (N + M)
Jacobian matrix 0h/OP’. Also let us write f(-) for the density of the pricing errors. Then
the log likelihood for the sample is given by

L£(©) =) log fr(P(t)|P(t—1)) + Y log fu(e(t)), (40)

where O is the parameters vector. Parameter estimates of the model are obtained by max-
imizing £ with respect to the parameters of the model. The asymptotic covariance matrix
of the parameter estimates © is given by

T 96(0,8) _ 96(0,8)\
(; 06 o0& ’ )
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where ¢(0,1) = log fp(P(t)|P(t — 1)) + log f.(e(t)). Standard errors for functions of the
estimated parameters are obtained using the §-method.!!

In order to guarantee proper estimation, we need to impose several sets of restrictions
on the parameters of the model (these are in addition to the restrictions which have already
been imposed in the prior discussion). First of all, as a normalization, we assume that ry is
given by a vector of ones. Next, we assume that © = 0, and estimate a value for ry. From
(7), we see that both © and ry determine the long-yield, and are therefore important for
pricing bonds of long maturities. When the model is estimated with 7o = 0 and with ©
free, the estimates of the separate components of the © vector are very imprecise, and the
explanatory power of the model (measured by the log likelihood function) does not change
(to the ninth decimal place). For this reason, © is set to zero, and rq is left free in the
estimation. Further, we assume that i = 0. We do this because from the total returns
process formula in (23) and from the expression for a; in (11), we see that the i vector
and the drifts of the Z-type factors under the physical measure (i.e. u) are not separately
observable. Finally, we have assumed that Ky is a diagonal N x N matrix, and we will also
assume that Ky is a diaginal N X N matrix.

This last restriction (i.e. that Ky is a diagonal matrix) warrants some discussion. While
this restriction is not necessary for purposes of identification, it does significantly simplify
many of the other calculations in the model.!? For this reason, the Ky restriction is very
useful. On the other hand, Dai and Singleton (2001) show that in order to match certain
empirical properties of bond yields (having to do with the expectations hypothesis, and with
bond risk premia), it is important to allow for the Ky matrix to have nonzero off-diagonal
elements. I discuss the problems which the Ky restriction introduces (such as potentially
counter-factual implications for the behavior of the Y-factor prices of risk and of bond risk
premia) in greater detail in Section 4.2.1. However, the focus of the present paper is on
the empirical behavior of the prices of risk for the Z-type factors, and of the predictability
implied by the model for stock returns. I argue in Section 4.2.1 that the fact that the model
is able to match one important aspect of the expectations hypothesis (in a sense made precise
later) and the fact that the k z and kz matrixes are unrestricted in the present setup together
allow for the model to properly account for these stock-related quantities (i.e. the Z-factor
prices of risk and stock return predictability), despite the Ky restriction. The Ky restriction
can be relaxed, but at the cost of a loss of tractability, and without much benefit for the
analysis at hand, and therefore this restriction will be maintained for the remainder of the

1f /N(6 — 0) is asymptotically Normal with mean zero and variance matrix V, then vN(g(0) — g(©))
converges in distribution to a mean zero Normal random variable with variance 8g/80’ x V x 8g/80, where
g(-) can be a vector valued function.

12Without this restriction, the likelihood function for the data is not known in closed form. Furthermore,
I am already estimating such a large number of parameters that the addition of any more would make
the estimation problem that much more difficult, a problem which would be compounded in the case of
nonzero off-diagonal elements of the Ky matrix by the fact that the likelihood function would need to be
approximated. Perhaps more importantly, the R?’s of the forecasting regressions of Section 2.5 may not have
closed form solutions.
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paper.

4 Results

4.1 Estimation of the Model

Table 1 shows the results of model estimation. The value of the maximized likelihood function
L£(©) in (40) is shown. Also, standard errors, computed using the outer product method
in (41), are given in parentheses.!®> In all, 35 parameters are estimated using 335 monthly
observations of U.S. government bond and U.S. stock data. Many of the parameter estimates
have fairly small standard errors. The notable exception to this are the estimates of O, kz,
and pu. Because these parameters jointly determine the behavior of the drifts of the 2z’s under
the physical measure (recall from equation (30) that the drift of the z’s is given by u—kzY (1)
and note that under P the long-run means of the Y’s are given by the vector O), they are,
unfortunately, poorly estimated. This is made clear by the large standard errors associated
with O, kz, and p in Table 1. Using a longer time series would produce tighter estimates of
these parameters. However, for the reasons given in Section 3.1, a suitable longer time series
may not be available. Hence, without imposing other restrictions on the parameters of the
model, it is not clear how the precision of these parameter estimates may be improved.

Table 2 shows the correlation of first differences of the Y and z factors extracted from
the model. We see that, with the exception of the Y; — Y5 correlation, all of these are close
to zero. This latter correlation is negative, which, as Dai and Singleton (2000) point out,
seems to be a feature of U.S. term structure data. The problem, of course, is that having a
diagonal Ky matrix and independent factor innovations through the 3y matrix, seems to be
contradicted by the data. As has already been pointed out in Section 3.3, the Ky assumption
greatly simplifies much of the analysis, as does the assumption of independent innovations
through the ¥y matrix. Furthermore, as will become evident later, these restrictions are
unlikely to affect the focus of the analysis in the paper, namely the behavior of prices of risk
for stock specific factors and of stock return predictability. Nonetheless, a specification of
the present model which captures the negative Y7 — Y, correlation present in the data is an
important step for future research.

Figure 1 shows the time series behavior of the factors extracted from the model (i.e. the
Y’s and the 2’s), as well as the behavior of the short rate (given by ro + Y1(t) + Ya(t)).

4.1.1 Behavior of the Short Rate

Table 3 shows the relative importance of the model factors for the time series behavior of
the short rate extracted from the model. The short rate in the model is given by r(t) =
o + Y1(t) + Ya(t). To assess the relative contribution of each factor to the behavior of the

2 mpan =1
13Computing the asymptotic covariance matrix using (—%%%) produces similar answers.
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short rate, Table 3 regresses monthly first differences in the short rate on those of each of
the factors separately, or Ar(t) = constant + AY;(f) + noise for i = 1,2. Because, as seen
from Table 2, the Y innovations are correlated, the R*’s from these regressions will not add
to one. It seems that both factors are important in the evolution of the short rate, with first
differences in factor one seemingly more important. Recall from (28), that the Y factors
drive the behavior of prices of risk for all factors (bond and stock ones) in the model. Hence
the fact that both factors account for a substantial amount of variation in the short term
interest rate suggests that information from bond markets is important for the determination
of prices of risk for stocks and bonds.

From Figure 1, we see that the model short rate 7(¢) has the expected procyclical behavior
which reflects Fed easing during business cycle troughs. The short rate is particularly high
during the early eighties, reflecting the high interest rate environment which was in effect at
the time.

4.1.2 Behavior of the CRSP Value Weighted Index

Next, Table 3 shows the relative importance of the Y factors and the z factors for the behavior
of the CRSP value weighted index. From (38), we see that monthly first differences of log
monthly returns of the CRSP value weighted index, log VW (t), are given by Alog VW (t) =
constant — BiAY;(t) — BaAYa(t) — Az (t). To determine the relative importance of the YV
factors for the evolution of the log stock returns, the table shows the results of the regression
Alog VW (t) = constant + by AY; (1) + b2 AY2(t) + noise. As can be seen, the Y factors jointly
account for 5% (or so) of the time series variation in continuously compounded monthly
returns for the CRSP value weighted index. Because, as seen in Table 2, the ¥ and z factor
innovations are almost uncorrelated, the remaining 95% of explanatory power is found in
the regression Alog VW (t) = constant + cAz, () + noise.

These results should be interpreted with some caution. In particular, these results do not
suggest that the behavior of the Y factors is unimportant for the behavior of stock returns.
Indeed, as seen from equations (28), (26), and (27), the Y factors exclusively drive variation
in expected excess returns for stocks and bonds. Hence, the dependence of stock returns on
Y factors innovations reflects, at least in part, the dependence of stock returns on expected
stock returns. This dependence is analyzed at some length in Section 4.4 of the paper. An
additional channel of dependence of stock returns on the Y factors comes from the fact that
stock dividends (and dividend yields) depend on the Y factors (as can be seen from equation
(10)). Indeed, Section 4.2.2 shows that much (though not all) of time series variation in
dividend yields of the CRSP value weighted index can be explained by variation in the
model extracted Y factors. Hence the results in Table 3 should be interpreted to mean
that over a one month horizon, Y factor innovations explain only a small part of market
returns. However, because risk premia (entirely) and dividends (partially) both depend on
the behavior of the Y factors, the importance of these for stock returns must manifest itself
over longer time horizons.
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4.2 Diagnostics

Before proceeding with the analysis of prices of risk, risk premia, and return predictability,
we need to establish that the model, in its present implementation, does a reasonable job of
accounting for the empirical properties of the relevant data. We will look at this question
in three ways: First, we will see the degree to which the present model is able to account
for expected returns on bonds; Second, we will see the degree to which the present model
accounts for the time series behavior of the actual dividends of the CRSP value weighted
index; And finally, we will see the degree to which the extracted stock factors (i.e. the 2’s)
actually proxy for differences in stock risk exposures in the cross-section (thus justifying
the naming convention in Section 3.2 of calling the z’s the market, size, and value factors
respectively).

4.2.1 The Expectations Hypothesis

Dai and Singleton (2001) propose using a version of the Campbell and Shiller (1991) regres-
sion of changes in yields on the term spread as a means of assessing the degree to which
term structure models are able to account to the behavior of risk premia. Their suggested
diagnostic can be used as well in the present context. In particular, let us define y(r,%) as
the time ¢ yield on a zero-coupon bond which matures at time £ 4 7, i.e.

_log P, b+ (t)

yo(t) = -T2, (42)

Dai and Singleton (2001) propose running the following monthly regression (a modification
of Campbell and Shiller (1991)):

Yr—a(t + A) — y,(t) = constant + ¢, yr(t) — r(t)

7'/A7—1 + noise term. (43)

where 7 is the time frame in question, and A is equal to a time span of one month, or 1/12,
and 7(t) is the short rate. The ¢, coefficient from this regression is given by

Cov (yralt +A) =y (), yr(t) — 7(2))
Var (g-(t) - r(t))

Given the parameters of the model (under the physical measure P), this coefficient can be

b = (r/A-1) (44)

computed in closed form. This is done in Section C in the Appendix. Dai and Singleton
(2001) refer to ¢, above as the LPY coefficient (presumably LPY is an acronym for “linear
projection of yields” or something of the sort). We will use their naming convention.

The proposed test goes as follows: Estimation of the model yields factor realizations (the
Y’s and Z’s), from which the bond yields y,’s and the short rate r(¢) (all functions of the
Y-factors) can also be computed. The regression in (43) can then be run with the yields
and the short rate extracted during the model estimation to produce a slope coefficient ¢,
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for each bond maturity 7 of interest. Following the convention of Dai and Singleton (2001),
we refer to these as the “fitted” coeflicient values. A second method for computing the
¢.:’s is available. Using estimates of the model parameters from Table 1, as well as the
factor dynamics in (29), we can compute all of the moments in expression (44) directly, thus
obtaining the value for ¢, which the imposed factor dynamics and the estimated parameter
values imply (see Section C of the Appendix). Dai and Singleton refer to these slope estimates
as the “population” values, and we will follow their convention. Finally, the regression in
(43) may be run without using a term structure model at all, using only zero-coupon bond
prices directly inferred from actual bond price data. Let us refer to these as the “sample”
slope estimates.'

The idea behind the Dai and Singleton (2001) diagnostic is to assume that the sample
estimates are the correct ones, and then to see how close the fitted and the population
estimates come to matching the sample ones. If the fitted estimates are close to the sample
ones, then the term structure model must be doing a good job of accounting for the behavior
of the observed bond prices (i.e. the term structure model produces yields which are close to
the actual zero yields found from price data). However, closeness of the fitted slope values to
the sample ones does not guarantee that model implied prices of risk (in equation (28), or,
equivalently, model implied risk premia (in equation (26) for bonds), provide good proxies for
actual prices of risk, or risk premia. The reason for this is that the prices of risk implied by
the model depend heavily of the conjectured factor dynamics (in 29) and on the parameter
estimates (as can be seen from equations (31) and (32)). Indeed, if the population estimates
of the ¢,’s (in equation (54)) do not provide a good match for the sample ¢,’s, then the
model is unlikely to have a correct specification for factor dynamics, and hence is unlikely
to provide reliable estimates for either prices of risk or for expected returns.

Table 4 and Figure 3 provide the results of the Dai and Singleton (2001) diagnostic test
for the present model. It turns out that the shape of the fitted ¢,’s produced by this model
is quite close to the shape of the fitted and sample ¢, curves (i.e. the slope coefficients
as a function of 7) reported in the Dai and Singleton paper.'® The closeness of the fitted
curve from this paper to the sample one reported in Dai and Singleton (2001) indicates that
the present model is doing a good job of capturing the empirical behavior of bond price
data. Corroborating evidence in this regard is seen in Figure 2, which plots a time series
of pricing errors of the model for the CRSP fixed term index bonds (keep in mind that of
these, the bonds closest in maturity to ten and twenty years were used as pricing errors in
the estimation, and the remaining bonds were not used in the estimation at all). As can be
seen from the figure, the model does a good job of accounting for the time series behavior of

14This approach is not exactly model free either (though much more so than the term structure approach),
because finding zero coupon bond prices from prices of traded bonds typically involves assuming some sort
of functional form for how zero prices depend on time.

15The slight difference between the fitted values in the two papers are likely due to the slightly different
sample periods in this paper and in the Dai and Singleton (2001) paper, and to the fact that bond data for
the two papers are obtained from different sources. When I use data only upto the end of 1995 (which is the
end of the Dai and Singleton (2001) sample), the match between the two fitted series is indeed quite close.
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all seven fixed term index bonds.!® For these reasons, in the ensuing analysis, let us simply
assume that the fitted ¢,’s provide a reasonable baseline against which the population ¢,’s
should be measured.

Figure 3 also shows a plot of the population slope coefficients from the regression in (43).
As can be seen from the figure, the population slope curve lies outside of the 95% confidence
interval around the fitted slope curve. This suggests that the term structure portion of the
present model is not likely to be able to properly account for time series variation in expected
returns on government bonds. The problem lies in the fact that the prices of risk for the two
Y-type factors do not have enough flexibility in terms of their loadings on the Y-type factors.
Recall from equation (28) that all prices of risk are driven by the Y-type factors. The prices
of risk responsible for driving bond expected returns are those associated with the Y-type
factors. Because the Ky and f(y matrixes are forced to be diagonal (as is the stacked matrix
of the ¥y and X5), we see from (32), that the price of risk for factor Y, must be driven only
by Y, (rather than by some linear combination of all the ¥’s). Dai and Singleton (2001)
point out that it is exactly this type of restriction (i.e. that it be diagonal) on the Ky matrix
which prevents Gaussian models of the sort used in this paper from properly capturing the
time series variation in expected returns on bonds.

It was pointed out in Section 3.3 that the above restrictions on the Y -factor dynamics
greatly simplify the analysis performed in the paper. However, this restriction has now been
shown to make the model produces expected return information for bonds that is inaccurate.
Since the focus of the paper is on expected returns for stocks, it is hoped that this inability
to properly account for time variation in bond expected returns does not adversely affect the
model’s ability to properly account for time variation in stock expected returns. Fortunately,
it is quite likely that is indeed the case!

To see that this is so, let us note that prices of risk for all factors (Y and Z-type) in the
model are driven by the Y-type factors. The Y-type factors have already been shown to do
a good job of accounting for the time series behavior of bond prices (though not of expected
returns). By virtue of this good fit for prices, the Y-type factors are seen to adequately span
the information which the bond market may contain for expected returns of any security.
The problem with the expected return analysis for bonds is that the prices of risk for the Y-
type factors cannot load on all the Y-factors at once. This prevents the model from properly
accounting for variation in expected returns on bonds, whose expected returns are driven
exclusively by the prices of risk of the Y-type factors (see equation 26).

However, expected excess returns on stocks are also driven by the prices of risk of the
Z-type factors, as can be seen from equation (27). Indeed it will later be shown, in Section
4.3, that the majority of variation in stock expected returns is attributable to prices of risk

16 A better fit (especially at the long end) could be obtained by moving to a model with three (or four) Y-
type factors. This does not seem necessary for the analysis at hand, and would involve yet more parameters
to estimate in what is already a difficult estimation problem. Since the focus of the analysis in this paper is
not on bond, but on the stock, prices of risk, the extension of the estimation to more Y-type factors is left
as a problem for future research.

25



of the Z-type, and not the Y-type, factors. This suggests that if the model gets the prices of
risk for the Z-type factors correct, it should also do a good job of capturing the time series
variation in expected excess returns of stocks. Since the IEZ and kz matrixes are entirely
unconstrained in the model estimation, we see from equation (32) that prices of risk for the
Z-type factors can load on all of the Y-type factors, as opposed to the Y-type prices of risk,
which could not do so. This freedom affords the model much more flexibility in properly
accounting for the time series behavior of the prices of risk for the Z-type factors. Because
these prices of risk, rather than the Y ones, account for the majority of variation in stock
expected returns, it is quite likely that the present model is able to properly account for
expected returns on stocks.

4.2.2 Implied Dividends

Since the model has been estimated using the total returns processes of the equity portfo-
lios, and no dividend information (outside of that contained in the total returns processes),
another diagnostic for the model is to see for how much of the variation in actual dividend
yields the factors extracted from the model can account. Since dividend yields are supposed
to be affine functions of the Y-type state variables, a projection of actual dividend yields
onto the Y factors should produce in a “good” fit. If not, then we may conclude that the
model has been misspecified.

From the analysis in Section 2.3, we see that the one constraint which needs to be imposed
on the projection of actual dividend yields onto the model extracted Y-type factors is that
the best-fit dividend series must satisfy the transversality condition in (16). We proceed to
compute the best-fit dividend series §(t) = 8y + 8, Y (¢) as follows:

T
{00, 0y} = arg inf Z (do + Y () — 4(t))?, (45)

subject to the constraint that the transversality condition in (24) holds for &, and é;. It
turns out that the constraint in (24) is not binding for the time period used in this paper, and
hence the minimization in (45) produces an OLS regression of the actual dividend yield on
the extracted model factors. Of course, this would no longer be true were the transversality
constraint to bind. The instantaneous dividend yield 6(¢) is estimated to be the annual
dividend of the CRSP value weighted index in the time interval [t — 0.5,% + 0.5].17

The proximity of §(t) to the actual dividend series (t) is a measure of the information
content of the Y factors extracted from the model estimation. Since the Y-type factors drive
interest rates and dividend yields in the model, an inability of the extracted Y factors to
properly account for the actual dividend series implies that the model has been misspecified.
Such a misspecification is problematic because the model extracted factors may then not

I7If we believe that the actual dividend yield fluctuates only slowly, then the realized annual dividend
yield may be a reasonably good approximation for the instantaneous dividend yield.
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span the time series behaviors of the prices of risk of the model factors, which would result
in incorrect estimates of expected returns. To assess the degree of this misspecification, we
run the following regression

5(t) = a + B(t) + €(t). (46)

Since the transversality constraint is not binding in the solution of (45), then by construction
the o and [ coefficients from this regression are 0 and 1 respectively. In other words, a non-
binding transversality constraint in the projection in (45) implies that the best fit dividend
series §(t) is unbiased. In this case, the R? of the above regression will tell us how much
of the actual dividend variation is being captured by the model extracted Y factors. If the
constraint in (24) does bind in solving (45), the best fit dividend series will be biased, and
then the o and 3 coefficients in the above regression will also provide information about the
degree of model misspecification.

Figure 4 shows the actual dividend series and the best fit series § over the entire sample
period. Table 5 shows the parameter estimates from the above equations (45) and (46). As
can be seen, the best fit dividend series from the model fits the realized dividend reasonably
well, though clearly imperfectly. The correlation between the two series is 0.6563 (or the
square root of the R? reported in Table 5). The transversality constraint is non-binding for
the time period in question, implying that the best-fit series in unbiased. The imperfect
fit of the two series, however, does suggest that a dividend yield factor is missing from the
present analysis. Understanding the role that this missing factor plays in the economy is an
important area for future work.'®

4.2.3 Cross Sectional Performance of the Z-Type Factors

Following the discussion in Section 3.2, we refer to the Z-type factors as the market, size, and
value factors respectively. Let us recall at this point that the model has been estimated using
only three stock portfolios: the CRSP value weighted index, the 3"¢ decile size portfolio, and
the 8" decile value portfolio. If the factors extracted from model estimation explain a good
deal of the heterogeneity in the cross-sectional behavior of stock returns, then knowing the
prices of risk associated with these factors actually provides information about the behavior
of expected stock returns in the cross-section. To see that this is indeed the case, note from
the equation in (27) that expected excess returns in the economy are determined jointly by
factor prices of risk, as well as by security loadings (in this case, the o;’s) on these factors.
Hence nonzero loadings (or 0;’s) imply a dependence of expected excess returns on the prices
of risk in queastion. If, on the other hand, the present factors do not account for a substantial
portion of differences in cross-sectional return behaviors (i.e. the o;’s with respect to the
model factors are close to zero), then knowledge about the prices of risk associated with
the model’s Z-type factors does not say much about the behavior of expected returns for a

18In particular, the extent to which this missing dividend yield factor drives prices of risk in the economy
determines the model’s ability to properly account for time series variation in expected excess returns and
prices of risk.
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broad selection of stocks (but only for those stocks or portfolios similar to the ones used in
the model estimation).

Another way of looking at this question is to justify the use of the “size” and “value”
naming convention for Z, and Z5. For example, is it the case that smaller stocks have a
higher loading on the size factor than do larger stocks? Or, is it true that stocks with
more valueness have a higher loading on the value factor than do stocks with lower values
of valueness?!® If it is the case that different sized stocks or stocks with different amounts
of valueness have very different factor loadings, then the prices of risk associated with the
Z-type factors may explain a good portion of cross-sectional variation in equity expected
returns.

To assess the degree to which the model factors explain heterogeneity in cross-sectional
return behavior, we do the following: Let us group stocks in portfolios by the percentile
ranking of a stock within a given stock characteristic. For example, we may look at ten
portfolios, where the n® portfolio contains stocks which are (at some rebalancing frequency)
in the n® decile based on their market capitalizations. These portfolios represent a size
sort. We may similarly look at portfolios sorted based on book to market, dividend to price,
earnings to price, and cashflow to price ratios. These latter four sorts (i.e. except size)
correspond to sorts along various proxies for value.

To see whether stocks with different characteristics do indeed display different loadings on
the extracted model factors, we regress continuously compounded monthly portfolio returns
on monthly first differences in factor levels, or

s(t+7)

s(t)

Indeed this regression corresponds exactly to the pricing equation for stock total returns

log =a+BAY (E+7)+ -+ BAZ(E+T) +e(t + 7). (47)

processes given in (23).2% Each regression produces a set of factor loadings of a given portfolio
on the model factors. Figure 5 shows plots of the portfolio loadings on the Z-type factors
(i.e. Bs, B1, and F5 from (47)) for the size sort and for the for value sorts.

For the size sort, we see a monotonic increase in exposure to the size factor as we move
from the smallest to the largest size decile (keep in mind that, by construction, the 3" size
decile portfolio has a loading on the size factor equal to one). For the size sort, loadings on the
market and value factors do not change much as we move from smaller to larger size deciles.
For the four value sorts, a similar loadings pattern emerges. As we move from lower value
to higher value deciles, we see a (nearly) monotonic increase in exposure to the value factor

19Valueness refers here to stocks which have a relatively high book to market, dividend to price, earnings
to price, or cashflow to price ratio. See Section 3.1.

20The € term in the above regression can be though to correspond to first differences of a portfolio specific
Z-type factor. This characterization of the residual term suggests one minor econometric issue with the
regression in (47): the €'s may be correlated with factor innovations, thus resulting in biased coefficient
estimates. That this correlation might be nonzero follows from the discussion in Section B. However, if
the results in Table 2 are representative, the monthly correlations between the Z-type and Y-type factor
innovations are likely to be quite small.
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(keep in mind that, by construction, the 8" book to market decile has a loading on the value
factor equal to one). As we move from the lowest to the highest value portfolios (for each
of the four value sorts), the loadings on the market and size factors change, but (typically)
by much less than do the loadings on the value factor. We also note that the R?’s for the
time-series regressions in (47) typically run between 80%-100% (the one exception being
the highest dividend to price decile portfolio, which has an R? of around 65%). Hence, in
addition to generating a great deal of cross-sectional variation in loadings, the model factors
seems to account for a large portion of the time-series variation in returns for (almost) all
portfolios used in the analysis.

The above results therefore suggest that the two model Y-type factors and the three
model Z-type factors do indeed account for a good deal of time series variation in returns, as
well as for a good deal of cross-sectional variation in stock returns. These results are quite
encouraging. They imply that knowledge of the prices of risk associated with the model’s
Z-type factors is valuable for the determination of expected excess returns for a substantial
number of different stocks. Hence the prices of risk extracted in the current estimation
may actually provide interesting insights about important macroeconomic determinants of
expected returns in the economy.

4.3 Prices of Risk and Expected Excess Returns

Given the discussion in Section 4.2.1, it is likely that the model, as implemented in this
paper, is unable to properly account for the time series behavior of expected returns for
bonds in the economy (because of the restrictions placed on the Ky and Ky matrixes).?!
For this reason, the analysis in this section will focus of the behavior of the prices of risk
of the Z-type factors and of expected excess returns for the three equity portfolios used
in the model estimation (the value weighted CRSP index, the 3" decile size, and the 8™
book-to-market portfolios.

4.3.1 Prices of Risk

Recall that prices of risk in the model are given by (from equation (28))
A(t) = do + WY (1),

where in the present model implementation Ay € R® and Ay € R°%2. Also \¢ and Ay are
given by equations (31) and (32) respectively. In the current model, prices of risk turn out
to be negative. This is simply an normalization, and follows from the fact that log total
returns on stocks were assumed to load negatively on the pricing factors, as in equation
(21). Since excess returns, from (27), are given by u;(t) + 6;(t) — r(t) = A(t)'0;(t), and since

21For example, from Figure 7 we see that expected excess returns on government bonds (1, 10, and 30
year) are all procyclical. This runs counter to prior findings in the literature, such as in Fama and French
(1989) and Dai and Singleton (2001), who estimate a richer version of the term-structure portion of the
model in the present paper.
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o;(t) = —B}YXy — C/¥y is negative and constant, positive excess returns imply negative
prices of risk. Indeed, all estimated ¢’s and all estimated A’s are negative in the present
model. To make the subsequent discussions more intuitive, we renormalize these so that all
prices of risk and all factor loadings (o’s) are positive. Also note that the above expected
excess return relationship implies that a unit increase in a security’s loading on a risk factor
m raises the expected excess return of that security by A, ().

Figure 6 plots the prices of risk associated with the model factors. Also, a model implied
term spread is plotted alongside the prices of risk to provide a benchmark for comparison
(the term spread, as has been well documented in past work, is countercyclical). From
Figure 6, we see that the price of risk associated with Z; (the market factor) exhibits a
countercyclical behavior, tending to be low around NBER business cycle peaks, and high
around NBER business cycle troughs. Because, as will be shown shortly, the Z; price of risk
accounts for the majority of excess returns on the market, this countercyclical behavior is
consistent with previous findings in the literature (for example, see Fama and French (1989)
for the empirical findings, and Campbell and Cochrane (1999) for a potential theoretical
justification). Similarly to that of Z;, the price of risk for Z, (the size factor) exhibits a
countercyclical behavior. Both of these are roughly consistent with the idea that the risk
aversion of the representative investor becomes higher during difficult economic times, and
therefore a higher risk premium is demanded for holding risky assets.

Interestingly, from Figure 6 we see that the price of risk associated with the value factor,

1.22 This result is either puzzling or intuitive,

Z3, is (weakly) pro-, rather than counter-, cyclica
depending on our interpretation of the value factor. If “valueness” proxies for distressed
companies, with low stock prices, and therefore high blank over price ratios (such as book
to market, dividend to price, and earnings to price), then why would the price of risk of
such companies be low during recessions, when the chances of financial distress for these
companies are highest? On the other hand, if “valueness” proxies for healthy firms with
good assets on the books and strong earnings and high dividends, the procyclicality of the
value price of risk makes more sense, as these companies are the desirable ones to hold during
recessions. However, if “valueness” proxies for such healthy firms, then why would its price
of risk be positive at all???

Table 6 provides further results about the time series behavior of the Z-type prices of
risk. First, we see that the Z5 (value) price of risk has an almost zero correlation with the
Z, (market) price of risk, and a strongly negative correlation with the Z, (size) price of risk.
Table 6 also shows the steady-state value of the prices of risk implied by the model. Since
prices of risk are given by A(f) = Ag+ Ay Y (¢), and since the long-run mean of the Y’s (under
the physical measure) is given by O, the steady-state values of the prices of risk are given by

22We note that the Y; price of risk is also procyclical, yet, as has already been pointed out, it is unclear
whether or not this Y; results is reliable.

23Recall that excess returns for value companies are determined by their loadings on all the factors,
multiplied by the respective prices of risk. Hence the price of risk of the value factor provides excess returns
above and beyond a firm’s loading on the market factor.
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A = Ao + AvO. These steady-state values are 0.3957, 0.0805, and 0.5291 for Z,, Z,, and
Zs respectively. For a security which loads only on Z;, and on none of the other factors, the
Sharpe ratio would therefore be 0.3957, which is roughly consistent with past estimates of
market Sharpe ratios. Table 6 also shows asymptotic standard errors for A,,. As we have
already mentioned, those coefficients associated with the drifts of the Z-type factors (i.e.
O, kz and u) are poorly estimated, which results in rather high standard errors for these
price of risk numbers. Indeed, only the Z5 price of risk appears significantly different from
zero. However, it is difficult to believe that the market price of risk is zero, despite the high
standard error produced by the model. Finding tighter standard errors for long-run price of
risk estimates is an important and interesting area for future research.

Also, of the Z-type prices of risk, the market price of risk has the highest volatility, equal
to approximately 0.4. Indeed this price of risk has exhibited a substantial amount of time
series variability, assuming a value above 1 in the early 1990’s. The size price of risk has
also exhibited a substantial amount of variation. Interestingly, the steady state level of the
Zy price of risk is quite low (lower even that the Y; and Ys prices of risk). This suggests
that, even though the size factor explains substantial cross sectional variation in returns (see
Figure 5, for example), the size factor price of risk is economically quite low on average. Of
course, as can be seen from Figure 6, the Z, price of risk has been above 0.5 on occasion
(and been below -0.5 on other occasions). The value price of risk is substantially more
stable than either the market or the size one. It time series standard deviation from Table 6
and its extremal points from Figure 6 are both moderate compared to the analogous values
associated with the Z; and Z, prices of risk. Furthermore, the high average value of the Z3
price of risk points towards the robustness of the price of risk for the value factor: It is both
economically high and exhibits extremely slow time series variation.

It should be pointed out that the negative prices of risk for Z; and Z,, which occured
in the early 1980’s, are justifiably difficult to believe. The early 1980’s were a time period
characterized by extremely high nominal interest rates (see the short rate plot in Figure 1
or the term spread plot in Figure 6). Perhaps this extremely high interest rate environment
represents a regime which is fundamentally different from the other time periods covered in
this analysis, and as such leads to price of risk estimates (in the early year of the 1980’s)
which are inaccurate.

4.3.2 Expected Excess Returns

We have argued in Section 4.2.3 that because the model’s Z-type factors do such a good job
of accounting for cross-sectional return behavior, their associated prices of risk may provide
us with important information for the behavior of asset risk premia. Furthermore, we have
argued in Section 4.2.1, that the Y-type price of risk are of second order importance for
explaining the beahavior of expected returns on stocks. We examine these points in more
detail in this section.

First, we recall that instantaneous expeced excess returns are given in the model by
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A(t)o;(t). Also, in the present Gaussian model formulation, all volatilities are constant.
The top portion of Figure D shows the values of the g; vector for the securities used in the
model estimation. For example, we see that the CRSP value weighted market index has o;
and oy which of approximately 0.02, whereas its o5 is approximately 0.15. 2* We note that,
by construction (i.e. from equation (38), the market’s o, and o5 are both zero, and are not
displayed in the graph. The 3™ decile size portfolio also has low values for o, and o9, and
has o3 =~ 0.18 and o4 ~ 0.09. For the 8" decile value portfolio, we see that o, =~ o9 & 0.025,
that o4 is close to zero, that o3 = 0.125, and that o5 =~ 0.07. Hence, as expected, the small
stock portfolio has a high loading on the size factor, and the high book-to-market portfolio
has a high loading on the value factor.

A high value of 0;,, (i.e. for stock i and factor m) does not tell us how much of a
security’s expected return is due to its loading on any specific risk factor. For this we also
need to know each factor’s price of risk. The long run excess return on a stock ¢ is defined
as

A;oo-i-

The relative contribution of factor m to this total is given by

[AWTilm
Aéoffz' .

Because all price of risk—volatility pairs are positive, the sum across m = 1,...,5 of these
ratios is equal to 1. The labeling convention of factors corresponds to that in Footnote 4.3.2.
The lower portion of Figure D shows the relative contribution of each pricing factor to the
long-run excess return for each of the security’s used in model estimation. For the market,
we see that the majority of long-run excess returns comes from the market’s loading on the
Z, factor (labeled with the number 3 in the figure). For the 3™ decile size portfolio, we
see that its market loading also accounts for the majority of long-run excess returns. This
is despite the fact that o4 (i.e. the size factor loading) for this portfolio is very high, and
follows from the fact that the price of risk associated with Z, is very low. Finally, we see that
approximately 55% of the long-run excess return on the 8% decile value portflio comes its
loading on the market factor, with about 40% coming from its loading on the value factor.
We note that for the three stock portfolios used in model estimation, the amount of long-
run excess return which comes from loadings on the Y-type factors is quite low (less that 5%
or so for all three securities). Also, the actual loadings on the Y-type factors (i.e. the o; and
oy for stocks) are quite low relative to o3, 04, 05. These observations support the earlier claim
that it is the behavior of the Z-type prices of risk which determined expected excess returns
on stocks, and not the behavior of the Y-type prices of risk. Therefore, because the model
is able to properly account for the Z-type prices of risk, though not for the Y-type prices of
risk, it should be able to properly account for the behavior of expected excess stock returns.

24The notation of Figure D is as follows: o1 is the loading on Y7, o5 is the loading on Y3, o3 is the loading
on Zy, o4 is the loading on Zs, and o is the loading on Z3. The security speficic ¢ subscript is suppressed.
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Finally, it is important to note that the Y-type factors, though not directly responsible for
the majority of the behavior of short term security returns, are crucial for the behavior of
expected returns in the model because they determine the behaviors of the factor prices of
risk!

Figure 7 and Table 7 show the time series behavior of the instantaneous expected excess
returns for the securities used in model estimation. We see that the average market risk
premium is approximately 6%, that the average 37 size decile risk premium is 8%, and that
the average 8" book-to-market decile risk premium is 9%. Also, all stock risk premia exhibit
fairly pronounced countercyclical behavior, being relatively low at NBER business cycle
peaks, and relatively high at NBER business cycle troughs. Table 7 shows the correlations,
means, and standard deviations of monthly expected excess returns for a selection of zero
coupon bonds, for the stocks used in model estimation, and for a model implied term spread
and the model implied short rate.

The graphs in Figure 7 run only until the end of the data sample (i.e. December 2000).
However, one of the important advantages of the present model is that it produces real
time estimates of expected excess returns for stocks and bonds, when provided with current
market prices.

4.4 Return Predictability

Because risk premia in the model are driven by the stationary Y-type factors, the time
series behavior of risk premia is fundamentally tied to the degree of security returns pre-
dictability which is implied by the model. Indeed, in the present context, the question of
return predictability is interesting for two reasons: First, it is obviously interesting to un-
derstand the degree to which security returns are predictable. Second, comparing model
implied predictability to the return predictability observed using factor realizations from
model estimation provides a robustness check for the model.

Our examination into return predictability centers around the following decomposition
of the total excess returns processes for stock i:

Rwr,i (t, T) = Et [Rwr,i (t, T)] + €xr,i (t + 7—)7

where R,;(t,7) is the total excess return from time ¢ to ¢t + 7 for stock i, E;[Ryri(t, 7)]
is the time ¢ conditional expectation of this return which is derived from the model, and
€zr,i(t + 7) is a residual return component which is uncorrelated with the conditional ex-
pectation. Details of this decomposition are in Section 2.5 of the text and in Section D of
the Appendix. Using the notation of Section 2.5, the excess total return R,, ;(¢, 7) is simply
R;(t,7) — R.(t,7), or the difference of the total return on stock i, R;(t,7), with the return
of a rolled over investment at the short rate R,(¢,7). The model implied R? for the above
forecasting regression is a function of the model’s parameters and of the forecasting horizon
7, and is given by equation (36) (and calculated in Section D in the Appendix). The above
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decomposition can also be performed directly for total returns, i.e. R;(¢,7), rather than for
excess total returns. Results for both decompositions are presented.

Using this model implied R?(7) value allows us to perform a diagnostic of the model.
This is possible because we can compute the R? of the above regression in an alternate way.
When the model is estimated and factor realizations are extracted, we are able to compute
the return conditional expectation E;[R;(t, 7)] directly for any 7 (as is done in Figure 7 for 7
very small). Since returns are also known, once the model has been estimated, we can simply
regress actual returns on the model implied conditional expectations over any time horizon 7.
This yields another estimate for return predictability, which we will call the “fitted” R? and
which we will label as R2(7) to differentiate it from the model implied “population” R?(r)
(this follows the naming convention of Section 4.2.1).25 A comparison of R?(r) and R?(r)
therefore provides a test of the model’s ability to capture the predictability relationships
which actually exist in the data.

Table 8 shows the results of the population R?*(7) computed using the model parameter
estimates from Table 1. Asymptotic standard errors, computed using the §-method, are
reported in parentheses. Results are shown for total returns and for excess returns of the
CRSP value weighted index, of the 3"¢ size decile, and of the 8 value decile portfolios. As
can be seen (and as has been shown in Lemma D.1 in the Appendix), all of the population
R?(-)’s are hump-shaped functions of time. Systematically, the excess return R*’s are higher
than their raw return counterparts. Furthermore, the highest degree of predictability seems
to be present for excess returns on the CRSP value weighted index: At a time horizon of 5
years, this maximal R? value for the excess return on the market is 13.5%. Unfortunately,
all R%’s are very poorly estimated according to the standard errors in Table 8. Given the
sensitivity of R? of actual regressions to the sample used, this imprecision is not surprising.
An interesting area for future work is the determination of reasonable model restrictions
which would allow for more precise estimate of the population R?(7)’s.

Figure 9 provides a graphical illustration of the results of Table 8, with the population
R%*(7)’s and the model standard error bands plotted for the three equity portfolios used in
model estimation, for excess and raw returns, for time horizons, 7’s, from zero to ten years.
Also shown in Figure 9 are the fitted R2(7)'s. As can be seen the fitted and population
R?(1)’s for the excess return regressions are reasonably close to one another. Indeed, for the
excess returns regressions, all three fitted series lie inside the 95% confidence interval for the
population R?’s. Furthemore, all three fitted excess return R? series exhibit a shape roughly
similar to that obtained for the population series. These results are a comforting testament
to the model’s ability to capture the predictability relationships which are present in the

25The R?’s of the actual regressions of excess returns on model conditional expectations are highly sensitive
to the sample period used for the regression. To determine representative values of these fitted R2 (1) values
we use the following strategy: For any time horizon 7 = 1,..., 10, estimate a separate regression for each
15 year (overlapping) subsample which exists in our sample. This yields a collection of R2(7)’s, for each 15
year subsample a which exists in the full sample. The actual fitted 22(r) which is used in the analysis in
the paper is the median over the subsamples, the a’s, of the RZ (1) values.
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data for excess returns.

Unfortunately, the match between the fitted and population R?’s for raw returns is not
nearly as good as the match for excess returns. Indeed, for all three securities, we see from
Figure 9 that the fitted R?’s fall outside of the population 95% confidence interval at medium
term forecasting horizons. This inability of the model to match the fitted R? and population
R? series for raw returns provides an interesting challenge for future research.

5 Conclusion

This paper has estimated a joint bond-stock pricing model. The paper’s premise has been
that information from both bond and stock markets should be incorporated into the esti-
mation of prices of risk and of expected returns for both bonds and stocks. The paper has
argued that while its implications for bond expected returns are not reliable, its implications
for the expected returns of stocks are robust. The paper confirms the existence of at least
two important pricing factors for stocks: the market factor and a value factor. A size fac-
tor seems to be an important determinant of cross-sectional return behavior, but does not
carry an economically meaningful price of risk. Finally, the paper has argued that its mea-
sures for excess return predictability are trustworthy, whereas its measures for raw return
predictability do not appear to be so.
The present analysis suggests many interesting areas for future work:

e It would be useful for the present model to be estimated using the empirical spec-
ification for the term-structure portion of the model from Dai and Singleton (2001)
which would allow the present model to better capture the expected return behavior
of bonds. In this setting, the computation of model implied R?’s is an important goal.
Furthermore, perhaps the model’s inability to account for the predictability of raw
stock returns can be resolved by this enhancement.

e The present model should be modified to account for stochatic volatility present in
both stock and bond returns. Commonality of stochastic volatility, and its associated
price of risk, across the two asset classes can then be analyzed.

e By virtue of being a joint bond-stock model, the present model allows for useful mea-
sures of duration for stocks. For example, one such measure is the maturity of the
zero-coupon bond whose loadings on the Y-type factors are closest (in a sum of squares
sense) to those of the stock. The usefulness of such a duration measure for interest
rate risk management of joint stock-bond portfolios can then be assessed.

e An ever present and important issue is the determination of an economic justification
for the presence of multiple prices of risk in equity markets? Also, what other priced
risk factors have been missed in the present analysis? That some have been left out is
hinted at by the low R? of the time series regressions of high dividend to price portfolio
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returns on the model’s five factors (see Section 4.2.3), and also by the inability of
the model’s Y-type factors to properly account for the historical behavior of market
dividend yields (see Section 4.2.2).

Since the present model is set in a continuous time setting, it allows for the pricing
of options in a setting with stochastic interest rates, as well as stochastic volatility.
Derivation of option prices in the context of the present model would allow for tests
of the implied joint restrictions between bond, stock, and options markets. Such an
analysis may point out pricing incosistencies among the three markets. Also note
that because the present model does not incorporate default risk, its option pricing
implications are for either index options, or for options on high grade credits.

36



6 Appendix

A Preliminary Results

The following lemma proves useful.

Lemma A.1 Given a factor Y with dynamics
dY (t) = K(0 = Y (t))dt + odW (),

where W 1s a vector of independent standard Brownian motions. We then have that
T
/ Y (s)ds (48)
t
18 Normally distributed with o mean of
0T —t)+ ——
@ 1)+ 2

and with a mean zero component given by

T
g / 1 — e 9] g (u), (49)
K J,
whose variance 18

! 2 1
g [(T 1) = (1= ) + (1= e‘m‘”)] -

This result is standard, and therefore the proof is omitted.

B The Factor Likelihood Function

The state variables in this model are conditionally Gaussian. Hence their transition proba-
bilities are known in closed form. It is straightforward to check that conditional on time ¢
information, the distribution of Y;,(¢ + 7) is given by

2
Yn(t + 7—) ~ N (e_[KY]nnTYn(t) + en(l _ e_[KY]nnT), 2[;{%(1 _ 6—2[KY]nnT)> _ (50)
Y lnn

Recall that the Y-type factors in the model have independent innovations by assumption.
From equation (30) we have that

2t +7) = 2(t) + pr + EZ(W(t ) — W(t)) —ky / i Y (s)ds. (51)
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The distribution of the m® element of z(¢+7) conditioned on time ¢ information is therefore
Normal with a mean of

N

Zm(t) + U T — Z[kZ]m,n [0717— +

n=1

Y, (t) — 6,

1 _ e_[KY]nnT
[KY]nn )

and a variance of
O + [kz]m V [kz] -

where [-],, indicates the m™ row of a matrix, and where V is a diagonal N x N matrix with
diagonal elements given by

2
O¥n 2 ( —[Ky] T) 1 ( —2[Ky] T)
__rw - 1 _ Y |nn 1 _ Y |nn .
[KY]?m [T [KY]TW ‘ - 2[KY]nn ¢

This follows directly from Lemma A.1. We observe that conditional on time ¢ information,
the covariance between the n'* Y factor, and the m™ z factor is given by

[kz]mn U%f 1 —[Ky] 1 —2[Ky]
_ n - nnT - nnT . 52
e, \2 ¢ T (52)

This follows from the dynamics of z given in (51), from the evolution of the Y’s, and from
Lemma A.1. In particular, we notice that the mean-zero part of ¥,,(¢+7) (under the physical
measure P) conditional on Y;,(t) can be written as

t+7
Oyne Kyl (t47) / elEYlnn v qyy7 ().
t
From this and from the dynamics of [ Y (¢)d¢ in (49) we see that
COV(Yn(t 1) = Yolt), 2t +7) — zm(t)) -

_ [kZ]mn 0-12’71 T —[Ky]nn (t+7—u) _ o~ [Ky]an(t+T—u)
7[1{ ] e (1 e )du.
Y |nn t

The result in (52) follows from the evaluation of this integral.

Finally, z innovations from time ¢ to £ + 7, conditional on time ¢ information, are also
correlated by virtue of the [ Y (¢)dt term in (51), with a covariance between z,, (t+7) — 2z (t)
and 2z (t + 7) — 2 (t) given by

N

> lhzlmalbalotaVore ([ ¥als)ds) = sl V [zl 53)

n=1

for the V matrix defined above. With this, the conditional distribution of the Y and z vector
is fully specified.
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C Derivation of the LPY Coefficient

We first note that from equation (4) we have that the yield on a zero-coupon bond with

maturity 7 is given by
_At—l—T (t)

y-(t) = ~ +

Bur®'y .

Also note that in the present framework (from equation (50)), ¥, (¢t 4+ 7) is given by

2
Yo(t+7) = e FlTY (1) 4 0,(1 — e YTy 4 NV (0, O¥n_(1 - e—2[KY1nnT)> ,
2[KY]nn

where the error term is independent of Y, (¢). The short rate is given by
r(t) =19 + 3 Y ().
Therefore, we can rewrite y,_a(t + A) — y,(t) as

Yr-at +A) —y-(t) =
e-[Kylua 0 !
Bt-l—T(t + A) _ Bt-I—T(t)
T—A T

constant + Y () + noise

0 . e—[Ki./]NNA

where the noise term is independent of Y (¢). Also, we have that

By, '
y-(t) — r(t) = constant + ( B Ty> Y (%).
T

Since the constants and the noise term in the above do not matter for the covariance and
variance calculations, we see that ¢, from (44) is given by

S (Pt e rima — [t ((8h )
) (54)

2
ool (B — frya)

br = (r/A -1

D Derivation of Return Predictability Relationships

Given the assumptions we have made about factor dynamics, it is possible to compute
expected returns and the model R?’s in closed form. The following propositions state the
relevant results.

Proposition D.1 With the assumptions about factors dynamics which were made in Section
2 we can decompose returns on a rolled-over investment at the short-rate (from equation (35))
as follows:

R.(t,7) = B[R (t,7)] + € (t +7),
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where

By [R.(t,7)] =19 X T + iTYn [9n X T+ %(1 - e_[KY]"“T)] .

n=1

Furthermore, we have that

N o2 g2 )
Var (E [R,(t, ’7')]) = Z ﬁ (1 _ e—[Ky]nnr) ,
n=1 nn
and that
Var(eT(t + 7')) =

N
Z r. o, [7_ B 2 (1 _ e_[KY],mT) n 1 (1 _ e_Q[Ky]nnr)] _
[KY]?m [KY]nn 2[KY]nn

n=1

The R? for a forecasting regression over a time T horizon is given by equation (36).

Proof. Since 7(t) =9 + r}, Y (¢), we have that

t+7 N t+7
/ r(s)ds = Tro + Z Tyn/ Y, (s)ds.
t t

n=1
Given the behavior of the Y integral in (48), and the fact that the asymptotic variance of
Y, (t) is 0%, /(2[Ky]nn), the results of Proposition D.1 follow immediately.
Q.E.D.
The next proposition states the relevant results for stock total returns processes, and for
excess returns of total returns processes over a rolled over investment at the short rate.

Proposition D.2
(Part i.) With the assumptions about factors dynamics which were made in Section 2, we
can decompose R;(t,T) from equation (33) as follows:

R;(t,7) =K [R;(t, 7)] + €;(t + 7),

where €;(t + 7) is independent of By[R;(t,7)]. Let us define ¢o = a} * and ¢y = kiC; where
the total returns process of stock j is given by s;(t) = exp( TRt B’ Y(t) — Cj2(t)). Then
we have that

By [R;(t,7)] =
N M
PoT — Z[Bj]nen(l K] nnT Z m:um
n=1 m=1
N

— 0" — _[KY]nnT:|
+;¢Yn |:9n7— [Ky]nn (1 € )

N

5[ ) o]
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where we have used [-],, to indicate the n™ element of a vector. Also we have the following

V(i) = 3 (1B gl ) () e

-~ B 0¥
Var(ej(t—l—T)) = Z [K?YPH X
n=1 nn
2

2¢ ( _ _
_— n l—e [Ky]nnr) + _ 5n (1 —e 2[Ky]nn7'):|
[ [KY]nn 2[KY]nn

M
+ Z O-%m[cj]m2 7
m=1
where
[Bj]n[KY]nn _
¢Yn

The R? for a forecasting regression over a time T horizon is given by (36).

=1+

(Part ii.) The excess returns of the total returns process of stock j over a rolled over invest-

ment in the short-rate can be written as
Ry (t,7) = Ri(t,7) — R (t,7) = Ee[Ryr (£, 7)] + €40 (8 + 7).

The expectation and the variances for the Ry, process are obtained by redefining the ¢o and
¢y from the above formulas as follows

o = aj—r 05
by = kyzC;—ry.
Proof. The total returns process for a stock j is given by
s;(t) = exp (a] “t — B;'Y (t) — Cj'2(t)) .
which allows us to write that

tog ST _ (TR _ gy (4 4 7) — Y (#)) — O (2(t 4+ 7) — 2(2). (55)

$;(t) g

From the dynamics of Y we can write
Yot +7) =Y, (t) =

t+7
(e—[Ky]nnT _ 1) Yn(t) + en (1 _ e_[KY]nnT) + O.Yne—[KY]nn(t-l-T)/ e[KY]nnude(u)
t
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From the dynamics of z we can write
t+7
et +7) = 2m(®) = o T+ 0z (Wn(t + ) — Win(8)) — [zl / Y (w)du,
t

where [-],,, indicates the m™ row of a matrix. Using the result for the Y integral in (48), we
can collect terms in (55) to get the results in the first part of Proposition D.2.
Note that the excess returns of the total returns process of a stock over the short rate

. t+7
log st+T) / r(u)du.
t

s;(t)
This has exactly the same functional form as the total returns on a stock, but with different
coefficients on 7 and on the Y integral. The second part of Proposition D.2 follows from this

are given by

observation.
Q.E.D.
With these propositions in hand, it is possible to establish some limiting results for the
R? of forecasting regressions for stocks, for investing at the short rate, and for the excess
returns on stocks. The following Lemma states the relevant result.

Lemma D.1 Given the assumptions of the Propositions D.1 and D.2, the following is true
of forecasting regressions for the total returns process of any stock j:

lim R*(7) =0 and lim R*(7) = 0.

T7—0 T—00

For rolled-over investments at the short rate, the following is true:

lim R*(r) =1 and lim R*(7) = 0.

T7—0 T—00

For the excess returns of total returns of stock j over the short rate, the following is true:

lim R?() =0 and lim R*(1) = 0.
7—0 T—00
The proof of this Lemma involves some straightforward applications of L’Hopital’s rule.
Of course, the relative importance of the mean-reverting and random walk components in
stock prices determines the behavior of the R? of forecasting regressions for horizons between
zero and infinity. An analysis of the empirical properties of this behavior is in the text.
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Table 1: Maximum Likelihood Estimation of the Model Parameters. Standard errors are computed
using the inverse of the information matrix for the likelihood function. Variables with no standard errors
reported are either not estimated (e.g. set to zero), or are computed from the parameter estimates using
equations from the text (e.g. the kz matrix uses (22) and the long rate y, uses equation (7)).

Parameter Estimates

Sy  0.02758962  0.01478133 £(6) 8988.16071799
(0.00057161)  (0.00049003)
K 063547846  0.03453723
(0.01997152)  (0.00283593)
K 0.82557277  0.13191938
(0.24556313)  (0.08909490)
®  0.00000000  0.00000000
© -0.00759292  -0.05888181
(0.00910123)  (0.02729782)
ro  0.13289364 Yoo 0.04036664
(0.00516293)
ry  1.00000000  1.00000000
Am(0)  0.00000000  0.00000000  0.00000000
[Cl;  1.00000000  0.00000000  0.00000000
[C] 117520689  1.00000000  0.00000000
(0.03202933)
[Cl]s  0.78923754  0.12890930  1.00000000
(0.02605679)  (0.03406288)
fi  0.00000000  0.00000000  0.00000000
g 0.06163533  -0.03090398  -0.03101848
(0.08167795)  (0.07326182) (0.04513316)
[B],  0.80779468  2.12159960
(0.44049864)  (0.65249038)
[Bl, 0.83207712  1.31463013
(0.60267562)  (0.86753637)
[B]s 1.01361217  2.18766869
(0.38311156)  (0.56961926)
[kz] -2.27650541  -0.81245726 [kz)1 0.48666388  0.92672582
(1.68975915)  (1.35722267)
[kz]: -1.15960728  0.39467550 [kz]s -0.10126976  -0.13449826
(1.15433574)  (1.08668145) )
[kz]s 0.22127485  0.05098627 [kz]s -0.01516749  0.21037525
(0.90703693)  (0.66060377)
¥z 0.15603665  0.09665511  0.07296794
(0.00454621)  (0.00302044)  (0.00275254)
o2 0.00034291  0.00072606  0.00000390  0.00000402  0.00000713
(0.00004066)  (0.00008034)  (0.00000574)  (0.00000426)  (0.00000575)
ge  0.00000000  0.00000000  0.00000000  0.00000000  0.00000000
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Table 2: Correlations of Factor Innovations. This table reports the correlations of
monthly first differences of the values of the model factors. The means and standard devia-
tions are also reported.

Y Yy Zy Zy Zs

Y) 1.0000

Y,  -0.3488 1.0000

Z 0.0017 0.0061 1.0000

Ly 0.0040  0.0005 0.0068 1.0000

43 0.0030 -0.0016 0.0004 -0.0008 1.0000

Mean 0.0000 -0.0001 0.0000 -0.0016 -0.0022
S.D.  0.0077 0.0049 0.0453 0.0280 0.0210

Table 3: Variation in Short Rate and in Value Weighted Index. The left side of the
table shows regressions of the first differenced short rate on first differences in the two joint
bond-stock factors. The right side of the table shows regressions of the first differenced log
value-weighted CRSP index returns on first differences in the two common and the three
stock specific factors. Data are monthly. Standard errors are in parentheses.

Y| Y, R? Y| Y, Z Zy Z3 R?

0.7785 0.6313 -0.8078 -2.1216 -1.0000 0.0000  -0.0000  1.0000

(0.0642) (0.0000)  (0.0000) (0.0000) (0.0000) (0.0000)
0.4506  0.0852 -0.8692 -2.2164 0.0531
(0.1031) (0.3263)  (0.6010)

1.0000  1.0000  1.0000 -1.0024 0.9532

(0.0000)  (0.0000) (0.0130)
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Table 4: Results from LPY Regressions. This table shows the results from the regression
in (43), run for various maturities (7’s), using the model implied zero coupon bond yields
and short rate. OLS standard errors and R?’s (on a scale of zero to one) are reported.
Results are shown for the full sample, and for the time period ending in December 1995.
The regressions are run using monthly data.

Maturity  0.25 0.75 1.00 2.00 3.00 4.00 5.00 7.00 10.00

19730228 0.236  0.169  0.100 -0.205 -0.515 -0.819 -1.112 -1.661 -2.377
19951229

S.E. (0.569) (0.748) (0.770) (0.822) (0.884) (0.964) (1.057) (1.262) (1.578)
R? 0.001  0.000 0.000 0.000 0.001 0003 0004 0.006 0.008

19730228 0.219  0.171  0.114 -0.141 -0.406 -0.669 -0.926 -1.414 -2.064
20001229

S.E. (0.500) (0.659) (0.679) (0.730) (0.790) (0.868) (0.957) (1.153) (1.454)
R? 0.001  0.000 0.000 0.000 0.001 0002 0.003 0.005 0.006

Table 5: Dividend Yield Forecasting Regressions. This table shows the projection of
the actual dividend yield of the CRSP value weighted index onto the Y factors extracted from
estimation of the model by subperiods. The projection was done subject to the transversality
condition constraint in (24). The best fit dividend series from the model solves (45), and is
given by 8(t) = &y + dy1 Y1(t) + dy2 Ya(t). The table also shows the regressions of the actual
dividend yield series of the CRSP value weighted index onto the best fit dividend series from
the model. This regression is given by 8(t) = a + §6(t) + €(t), where §(t) is the actual
dividend yield of the CRSP value weighted index, and is estimated over the time interval
[t — 0.5,t 4+ 0.5]. Data are monthly. Newey-West standard errors using a twelve month lag
are in parentheses.

Period o 8 R? 50 dy1 Sy

-0.0000  1.0000 0.4307 0.0585 0.0927 0.3634
(0.0078)  (0.2028)
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Table 6: Moments of Prices of Risk. The table shows the empirical correlation matrix for
the five price of risk processes in the estimation and the term spread (given by the difference
of the model yield for a ten year zero and the model short rate). The next part of the table
shows the empirical means and standard deviations for the six time series, computed at a
monthly frequency. The final part of the table shows the theoretical long-run means for the
five price of risk series. These are given by Ay, = Ao + Ay, and the standard errors (given
in parentheses) for the latter are computed using the standard errors from Table 1 and the
d-method.

Yi ng Z1 Z2 Z3 10Yr-SR
Y, 1.0000
Y -0.2496  1.0000
Z -0.7401  -0.4665  1.0000
Zy -0.8915  0.6612 0.3551 1.0000
43 0.8364  -0.7395 -0.2504 -0.9940 1.0000
10Yr-SR -0.9752  0.0292 0.8705 0.7692  -0.6944 1.0000
Mean 0.1725 0.1735 0.3410 0.1141 0.5161 0.0114
S.D. 0.1468 0.1696 0.4132 0.3012 0.0994 0.0174

LR Means 0.1749  0.1376  0.3957  0.0805  0.5291
(0.2105) (0.0618) (0.4760) (0.2611) (0.2327)
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Table 7: Moments of Expected Excess Returns. The table shows the correlations
between model instantaneous expected excess returns for the following: a 1 year zero, a 10
year zero, a 30 year zero, the value weighted CRSP index, the 37 decile size portfolio (small
stocks), and the 8% decile book to market portfolio (value stocks), the ten year yield — short
rate term-spread (both implied from the model), and the model implied short rate. The risk
premium for bonds is from equation (26) and the risk premium for stocks is in equation (27).
The table also shows the means and standard deviations for the five time series. Results are
computed using monthly data.

1Yr 10 Yr 30 Yr Mkt Size Value 10Yr-SR. SR

1Yr 1.0000

10 Yr 0.7435 1.0000

30 Yr 0.6205 0.9858 1.0000

Mkt -0.9959 -0.6800 -0.5472 1.0000

Size -0.9302 -0.4462 -0.2895 0.9596 1.0000

Value -0.9999 -0.7322 -0.6073 0.9973 0.9363 1.0000
10Yr-SR  -0.8457 -0.2718 -0.1062 0.8904 0.9825 0.8545 1.0000

SR 0.9698 0.8842 0.7931 -0.9438 -0.8126 -0.9656 -0.6899  1.0000
Mean 0.0060 0.0292 0.0554 0.0625 0.0809 0.0915 0.0114 0.0715
S.D. 0.0034 0.0206 0.0457 0.0596 0.0867 0.0448 0.0174 0.0290

Table 8: Model R*’s for Forecasting Regressions. This table shows the R?’s (in equa-
tion (36)) of forecasting regressions of returns on their conditional expectations using the
parameter estimates in Table 1. Results are shown for raw returns (RAW) and for returns
above the riskfree rate (XR). Asymptotic standard errors, computed using the standard
errors from Table 1 and the d-method, are in parentheses.

Years 025 075 100 200 300 400 500  7.00  10.00
Mkt Raw  0.011  0.024 0027 0.032 0032 0031 0.030 0.029 0.027
(0.027) (0.058) (0.067) (0.086) (0.095) (0.102) (0.107) (0.112) (0.111)

Small Raw 0.021  0.041 0045 0.045 0039 0033 0029 0.023 0018
(0.034) (0.067) (0.074) (0.079) (0.075) (0.073) (0.071) (0.070) (0.067)

Value Raw  0.004  0.008 0009 0011 0010 0010 0.010 0.009  0.008
(0.015) (0.033) (0.039) (0.050) (0.057) (0.061) (0.065) (0.068) (0.068)

Mkt XR 0.040 0.086 0099 0.123 0131 0134 0.135 0.131  0.120
(0.053) (0.109) (0.124) (0.160) (0.180) (0.192) (0.200) (0.204) (0.196)

Small XR  0.043  0.085 0.094 0.103 0.100 0095 0.091 0.08  0.076
(0.052) (0.101) (0.113) (0.134) (0.145) (0.153) (0.159) (0.165) (0.161)

Value XR  0.027 0.061 0071 0.094 0103 0108 0.110 0109  0.101
(0.044) (0.096) (0.113) (0.154) (0.178) (0.193) (0.201) (0.207) (0.198)
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Figure 1: Factors and the Short Rate. This figure shows the five extracted model factors,
and the short rate. The solid line shows the x-axis. The dashed vertical lines represent NBER,
business cycle peaks, and the solid vertical lines represent NBER business cycle troughs.
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Figure 2: Bond Pricing Errors. The pricing errors (in percent) for bonds in the CRSP
Fixed Term Indices file. The average maturity of bonds in each series is shown to the left of
each graph. The dashed line shows the average level of the pricing error over entire sample
period.
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Model and Fitted LPY Coefficients
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Figure 3: Fitted and Model Values of LPY. The figure shows the LPY coefficient from
the regression in (43). The population line shows the value of the ¢, coefficient implied from
the relationship in (54) using estimates for the model parameters given in Table 1. The
fitted lines (labeled with dates) represent the values of ¢, from regressions using the pricing
relationship of the model and the extracted realization of the model factors. Also shown are
95% OLS confidence intervals for the parameter estimates.
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Figure 4: The Actual and Implied Dividend Rates. The figure shows the actual
dividend rate of the CRSP value-weighted index, as well as the best fit dividend series from
the model. In month £ the actual dividend rate is the realized dividend rate in the time
interval [t — 0.5, + 0.5], computed as the difference between the annual total return on the
CRSP value weighted index and the annual return excluding dividends on the same index.
The best fit dividend series from the model solves (45) and is given by (t).
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Figure 5: Equity Loadings on Stock Factors. For the five equity characteristics sorts,
these show the loadings of the equity portfolios on the stock specific factors (the Z’s). The
x-axis corresponds to the decile portfolios in the five characteristics sorts (i.e. size (smallest
to largest), book to market (low to high), dividend to price (low to high), earnings to price
(low to high), and cashflow to price (low to high)).
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Figure 6: Model Prices of Risk. The graphs show the price of risk processes derived for
the five model factors (two Y-type and three Z-type). Also the term spread between the
model yield for a ten year zero and the model short rate is shown. The captions show the
empirical means of the time series. The dashed vertical lines represent NBER, business cycle

Prices of Risk

peaks, and the solid vertical lines represent NBER business cycle troughs.
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Figure 7: Instantaneous Expected Excess Returns. The graphs show the instantaneous
expected excess returns derived from the model for the following securities: a 1 year zero,
a 10 year zero, a 30 year zero, the value weighted CRSP index, the 37 decile size portfolio
(small stocks), and the 87 decile book to market portfolio (value stocks). The captions show
the empirical means of the time series. The dashed vertical lines represent NBER business
cycle peaks, and the solid vertical lines represent NBER. business cycle troughs.
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Figure 8: Risk Loadings of Securities. The first graph shows the loadings on the five
prices of risk of the following securities: a 1 year zero, a 10 year zero, a 30 year zero, the
value weighted CRSP index, the 3™ decile size portfolio (small stocks), and the 8% decile
book to market portfolio (value stocks). These loadings are the ¢’s from the risk premia A’ o
of equations (26) and (27) for bonds and stocks respectively. Here oy, ..
loadings on Y3, Ys, Z1, Zo, Z3 respectively. The second graph shows the relative contribution
of each of the prices of risk to the long-run excess return of each security. The long run excess
return for security j is given by Al o; where Ay, = Ao + Ay©. The contribution of price of
risk process ¢ is the i*" element of the vector AL o; divided by the sum of the elements of
the vector.

2
0.25
0.2
3
0.15 3
2 3
0.1 P
5
0.05 1 1
7 3 2
2 a
o
1Yr 10 Yr 30 Yr Mkt Size Value
Security
0.006 0.025 0.046 0.070 0.087 0.098
1+ e 2 N 2 F 2 ¥ 3 ¥* 4 * 5
* 3
0.8
> 1
0.6 - ¥4
0.4
X 1
0.2
s 1
x 2
* 2
¥* 1 i: % ¥ 1
° 1vYr 10 Yr 30 Yr Mkt Size Value
Security

98

., 05 correspond to




- o 03 0
~ 0.4' s /L__\ ______ —
£ / A ~ 02t .~ 7 \
o - \ F e \ 7
% 0.2t/ PRAEEN NE 01l // Vo0
/ ' - 7
X 0/—7/ x¥/\\ % 0% -~
o AN
\ \
S N 01f '~
-0.2¢ Tt~ T~
2 4 6 8 10 2 4 6 8 10
T T
04— == ' = ' ' ' T
c |, e RO VAN
o 0.2f, N NL_/ 01l / o
g /. \/\ N % A R /\\.,/""/ \
U_J 0__,\,_/"\/ ! ('=5 M
: \
0 S~
0.2 e 04t e .
2 4 6 8 10 2 4 6 8 10
T T
~ 04} -~ 1 /A
b 7 r ~ / "
o / \ E / \

0: . -/ \ ~ \
0.2t/ / N 0.2 ~ J \ /
x| : A = o / LM

w - \ - g P A v
5 0 - s v/ v
3 \ S
© N 0
> 02t < S
2 4 6 8 10 2 4 6 8 10
T T

Figure 9: Model and Fitted R*’s for Predictive Regressions. These figures show the
R?’s of a regression of realized returns on expected returns as a function of the forecasting
horizon. The solid line shows the theoretical R?’s implied from the model parameters in
Table 1 using equation (36) (a 95% confidence interval of the model R?’s is given by the
dash-dotted line). The dashed line shows the median of actual R%’s from regressions of
realized returns on the expected returns from equation (34) obtained using factor values
extracted in the model estimation. These fitted regressions were conducted in rolling 15 year
windows. The graphs on the left report results for excess returns, and the graphs on the
right report results for raw returns.

99



