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Abstract

In a model of real investments with Knightian uncertainty, decision makers deviate from

expected utility theory by showing excessive risk aversion and focusing on no regret moves.

Within the model, a positive net present value is no longer sufficient to ensure that a real

investment is undertaken. Furthermore, the value of being able to hedge increases drastically.

The model could explain deviations from the net present value rule in industries where

Knightian uncertainty is high. For example, high hurdle rates for venture capital, and stalled

investments in several broadband markets are consistent with the model.
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Introduction

The standard net present value (NPV) rule for whether a firm should take on a real investment

is one of the most important and widely used rules in financial decision making. It was orig-

inally introduced by Irving Fisher (1930) and is beautiful in its simplicity. In the absence of

capital constraints, it reads: Find an appropriate discount factor for the project and calculate

the expectation of the sum of discounted cash flows. If the NPV is greater than zero, invest in

the project, otherwise do not invest. In an economy in which the marginal investing is well diver-

sified, the correct discount factor will include systematic but not idiosyncratic risk. By far the

most common method for deciding the discount factor is to use the CAPM, see e.g. Copeland,

Koller, and Murrin (1994) and Ibbotson Associates (2003). 1

Although the NPV rule has gained usage with the growth of MBA education over the last

decades, it is by no means the only technique used. Graham and Harvey (2001) report that over

50% of the respondents in their survey sample (CFOs of mid-size and large companies) use the

payback method always or often in capital budgeting decisions, compared with 75% that use

the net present value method. In a similar survey for Sweden’s 500 largest companies, Sandahl

and Sjögren (2003) show that almost 35% of the respondents do not use NPV based methods for

capital budgeting. Although the fraction of companies using NPV analyses is steadily rising2,

there is still a significant fraction of companies that use capital budgeting analyses that are not

NPV based. The companies in the surveys are not small (the smallest company in the survey

has revenues of about $100 million in Graham and Harvey (2001) and $50 million in Sandahl

and Sjögren (2003)) and considering the extent to which the NPV rule has been taught to MBA

students over the last decades one might expect that the numbers would be higher.

In other situations, the NPV rule is used, but in unorthodox ways. Venture capital is one

such example.3 It is common practice to require expected rates of returns of 50% or higher to

take on a project. Plummer (1987) reports discount rates of 50%-70% for startups, and 35%-50%
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for late stage financing4. To motivate such high hurdle rates, one would need extremely high

betas. As the (large) risks involved in venture capital are often idiosyncratic, this seems to be

a violation of the standard NPV rule.5

Another area where hurdle rates seem to be significantly higher than motivated by the NPV

rule is catastrophe insurance (Froot, Murphy, Stern, and Usher 1995, Froot and O’Connell 1997).

Moreover, within capital budgeting, firms generally seem to use higher hurdle rates than cost of

capital, as noted by Poterba and Summers (1995).

What is special with venture capital? Venture capital is risky in the sense that the spread of

the probability distribution for payoffs can be very high. Another profound feature, which we

will stress, is the great difficulty to even assess the probability distribution for different payoffs.

This is so called Knightian uncertainty, as opposed to risk by which we mean spread of payoffs

with known probability distribution. Knightian uncertainty is neither taken into account in

classical von-Neumann Morgenstern expected utility theory, nor in the standard NPV rule (In

the standard NPV rule, an “objective” expectations operator is used, and risk aversion is taken

into account by using a higher discount rate). However, in real life decision making it is often

important (See for example the article in Harvard Business Review by Courtney, Kirkland, and

Vignerie (1997). They discuss different types of uncertainty in strategic decision making and

distinguish between four types of uncertainty in investment decisions. The uncertainty in the

latter two are closely related to the concept of Knightian uncertainty).

This paper introduces a model with investors who are averse towards Knightian uncertainty,

to explain why a positive NPV is not a sufficient condition to ensure that an investment is

undertaken. Models with Knightian uncertainty lie on robust theoretical grounds: like von-

Neumann Morgenstern theory, they are based on decision theoretical axioms. Thus, if one is

willing to accept the axioms, aversion towards Knightian uncertainty is rational. We will argue

that it is natural to use this concept for real investments. Moreover, we will see that excessive
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risk aversion compared with the standard NPV rule arises naturally within a framework with

Knightian uncertainty.

To see how Knightian uncertainty influences decision making, let us review a variation of

the classical Ellsberg paradox (Ellsberg 1961):

Example 1 : Ellsberg three-color example

An urn contains 90 balls. These are either red, yellow or blue. A decision maker knows that 30

balls are red, but not the number of blue or yellow balls. He is first given the choice between

the following “Red” and “Blue” lotteries:

1. RL: Pick a ball from the urn. If it is red you earn $10, otherwise nothing.

2. BL: Pick a ball from the urn. If it is blue you earn $10, otherwise nothing.

In laboratory tests, people tend to choose RL over BL:

RL � BL.6 (1)

Next, the decision maker chooses between the following “Not Red” and “Not Blue” lotteries:

1. NRL: Pick a ball from the urn. If it is not red you earn $10, otherwise nothing.

2. NBL: Pick a ball from the urn. If it is not blue you earn $10, otherwise nothing.

In laboratory tests, people tend to choose NRL over NBL:

NRL � NBL. (2)

Together, these two preferences (1,2) are not consistent with subjective expected utility (SEU)

optimization, as an expected utility maximizing decision maker should assume (subjective) prob-

abilities for the likeliness of the three events P(red) = α, P(blue) = β, P(yellow) = 1 − α − β

(where α = 1/3 if the decision maker is rational). However, (1) would imply that

α > β, (3)
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whereas (2) on the other hand would imply that

1− α > 1− β, (4)

so we have a contradiction. Thus, a decision maker expressing these preferences is not an SEU

optimizer.

✷

Subjective expected utility theory breaks down in this example, because many people prefer

known probabilities over unknown. The preferred RL and NRL lotteries with known probabilities

are so called roulette lotteries whereas the BL and NBL lotteries are horse lotteries. Now, in

many – probably even in a majority of – investment decisions, one can argue that the major

difficulty is to assess the probabilities for different outcomes. For example, investments in

R&D, in new products for which demand is unknown, in geographically new markets and after

unique shocks, will typically have significant components of Knightian uncertainty. If decision

makers are averse to Knightian uncertainty this should have an effect in markets where such

uncertainty is high. We will see that the effect is indeed important: A decision maker facing

Knightian uncertainty will

1. Act as if cost of capital has increased. Specifically, he will:

• Decrease the amount invested in uncertain projects when choosing how much to invest

in an uncertain project and how much to invest in a riskfree project.

• Undertake fewer projects when choosing between investing in an uncertain project or

in a riskfree project.

• Require a higher internal rate of return to undertake a project when choosing between

investing in an uncertain project or in a riskfree project.
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2. Need to supplement the NPV rule with other value measures. Specifically,

• As uncertainty increases, a larger fraction of projects that are “recommended” by the

NPV rule will be unwanted by the decision maker.

3. Invest in different types of projects than a (more) risk averse decision maker would. Specif-

ically, he will:

• Behave as if he is extremely risk averse for small projects, but only modestly risk

averse for large projects.

• Behave as if he is only modestly risk averse for projects that hedge different states of

the world.

The last effects show that aversion towards Knightian uncertainty is qualitatively different from

high risk aversion, as well as from extra risk premia that arise when full diversification is not

possible.

There is an extensive literature on possible reasons for deviations from the standard NPV

rule. We mention a sample: For venture capital, high discount rates could be required to

compensate venture capitalists for taking an active role in management, to adjust for biases in

financial projections from entrepreneurs, or alternatively to reflect that the cash flow estimates

are conditional on the project being successful (Sahlman 1990). The active (both financial and

managerial) role of venture capitalists can be explained by incentive problems (Admati and

Pfleiderer 1994). Difficulties to achieve diversification (leading to a priced idiosyncratic risk),

and the illiquidity of venture capital investments will also lead to higher required discount rates

(Sahlman 1990).

Within general capital budgeting, there are two main streams of literature that explain high

hurdle rates. The first explanation relies on incentive problems that arise when the manager has

more information than the owner (Harris, Kriebel, and Raviv 1982, Antle and Eppen 1985, Antle
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and Fellingham 1995, Harris and Raviv 1996). In Antle and Eppen (1985), the existence of

organizational slack induces the owner to set a higher hurdle rate than the cost of capital. In

Harris and Raviv (1996), it is the manager’s preference for empire building that leads to high

hurdle rates.

The second explanation for high hurdle rates relies on real options theory (Berk 1999, In-

gersoll and Ross 1992, Pindyck 1991). When a project competes with itself at a later date, real

options theory implies that a positive NPV is not enough to ensure that a project should be

undertaken. In Antle, Bogetoft, and Stark (1998), a model with both organizational slack and

options to wait is developed.

Models that are based on learning/parameter uncertainty are close in spirit to our approach.

Such models have for example been used to explain abnormal returns for certain assets, see

e.g., Klein and Bawa (1976), Klein and Bawa (1977), Barry and Brown (1984), and the recent

paper by Lewellen and Shanken (2002). Both approaches based on parameter uncertainty and

on Knightian uncertainty begin with the idea that true probability distributions are not known,

and results similar to ours would arise with a model based on parameter uncertainty. Our

non-Bayesian approach is closer to ideas proposed in literature on strategic decision making

under high uncertainty (e.g., Courtney, Kirkland, and Vignerie (1997)), and might be more

appropriate in situations where uncertainty is so high that it is difficult to define a Bayesian

prior over parameter values.

To our knowledge, this is the first paper to apply Knightian uncertainty to real investment

decisions, and to show the implications on requirements of net present value and internal rate

of return in investment decisions. Within financial economics, Knightian uncertainty has so

far been suggested to explain several puzzles and anomalies. Boyle, Uppal, and Wang (2003)

explain the own-equity effect. Epstein and Wang (1994) suggest that the equity premium puzzle

and possibly the excess volatility puzzle can be explained within a framework with Knightian
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uncertainty. Dow and da Costa Werlang (1992) and later Mukerji and Tallon (2001) show how

incomplete markets can arise.

From a modeling perspective, Knightian uncertainty introduces an extra level of freedom

and complexity in the representation of decision makers’ preferences. In this paper we aim to

be as general as possible and show effects that arise with a minimum of specification. A future

goal would be to test the predicted effects within a well-specified parametric framework. Such

a specification is for example developed in Boyle, Uppal, and Wang (2003) in testing the role

of Knightian uncertainty for the own-equity effect. Models that explain high hurdle rates with

incentive problems on the other hand are more specified over the decision makers’ preferences.

However, such models have a lot of freedom in the set-up of the game played between the manager

and the owner. This freedom can for example lead to predictions of both underinvestment and

overinvestment, depending on the situation, as in Harris and Raviv (1996). On the contrary our

model will always lead to underinvestment. On the other hand, real options theory is strongly

specified and, e.g., always leads to lower investment levels compared with the standard NPV

rule. However, we will argue that in many situations, e.g. within venture capital, explaining

high hurdle rates with real options theory would be a stretch.

To summarize, we believe that our model offers a plausible explanation for high hurdle rates

in investment situations with high uncertainty. The theory of Knightian uncertainty provides

tractable, formal models that are based on rigorous decision theoretic foundation, and the re-

sults fit well with the high hurdle rates observed, e.g., within venture capital and catastrophe

insurance. Furthermore, the concept of Knightian uncertainty fits naturally into the literature

on strategic decision making under high uncertainty.

To model decision making under Knightian uncertainty, we will use an intertemporal version

of the multiple priors expected utility (MEU) model by Gilboa and Schmeidler (1989) (also

known as the Maxmin Expected Utility model). In the MEU model, the decision maker is
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allowed to have multiple probability distributions and his MEU is the minimum expected utility

over these. There are two issues with the MEU model that carry over to our model: First, it

gives no indication of how the multiple probability distributions should be chosen. In fact, it

does not even separate between uncertainty and aversion towards uncertainty (compare with

risk, which is decided by the form of the probability distribution of outcomes and risk aversion,

which is the pointwise curvature of a decision maker’s utility function). Second, it does not

take into account any information about the likelihood of different probability distributions –

they are all given the same weight. For the qualitative results in this paper, these issues are

less important. The advantage of the MEU model is that the multiple priors have an intuitive

understanding, and that it rests on rigorous decision theoretic foundation. We believe that the

effects presented in this paper are inherent and we would expect similar effects to arise with

other methods of modeling Knightian uncertainty.

The rest of this paper is organized as follows: In Section 1, we review the multiple priors

expected utility model by Gilboa and Schmeidler (1989), and motivate the use of multiple priors

with a simple example. In Section 2, we study a two period example and show which effects arise

when using a MEU model for investment decisions. In Section 3, we show that the effects hold

under general conditions, and make some observations about how to test the model empirically.

Finally, in Section 4, we conclude with a discussion of further implications of the model.

1 MEU optimizing decision makers

Our approach to incorporating Knightian uncertainty into decision making follows the Gilboa

and Schmeidler max-min theory. With this approach, the decision maker is allowed to use

different priors when considering different choices. To give some intuitive justification for this

approach, let us consider the following example:
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1.1 Intuitive rationale for using multiple priors

Example 2 : Production investment

In a situation of discontinuous technological transition, the owner of a production plant chooses

between closing down operations at zero cost or investing $100 million to rebuild the plant to

produce a new product, A. The decision must be made immediately and can not be reversed.

The owner knows that there will be a huge demand, either for product A or for a complementary

product, B, depending on factors that are outside the owner’s control. The competing Betamax

and VHS technologies could serve as an example of such a situation.

We stress that there is no way for the owner to influence the outcome. The owner’s company

might, e.g., be a small supplier to one of a few very large competing companies in the end

product market. These large companies have the market power and their strategic moves will

ultimately decide which technology “wins”.

If the owner chooses to rebuild, then if A wins, net revenues will be $250 million, but if B

wins, net revenues will be zero. The decision tree is shown in Figure 1.

[Figure 1 about here.]

The owner has consulted several experts. However, as the products are untried, the informa-

tion he has received has been diverse, from there being a 75% chance that product A will win,

to there being an 80% chance that product B will win. The owner, who would have preferred

to know the probabilities for sure, decides to be somewhat conservative and assumes the prob-

ability of A winning to be 30%. Therefore, he decides to avoid the investment and close down

operations.

Now, suppose the owner instead was choosing between producing product B (with the same

investment and potential net revenues), or closing down operations. Would we really expect him

to choose the same probability assessment (i.e., a 70% chance for product B to win)? It seems
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plausible that he would reverse the assessment and once again choose to close down operations.

Thus, we could have a situation with an “A-firm” and a “B-firm”, with identical owners,

who have identical information, where both owners choose to close down operations, even though

both investments can not have nonpositive NPV.

✷

The uncertainty in this example is different than increased risk, as can be seen in Figure 2.

In the left part of the figure, we see how increased risk could be introduced by changing the

spread of outcomes. It is represented by adding and subtracting a small ε > 0 to the outcomes.

In the right part, we see how uncertainty is introduced by changing the probabilities for the

different states. Note that, to a first order approximation, the risk (variance) of the right lottery

is constant when ε is added. On the contrary, it is proportional to ε for the left lottery. We shall

see that these differences have both quantitative and qualitative implications.

[Figure 2 about here.]

There are several reasons why decision makers might prefer lotteries that are purely risky

compared with those that are also uncertain. One obvious reason is that more information

is given for lotteries where probabilities are known, and we would intuitively expect rational

decision makers to prefer as much information as possible. Another reason could be that in

uncertain situations, decision makers fear that there might be someone, “playing the other side

of the game”, who can influence the probabilities in the “wrong” direction. In the Ellsberg

example, it could be someone who change the distribution of balls after the decision maker

has chosen a lottery. A third reason could be that decision makers want to avoid situations

where they in retrospect might feel that they “should have known better”. For lotteries where

a decision maker is confident about probabilities, bad outcomes depend on bad luck, objectively
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outside of the decision maker’s control. For lotteries where he is not confident, a bad outcome

could mean that the decision maker should have evaluated information differently, putting higher

weight on some information, etc. It is then not surprising if a decision maker prefers the first

type of lotteries.

We should ask ourselves: If there is unrealized, or even destroyed, value by Knightian uncer-

tainty, why is it not arbitraged away? In the production investment example, why does not an

arbitrageur buy both the “A-firm” and the “B-firm” and avoid uncertainty altogether? For the

model to make sense there must be barriers to such arbitrage strategies. There are a multitude

of factors that could work as such barriers. Factors that hinder diversification against risk will

typically also hinder hedging against Knightian uncertainty. We give two examples:

First, high cost of information could be an important barrier to hedging. For example, for

the venture capital industry, cost of acquiring information is not only high, but information is

also costly (i.e., time consuming) to digest. A high degree of trust can remove this barrier, i.e.,

if investor A trusts investor B, he might not need to analyze B’s information to take part in an

investment. However, arguably, trust works best in small and tight networks, which are exactly

the type structures we see in the small private partnerships in venture capital firms.

Second, regulatory constraints could pose a barrier to hedging. Broadband roll-out in sev-

eral European and Asian countries might serve as example7. The business case for broadband

seems to be solid in most European and many Asian countries, throughout the value chain

(broadband access, content/services). However, broadband has not been rolled out as rapidly

as was predicted, which might be explained by regulatory constraints on industry structure.

Several technologies can be used to provide broadband (cable, DSL, satellite, fiber, wireless).

These technologies are complementary (more users of one technology will imply fewer in others).

Moreover, while there will clearly be high demand for future broadband services, it is not clear

how the split of revenues will be divided between access and content providers.
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However, in many countries regulatory constraints make it impossible for companies to hedge

these uncertainties. In Israel for example, the possibility for cross-ownership between cable and

DSL providers is highly restricted, as are the possibilities for mergers within a technology.

Furthermore, there are regulatory constraints on the possibilities to expand in the value chain:

cable providers for example, are not permitted to join up with content providers. These type of

regulatory constraints are common in media related industries, as the public service dimension

is strongly protected. Thus, the uncertainties in which technology will dominate, as well as in

the split of revenues in the value chain, can not be hedged. Under these circumstances, the slow

broadband roll-out in Europe and many Asian countries is not surprising.

A couple of comments on the above examples: First, barriers to hedging are costly. In the

production investment example, value is destroyed when neither firm invests. Thus, eliminating

such barriers can potentially create value. Second, the barrier in the broadband industry points

to a potential agency problem. It is the management of the companies that can not hedge, not

the owners (the shareholders). We will elaborate on these comments further on.

There are some key properties of the production investment example, which the approach in

this paper rests upon:

1. It is a one-shot decision. The owner does not have an opportunity to wait with the

investment. This could for example be the case in a competitive situation with a first

mover advantage.

2. The investment is irreversible. Once made, the investment can not be reversed, at least

not without significant extra costs.

3. There is Knightian uncertainty. The owner does not have enough information to form a

confident assessment of the probability distribution. If statistical methods are used, this

would typically be the case if historical data is limited.
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4. There is hedging. A good state of the world for one investment (product A wins) is bad

for the other investment and vice versa.

It is enlightening to compare the previous examples with real options theory (Berk 1999,

Ingersoll and Ross 1992, Pindyck 1991). Real options theory also provides a modification of the

standard NPV rule such that a positive NPV is no longer sufficient to ensure that a decision

maker undertakes a project. It has for example successfully been used to explain investment

behavior in land development (Quigg 1993).

As in the production investment example, real options theory assumes irreversible invest-

ments. However, what drives the results in real options theory is the project competing with

itself at a later date, i.e., the value embedded in the option to wait with an investment. This is

fundamentally different from our situation, as we are assuming one-shot games.

In situations of one-shot type, using real options theory to explain deviations from the

standard NPV rule will be a stretch. For example, in a competitive situation where there is a

first mover advantage, the option value of waiting to invest will typically diminish, as shown

in Grenadier (2002)8. Also, for venture capital investments, it would be difficult to use real

option theory: An investor deciding whether to invest seed capital in a startup will typically

not have the opportunity to wait and invest in the project at a later date. It could of course be

argued that there is an option for an investor – not between investing in a project immediately

or at a later date – but between investing immediately or waiting and hoping for an even better

project to arrive. However, at the aggregate level this can not explain high required returns. In

an equilibrium there should be enough capital to support all projects with positive NPV. This

argument should especially hold true during the 1990’s, when risk capital was abundant.
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1.2 Gilboa and Schmeidler’s axiomatic decision model

We give a brief description of the axiomatic foundations to multiple priors expected utility (For

a detailed description, see Appendix A). The MEU model follows the Anscombe and Aumann

(1963) framework, by assuming that a decision maker chooses between different acts9, where the

outcome is decided in a two-stage process. The first stage is a horse lottery, where the outcome

depends on the realized state of the world. Depending on the outcome of the first stage, a

roulette lottery is played (which could be a trivial lottery with no risk), and the decision maker

then receives the outcome. The structure of the lottery is shown in Figure 3.

[Figure 3 about here.]

The decision maker’s problem is to choose an optimal act among a set of acts, L. He is

assumed to have a preference relation, �⊂ L×L, satisfying the standard axioms of weak order,

continuity, monotonicity and nondegeneracy. In the SEU model, he is also assumed to satisfy

the independence axiom.

The key difference of the MEU model compared to the SEU model is allowing for “Ellsberg

type” hedging against uncertainty (remember how two uncertain lotteries were hedged to one

certain in the NRL lottery), by weakening the independence axiom. The weakened indepen-

dence axiom is the so called C-independence (or certainty-independence) axiom. In addition, the

decision maker is assumed to satisfy an axiom of uncertainty aversion. The resulting theorem

allows for the decision maker to have a whole set of probability assessments for the horse lottery,

which he minimizes expected utility over. The following MEU theorem replaces the classical

von-Neumann Morgenstern expected utility theorem:

Theorem 1.1 MEU theorem (Gilboa & Schmeidler)

Assume that a decision maker satisfies the axioms of weak ordering, continuity, monotonic-

ity, nondegeneracy, C-independence and uncertainty aversion. Then, there is a closed, convex
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(nonempty) set of probability distributions over the horse dimension, C, which we call the core,

and a utility function, u, such that

f � g ⇔ min
µ∈C

∫ ∫
u(x)df(s)dµ ≥ min

µ∈C

∫ ∫
u(x)dg(s)dµ.10 (5)

Here, df(s) is the probability measure induced by the roulette lottery played if the state of the

world turns out to be s, and the act chosen is f , and similarly for dg(s).

The utility function is unique up to an affine transformation.

Thus, each µ in Theorem 1.1 is a probability distribution over the outcomes of the horse lot-

tery, and decision makers satisfying the conditions in the theorem are allowed to have whole sets

of probability distributions over this dimension. We call such decision makers MEU optimizers,

and we define multiple priors expected utility, with a specific core,

U(f |C) def= min
µ∈C

∫ ∫
u(x)df(s)dµ. (6)

The Ellsberg paradox is now easily resolved in an MEU framework (as is the product invest-

ment example):

Example 3 : Ellsberg three-color example – continued

A decision maker might associate the following core with the different events:

C = {(µred, µblue, µyellow) : µred = 1/3, µblue = 1/3 − ξ, µyellow = 1/3 + ξ, ξ ∈ [−1/6, 1/6]}, (7)

and utility u($10) = 10, u($0) = 0. The core is shown in Figure 4. In this case, the decision

maker could associate the probability (1/3, 1/6, 1/2) with RL and BL, and (1/3, 1/2, 1/6) with

NRL and NBL. Thus, it would be possible to have the following ranking:

NRL � NBL � RL � BL, (8)

and the paradox is resolved.
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✷

[Figure 4 about here.]

2 Investing under Knightian uncertainty – A two period exam-

ple

Let us consider a two period example, shown in Figure 5, with investments at time t = 1 and

payoffs at time t = 2 that are immediately consumed (Details for this example are given in

Appendix B).

[Figure 5 about here.]

The decision maker has a logarithmic utility function:

u(x) = log(x). (9)

His initial endowment is unity. There is one riskfree project, p0 and two projects, p1 and p2,

which are risky and uncertain, but which we simply call risky projects. The horse dimension is

modeled by two states of the world: one “low” and one “high”, S = {sL, sH}, and there is also

a roulette dimension, with states Q = {qL, qH}. The total state space is V def= S ×Q, and v ∈ V

is a specific state. The return of the riskfree project is normalized to unity. The payoffs in the

different states are shown in Table 1.

[Table 1 about here.]

The decision maker’s problem is to optimize his multiple priors expected utility of second period

consumption by investing his money in the first time period. We assume that the decision maker

is allowed to “short-sell” the projects11.
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To begin with, we assume that the two uncertain projects are inseparable, i.e. the decision

maker can only invest in the two projects combined. The price for this investment is P . Thus,

the decision maker chooses between two projects with returns, r, shown in Table 2.

[Table 2 about here.]

The roulette probabilities are objectively known, P(qH) = P(qL) = 1/2, and are independent of

the horse probabilities.

We will now see that when uncertainty is introduced, the decision maker acts in a similar

manner as he would if cost of capital increases.

2.1 Decision maker acts as if cost of capital increases when uncertainty in-

creases

We begin with studying the decision maker’s choice for the uncertain project of Table 2 as a

function of price, for some different degrees of uncertainty. With no uncertainty, the probabilities

for different states of the world are assumed to be, P(sH) = 19/20, P(sL) = 1/20. However, with

increased uncertainty, there will be a core of probabilities:

Cξ =
{
(P(sH),P(sL))

}
=

{
(19/20 + α, 1/20 − α) : −ξ × 19/20 ≤ α ≤ ξ × 1/20

}
. (10)

Here, ξ ∈ [0, 1) decides the level of uncertainty, an increased ξ implying increased uncertainty.

If ξ = 0 we have the SEU case.

Now, this is not the only way uncertainty can be increased: There are many ways of creating

nested subsets of intervals, and in higher dimensions there will be innumerable ways of increasing

uncertainty. However, as will be shown in Section 3, the results hold true regardless of how

uncertainty increases. The decision maker’s demand for the risky project as a function of P is

derived by solving the MEU maximization problem:

α(P,Cξ) = argmax
α

min
µ∈Cξ

∫ ∫
log(1 + α(r(v)/P − 1))dp dµ. (11)
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First, as long as there is positive demand for the risky project, the demand for the risky

project decreases when uncertainty increases. In Figure 6, we see the demand for the risky

project as a function of ξ for prices P = 0.8, 0.9, and 1.0. In each case, as ξ increases, the

demand decreases to zero and then stays there, never becoming negative. Thus, in times of

increased uncertainty we would expect investments to decrease and more capital to be invested

in the riskfree project.

[Figure 6 about here.]

For the second effect, we move onto studying the whole set of projects spanned by Table

1, not only the restriction to p1 + p2. We therefore allow the decision maker to choose any

combination of projects, investing αi in project pi, as long as it meets the budget constraint

α0 + α1 + α2 = 1. (12)

We assume that the price for p1 is 1 and the price for p2 is 1/100, and study in which regions

the decision maker would prefer the investment over allocating all money in the riskfree project.

Thus, the decision maker is not given the choice to invest in a fraction of the project: he

either invests everything or nothing in the risky project. This type of situation is closer to

real world situations where investments are typically indivisible. We call the set of projects

that the decision maker would prefer at least as much as investing in the riskfree project, the

set of preferred projects (or simply, the preferred set), and we denote it by P0. The sets of

preferred projects for different levels of uncertainty are shown in Figure 7. For later references,

we have also included the set of perfectly hedgeable states (the dotted line, Γ), i.e., the states

for which the decision maker is indifferent if uncertainty increases or not. This happens when

expected utility from sH is equal to expected utility from sL. Within the set of perfect hedges,

MEU coincides with SEU. However, this set will typically be a small subset of the total sets of

projects. We see that the set of preferred projects strictly decreases when uncertainty increases.12
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Finally, we study how increased uncertainty affects required internal rates of return. Of

course, we should not include investments in the riskfree project, as it always has (excess)

IRR = 0. We therefore exclude the riskfree project and look at the investments satisfying

α1 + α2 = 1. (13)

We study the lowest IRR of a project in the set of preferred projects, and plot it as a function

of uncertainty13. The results are shown in Figure 8. We see that the required IRR is a strictly

increasing function of uncertainty. Thus, in a situation where uncertainty increases, the decision

maker will require a higher IRR to consider taking on a proposed project.

[Figure 7 about here.]

[Figure 8 about here.]

The effects are interesting from the venture capital perspective. If the model is correct, we

should not be surprised to see high required rates of return in uncertain industries.

2.2 Increased uncertainty decreases power of NPV rule for decision maker

The results of Section 2.1 depend on the decision maker being both risk averse and uncertainty

averse. It is fair to ask how we can be sure that it is uncertainty aversion that is driving the

results. Would we get the same results if the decision maker were risk neutral? The answer

is, in principle, yes, but the notation will be more cumbersome. With risk neutral decision

makers, preferred sets are no longer bounded and demand curves become infinite. Instead, the

preferred sets are cones: p ∈ P0, α ∈ R
+ ⇒ αp ∈ P0. The demand will either be +∞, 0, or −∞.

However, the results are the same: With increased uncertainty, the set of preferred projects

strictly decreases, regions with no demand increase, and required IRR strictly increases. Thus,

the effects are not driven by risk aversion.
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To study how well the NPV rule works for the decision maker under increased uncertainty,

we assume that the decision maker’s risk aversion agrees with what is implied by the NPV rule,

i.e., we assume that the payoff structure of Table 1 takes the discount factor into account. Under

the discounted payoff structure, we should calculate as if the decision maker is risk neutral. The

NPV rule then implies that a project should be undertaken as long as α1 > 0.

However, under Knightian uncertainty, this will be a necessary but no longer sufficient condi-

tion for the decision maker to undertake a project. The fraction, F , of all NPV positive projects

that also have positive MEU as a function of uncertainty is shown in Figure 9.14 We see that

the fraction is a strictly decreasing function of uncertainty. Moreover, it decreases quickly for

low uncertainties. Thus, in uncertain situations, the decision maker must increasingly use sup-

plemental rules for deciding whether to undertake a project or not.

The payback method could for example have a role to play as a supplement to the NPV

rule in uncertain environments. If we believe that uncertainty increases with the time horizon of

payoffs, projects with short payback times will be more robust against uncertainty than projects

with long payback times. This effect is above and beyond the implicit higher risk of longer time

horizons built into the adjusted discount factor. It is of course not possible to see this effect in

the two period example.

[Figure 9 about here.]

2.3 Decision maker behaves differently under uncertainty than under pure

risk

The effects shown so far are similar to effects implied by risk aversion, which could be used as

an argument against models with Knightian uncertainty. Why complicate things if nothing new

is gained? The simple answer to this question is that risk aversion is already incorporated into

the NPV rule through the discount rate. We are explaining how excessive risk aversion can be
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incorporated through nonstandard behavior over probabilities. We mention three reasons why

such behavior can arise:

1. Knightian uncertainty is present and decision makers are uncertainty averse, as assumed

in this paper.

2. Decision makers are more risk averse than permitted by the standard NPV rule. However,

they have been trained to use NPV/discounted cash flow analyses (e.g., in MBA programs).

Furthermore, there are “objective” ways of determining the right discount rate, e.g., by

using the CAPM. The only free parameters in the model are the probabilities, and to reach

an answer that is closer to their personal preferences, they use conservative estimates.

3. Decision makers are not rational, and have nonlinear assessments over the probability

space.

Of these three explanations, I find the first most appealing, as it is based on rational behavior.

However, the key point of the MEU model is that decision makers use conservative measures

for probabilities, whatever the reason might be. Moreover, MEU behavior fundamentally differs

from SEU behavior. It is not just an increase in risk aversion. To show this, we begin by

studying the demand curve for the risky project, when the decision maker decides how much to

invest in the project of Table 2. In Figure 10, we see the demand curve for three different levels

of uncertainty, ξ. The left solution is with no uncertainty. This case reduces to the SEU case.

The key difference for the two cases with uncertainty is that the demand curves have “kinks”.

These arise from the investor switching probabilities in his optimization, when changing from

considering going long to going short in the risky project. The kinks are similar to what is found

in behavioral models, attributed to loss aversion, see Kahneman and Tversky (1979).

[Figure 10 about here.]
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The kinked demand curves give an indication of how misleading the risk aversion measure

will be in the MEU model. Relative risk-aversion:

RRA
def= −xu

′′

u′
, (14)

can still be defined over the roulette dimension of the model, but if we fail to separate the

roulette and the horse dimensions, we will get strange results. For example, in the SEU case,

we can estimate the decision maker’s RRA at a certain point without knowing his subjective

probability assessments, by finding his certainty equivalent to low-risk lotteries. We ask the

decision maker which π0 makes him indifferent between the certain payoff of 1− π0 and a horse

lottery with positive or negative payoff of ε:

sH ⇒ 1− ε, sL ⇒ 1 + ε, (15)

and also between 1− π1 and the horse lottery

sH ⇒ 1 + ε, sL ⇒ 1− ε. (16)

In the SEU setup, we have the identities

P(sH) + P(sL) = 1, (17)

u(1− π0) = P(sH)u(1− ε) + (1− P(sL))u(1 + ε), (18)

u(1− π1) = P(sH)u(1 + ε) + (1− P(sL))u(1 − ε). (19)

By Taylor expanding u around unity, we can use (17-19) to derive that for small ε:

RRA =
ε(π0 + π1)

2ε2 − π2
0 − π2

1

+O(ε). (20)

However, in the MEU setup, the decision maker will use different probabilities in (18) and (19),

leading to

RRA + 2ξO(1/ε) =
ε(π0 + π1)

2ε2 − π2
0 − π2

1

+O(ε). (21)
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Thus, as ε approaches zero, the observed “risk aversion” will be unboundedly overestimated.15

The effect above is straight to the core of the MEU model: With Knightian uncertainty present,

MEU models separate two aversions (one over pure risk, which is closely related to the diminish-

ing marginal utility of wealth and one over uncertainty, which reflects the preference for hedging

in situations when one does not know the probabilities for different states of the world), which

SEU models treat as one.

Let us refine the study of this effect, to see how MEU and SEU optimizers differ. By studying

the set of preferred projects under increased risk aversion versus increased uncertainty aversion,

we can see how MEU optimization leads to different preferred sets than SEU optimization. We

use the set of projects spanned by Table 1. The logarithmic utility function has RRA ≡ 1. Now,

assume that the decision maker has RRA = 1 − γ instead, with γ < 0, corresponding to the

utility function

u(x) =
xγ − 1
γ

. (22)

In Figure 11, the set of preferred projects is shown for γ = −0.2, and compared to the example

with uncertainty, with ξ = 0.2. We see that there is a region (A), in which the uncertainty averse

decision maker chooses to invest, whereas the (more) risk averse decision maker chooses not to

invest. Also, there are regions (B) where the situation is the opposite: The risk averse decision

maker invests, but not the uncertainty averse decision maker. The B regions lie closer to the

riskfree project (the origin), and the closer we get, the higher the implied risk aversion has to

be, for an SEU optimizing decision maker to behave like an MEU optimizing decision maker.

For example, for an SEU optimizing decision maker not to invest in (α1 = 0.57, α2 = 0.03), he

has to have an RRA of 4 or higher. Close to the perfect hedge however, at (α1 = 3.1, α2 = 0.16),

even a small increase in risk aversion will make the SEU optimizer avoid projects that the MEU

optimizer will invest in.

[Figure 11 about here.]
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Thus, for large investments with a high degree of hedging, the risk aversion of an MEU

optimizer will seem modest when treated as an SEU optimizer, whereas for small investments

with a low degree of hedging, the risk aversion will seem high. The first type of investments are

close to what might be thought of as “no regret moves”, whereas the second type are “small”

projects with limited opportunities (and costs). This effect is in line with Ross (1986), who noted

that higher hurdle rates are used for small projects than for large within capital budgeting in a

study of budgeting practices for twelve manufacturing firms.

The previous argument also holds for other parameter changes in the SEU model than

increased risk aversion. For example, if we change the mean or variances of the roulette lotteries,

this leads to similar changes in the set of preferred projects as in the SEU case (smaller change

for small projects and larger change for hedgeable projects than under MEU optimization).

Thus, MEU behavior is really fundamentally different than what is seen in the von-Neumann

Morgenstern framework.

We now generalize the results of this example to multiple time periods, general utility func-

tions and general projects.

3 Investing under Knightian Uncertainty – Theoretical Results

3.1 A multiperiod investment model

We generalize the Gilboa & Schmeidler model to an intertemporal setting (For details, see

Appendix C). The decision maker’s problem is to choose an optimal project to invest in, among

a set of projects. Each project gives the outcome of a roulette lottery in each time period, where

the roulette lottery depends on the realized state of the world.

We assume that the decision maker can not freely reallocate investments over time, but has

to stick to the project once the investment decision is made (irreversibility).
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3.1.1 The decision maker’s investment decision

There are T time periods, and a state space in each time period, Si, i = 1, . . . , T . For simplicity,

we assume that every possible combination of the state of the world is possible (i.e., has a

positive probability of occurring), so the total state space is

S def= S1 × S2 × · · · × ST . (23)

Each Si is assumed to be finite, and the total number of possible states is N . We always assume

that there are at least two states of the world, N ≥ 2.

The decision maker’s problem at time t = 0, is to choose a maximal element from a set of

projects that generate cash flows from time period 1 to T . A project is a function that, in each

state of the world, in each time period realizes the outcome from a specific roulette lottery. We

call the intertemporal set of roulette lotteries, Y def= Y T , where Y is the space of one period

lotteries. An intertemporal project is then a function:

p : S → Y. (24)

There is a riskfree project, priskfree, which generates zero (excess) return in each time period,

regardless of the realized state of the world.

Now, let us assume that there are n projects that the decision maker chooses between:

P ⊂ YS = {p1, p2, . . . , pn}. (25)

We also assume that the riskfree project is not included in P, and that n is finite. Unless

otherwise stated, we assume that there are at least two risky projects, n ≥ 2. The optimization

problem over P is the simplest, and the set of optimal projects will of course always be non-

empty and finite, as long as the decision maker has a complete, transitive ordering over projects.

When we want to include the riskfree project in the decision problem, we use the following

notation: P̄ def= P ∪ {priskfree}. We define P ∗ to be the set of optimal projects, and the set of
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preferred projects, P0 to be the (possibly empty) set of projects preferred as least as much as

the riskfree project.

There are also richer sets of projects of interest: The first is if we assume that the decision

maker can divide his money between the projects in P. Thus, he invests a fraction, αi in project

pi under the budget constraints:

n∑
i=1

αi = 1, αi ≥ 0, i = 1, . . . , n. (26)

We call this set of projects L∆(P) (and L∆(P̄) respectively, depending on whether the decision

maker is allowed to invest money in the riskfree project, in which the sum goes from 0 to n in

(26)). Finally, we will be interested in the even larger sets of projects, L/(P), and L/(P̄), where

the decision maker is allowed to short-sell projects, i.e., to invest a negative amount of money

in projects. The budget constraint then is

n∑
i=1

αi = 1. (27)

Although this is somewhat removed from what we would think of as real situations, it simplifies

the analysis as we do not need to worry about boundaries. In a real world situation, under the

natural additional assumption that the set of preferred projects lie in the non-shorting region,

the theorems will hold true even if we replace L/ with L∆. We assume that when investing in

multiple projects, the roulette dimension of the outcome is independent for each project.

The MEU model generalizes to the multiperiod case and ensures the existence of a probability

core, C, a utility function, U , and a maxmin theorem similar to Theorem 1.1, as shown in

Appendix C. For a specific project, p, we write its MEU under core C as U(p|C).

3.1.2 Assumptions over roulette dimension

We make the standard assumption that the utility function is time separable:
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Assumption 3.1 Time-separable utility over roulette dimension

∃u : R → R : such that U(x1 × x2 × · · · × xT ) =
T∑

j=1

ρ−ju(xj), for some ρ > 0.16 (28)

where xj is the outcome in time period j.

We also need:

Assumption 3.2 Standard assumption on u

1. u(0) = 0,

2. u is strictly concave, strictly increasing, and twice continuously differentiable,

3. limx→+∞ u(x)/x = 0.

3.1.3 Increasing uncertainty

We wish to define what it means for a situation to be more uncertain than another. In the

one dimensional case it was natural to view increased uncertainty as the interval covered by

the core becoming larger. We carry over this notion to the general case, using a definition that

stresses that uncertainty is a function of the degree of information a decision maker has. We thus

introduce an abstract information set, I, which symbolizes what the decision maker “knows” at

time t = 0, and C(I), which is the decision maker’s core under information set I. The definition

then takes the form:

Definition 3.1 Consider two information sets, I1 and I2: Given a set of MEU-optimizing

decision makers, I2 is said to be weakly more uncertain than I1, if for any decision maker,

C(I1) ⊆ C(I2).

Thus, any decision maker will have a (weakly) larger core when given information I2 compared

with I1. The definition of strictly more uncertain information set is somewhat technical:
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Definition 3.2 Consider two information sets, I1 and I2: Given a set of MEU-optimizing

decision makers, I2 is said to be strictly more uncertain than I1, if it is weakly more uncertain,

and for each decision maker d(C(I1), ∂C(I2)) > 0.

The idea is that the core becomes strictly larger in each direction. The distance function, d, used

is the Euclidean distance. The difference between weakly and strictly increased uncertainty, is

shown in Figure 12, for the Ellsberg example discussed in the Introduction and Section 1.

[Figure 12 about here.]

These definitions are operational in that they are not derived from the decision makers under-

lying preferences. By working directly on the cores, we avoid losing ourselves in deep questions

of eventwise consistency (analyzed, e.g., in Machina and Schmeidler (1992), and Epstein (1999)).

The decision theoretic ground for our definition of weakly increased uncertainty is given in Ghi-

rardato and Marinacci (2002). Moreover, our definition of strictly increased uncertainty is along

similar lines as proposed in Ghirardato, Maccheroni, and Marinacci (2002).

We also assume that there is an objective measure of uncertainty neutral probabilities. Thus,

given an information set, even though each decision maker might have a unique core, they all

agree on an objective uncertainty neutral probability. Compare this with risk neutrality where,

regardless of individual attitude towards risk, everyone agrees on what it means to be risk

neutral.

3.1.4 No arbitrage and set of perfect hedges

Assumption 3.3 No arbitrage

There is no project in L/(P) that guarantees nonnegative outcomes in all states of the world,

and strictly positive outcome in at least one state of the world.
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In many cases, there will be elements in L/(P) for which all horse states give the same

expected utility. In the example of Section 2, this set was represented in Figure 7 by the dotted

line, Γ. We define

Definition 3.3 Set of perfect hedges

The set of perfect hedges, Γ for a decision maker, is defined as the elements in L/(P) (and

L/(P̄)) for which:

∃c,∀s ∈ S :
∫
u(x)df(s) = c. (29)

Typically, this set will have much lower dimension than n. In the full rank case, the set will

be a manifold of dimension n − N if N ≤ n, and an empty set if N > n.17 However, under

the general assumptions we have made on u and the lotteries, there is very little we can say of

the rank of the system of equations arising from (29), and in degenerate cases, Γ can cover a

substantial part of L/(P)18.

For elements in Γ, increased uncertainty will never change the decision maker’s choice, and

MEU theory “adds” nothing to SEU theory. It is not the decision maker’s attitude towards

uncertainty that decides Γ. Instead it is a combination of the decision maker’s attitude towards

risk, and the roulette lotteries. Moreover, except for priskfree, elements of Γ are not free from risk

(the roulette dimension). It is the uncertainty (the horse dimension) that is irrelevant in the set.

With these definitions and assumptions, we are now ready to proceed to the main proposi-

tions.

3.2 Main propositions

We shall generalize the properties of the example in Section 2, i.e., show how the decision maker

acts as if cost of capital has increased, how he will rely less on the NPV rule as uncertainty

increases, and how he will choose different types of projects than if he were simply more risk

averse. Proofs of propositions are given in Appendix C.
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3.2.1 Investment levels decrease when uncertainty increases

For the first effect of Section 2.1, we need a so called normality condition on the expected utility.

This is a technical condition, which is formally defined in the appendix, and which says that the

derivatives of the expected utility of the roulette lotteries will have the same ordering regardless

of how much is invested in the risky project. It will be satisfied, e.g., in cases where negative

outcomes do not depend on the state of the world, but positive outcomes do, (as is the case in

Section 2). A more detailed discussion of why it is needed is given in the proof.

With these assumptions, the following proposition holds true:

Proposition 3.1 Consider a decision maker with utility function that satisfies Assumption 3.2,

choosing the fraction α to invest in a risky project that permits no arbitrage, and that satisfies the

normality condition. Given two information sets, I1 and I2, where I2 is strictly more uncertain

than I1: Call the amount the decision maker invests under I1 and I2, α1 and α2 respectively.

Then,

(i) If α1 = 0, then α2 = 0.

(ii) If |α1| > 0, then |α2| < |α1|.

Thus, similar to the example of Section 2, increased uncertainty always moves investments

towards the riskfree project.

3.2.2 Fewer projects are undertaken when uncertainty increases

To generalize the second effect of Section 2.1, we need to consider the set of perfect hedges, Γ.

In the case that Γ is “small”, we have the following result:

Proposition 3.2 Consider a decision maker with a utility function that satisfies Assumption

3.2, facing a set of projects, L/(P̄), which permits no arbitrage. Given two information sets, I1
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and I2, where, I2 is strictly more uncertain than I1: Call the set of preferred projects under I1

and I2, P 1
0 and P 2

0 respectively. If P 1
0 has non-empty interior, then

(i) For every p ∈ P 1
0 , not belonging to the set of perfect hedges, Γ:

U(p|C(I2)) < U(p|C(I1)). (30)

(ii) If Γ = ∅, then d(∂P 1
0 , P

2
0 ) > 0.

Here, the distance function, d is the Euclidean distance between the investments (the αs).19

As earlier noted, in the general case we know little about Γ. If Γ covers the whole set of

preferred projects, then the level of uncertainty is irrelevant. By making additional assumptions

on the projects we can ensure that Γ, is not “too large”. Intuitively, we would expect Γ to be

large if the projects are very similar. To ensure that this is not the case, we define moment

conditions in Appendix C that, loosely speaking, ensure that there are two projects that have

different expected returns in some states of the world.

Furthermore, we know from the previous section that demand for a project satisfying the

normality condition decreases when uncertainty increases. If there are such projects in the set

of preferred projects, then they should become less preferred when uncertainty increases. It

turns out that each of these conditions is sufficient to ensure that the set of preferred projects

decreases when uncertainty increases. We have:

Proposition 3.3 Consider a decision maker with utility function that satisfies Assumption 3.2,

facing a set of projects, L/(P̄), which permits no arbitrage, and for which at least one of the

following conditions is satisfied:

(i) {p1, . . . , pn} satisfy the moment conditions.

(ii) There is a project in L/(P̄), that satisfies the normality condition.
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Given two information sets, I1 and I2, where, I2 is strictly more uncertain than I1: Call the

set of preferred projects under I1 and I2, P 1
0 and P 2

0 respectively. If P 1
0 has non-empty interior,

then P 2
0 is a strict subset of P 1

0 .

Remark: The moment conditions and normality conditions are quite different. The moment

conditions ensure that there are two projects that are (sufficiently) different in their payoff

structure. The normality condition ensures that a single project has (sufficiently) different

payoffs across the states of the world. To create an example where both fail to be satisfied, and

hence the set of preferred projects is not guaranteed to decrease as uncertainty increases, the

projects need to be close to degenerate. One case that fails to satisfy both the moment and

normality conditions is when all projects give rise to the same roulette lottery in every state of

the world.

3.2.3 IRR requirements increase when uncertainty increases

We now generalize the third effect of Section 2.1. Naturally, there is no direct relationship

between the quantitative IRR measure and the set of preferred projects. However, there is

a direct relation between the lowest IRR a strictly uncertainty averse decision maker will be

willing to accept, and the level of uncertainty. Thus, a high lower bound on the IRR could be a

necessary condition for a decision maker to even consider a project.

We need additional assumptions on the projects involved:

Assumption 3.4 Assumptions on projects, p1, . . . , pn

1. Each project has nonnegative expected payoff in each time period, t = 1, . . . , T .

2. Each project has a positive IRR.

3. There are two projects that have different IRRs.
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The first assumption is needed to avoid situations with multiple IRRs. The second as-

sumption is natural, as we do not expect projects with lower IRRs than the riskfree rate to be

considered (although in situations with strong hedging, it could appear). The third assumption

is needed to avoid degenerate cases. To avoid the problem of multiple IRRs, we also need to

restrict ourselves to elements in L∆.

The theorem now takes the form:

Proposition 3.4 Consider a decision maker with a utility function that satisfies Assumption

3.2, facing a set of projects, L/(P), that admits no arbitrage and where p1, . . . , pn satisfy the

moment conditions and the conditions of Assumption 3.4. Given two information sets, I1 and I2,

where I2 is strictly more uncertain than I1. Call the set of preferred projects under information

sets I1 and I2, P 1
0 , and P 2

0 respectively. Furthermore, assume that the set of perfect hedges, Γ,

is empty. If P 1
0 has non-empty interior and lies in L∆(P), then the lowest required IRR of P 2

0

is strictly higher than that of P 1
0 :

inf
p∈P 2

0

IRR(p) > inf
p∈P 1

0

IRR(p). (31)

3.2.4 Increased uncertainty decreases power of NPV rule

We saw in Section 2.2 that increased uncertainty decreased the fraction of NPV positive projects

that the decision maker invests in. We show this effect in the general case. We need to deal

with unbounded sets. We therefore introduce a way of bounding the sets by defining

FQ(A,B) def=
λ(A ∩ Q)
λ(B ∩Q)

. (32)

Here, Q is a bounded neighborhood of the origin (under Euclidean distance), and λ is the

Lebesgue measure. The fraction of NPV positive projects that the decision maker invests in is
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defined as

F (I) def= lim
γ→∞FγB(P0(I),N ), (33)

where B is any bounded neighborhood of the origin, P0(I) is the set of preferred projects under

information set I, and N is the set of NPV positive projects under the uncertainty neutral

probabilities. We implicitly assume that the uncertainty neutral probabilities (which we get

through the objective measure) do not change when uncertainty increases.

We also assume that the decision maker agrees with the NPV rule in the case without

uncertainty. He is thus “risk neutral” in the sense that u(x) ≡ x and all excessive risk aversion

is reflected in the discount factor. We now have:

Proposition 3.5 Consider a decision maker who agrees with the NPV rule in the case with no

uncertainty, facing a set of projects, L/(P̄), where p1, . . . , pn satisfy the moment conditions and

the second condition of Assumption 3.4 (All projects have positive NPV). Given two information

sets, I1 and I2, where I2 is strictly more uncertain than I1. Then

(i) If F (I1) > 0, then F (I2) < F (I1),

(ii) If F (I1) = 0, then F (I2) = 0.

3.2.5 Decision maker behaves differently under uncertainty than under risk

The following theorem is a generalization of the observation in Section 2.3, that MEU and SEU

optimizing decision makers will behave differently for small and hedgeable projects:

Proposition 3.6 Consider two decision makers, DM1 and DM2, with the same information

sets, I, and with utility functions that satisfy Assumption 3.2, facing a set of projects, L/(P̄),

that admits no arbitrage and where p1, . . . , pn satisfy the moment conditions and the conditions
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of Assumption 3.4. Assume that DM2 is strictly more uncertainty averse20 and strictly less

risk averse21 than DM1. Call their sets of preferred projects P 1
0 , and P

2
0 respectively. Moreover,

call DM2’s set of perfect hedges, Γ. Assume that P 2
0 has nonempty interior. Then,

(i) Except for the riskfree project, any point belonging to Γ ∩ ∂P 2
0 , has a neighborhood in

which no points belongs to P 1
0 .

(ii) There is an open ball around the origin, B, such that

FB(P 2
0 , P

1
0 ) < 1. (34)

3.3 Empirical predictions

The MEU model in this paper is consistent with several ways of using the NPV rule in unorthodox

ways (and even not using it at all) that have been observed in the real world. It also leads to

nontrivial predictions that could, in principle, be tested empirically. It is not within the scope

of this paper to perform such tests, but we give some indications to how it may be done.

We mention two types of predictions that arise from the model. The first type is along the

lines that decision makers in uncertain situations will herd in the sense that the type of projects

they choose will be more similar than in situations with pure risk. In the example of Section

2.1, we saw that as uncertainty increased, the projects had to be close to perfect hedges for the

decision maker to invest in the project. In Figure 13, we show this effect in a generic picture of

the sets of preferred projects under different levels of uncertainty. The “D” region is the set of

preferred projects with uncertainty, and the “C” region is the set with no uncertainty. We note

that there is one “size” and one “diversity” direction in the figure, represented by the two arrows

in the upper right corner. In the size direction, the size of the project (investments, payoffs)

increases, but its relative payoff characteristic stays the same. In the diversity direction (which

will be high-dimensional in the general case), the required investment is the same, but the payoff
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characteristic changes. Under increased uncertainty, the spread in size and diversity of the set

of preferred projects decreases. This is easily seen for the diversity dimension (the “D” region

is much “thinner” than the “C” region). By studying the cone properties of the preferred sets

for small and large projects, it can also be shown to hold for the size direction.

If we make the additional assumption that what, in this paper, we have called projects are

actually characteristics on the firm level (or equivalently, that each firm is an element of L/(P̄)),

then these ideas can be used to predict firm characteristics under different levels of uncertainty.

The hypotheses would be along the lines: All else equal, firms’ payoffs will be more similar in

situations with higher uncertainty, and All else equal, firm sizes will be more similar in situations

with high uncertainty.

The second type of predictions would draw on the agency problem noted in the discussion on

stalled broadband markets in Section 1. In uncertain situations, the agency problem introduced

by having managers who can not hedge uncertainty, and owners who can, will be more severe.

Therefore, we will expect the manager and owner to be the same person to a higher degree in

uncertain industries. The hypothesis would be along the lines: All else equal, the CEO will own

more stocks in the company (s)he works for in situations with higher uncertainty.

In detailing a test we would need a way to measure the level of uncertainty a firm is exposed

to. We would also need to separate between risk and uncertainty. A natural assumption could

be that firms within the same industry are exposed to similar uncertainty.

However, how would we assess the level of uncertainty within an industry? We might argue

as follows: A major source of uncertainty, is lack of historical data. Under stationarity (and some

additional) assumptions, uncertainty should asymptotically vanish over time, similar to how a

confidence interval decreases when the number of observations increases. In such a situation,

the age/maturity of an industry might therefore be used as an inverse proxy for uncertainty.

This would permit testing an industry against itself over time. This approach would avoid the
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issue of separating between risk and uncertainty (if we assume that the risk is the same within

an industry over time).

Another approach would be to look at industries in times of structural changes. As previously

discussed, drivers of uncertainty within an industry could, e.g., be rapid technological changes

or changed regulations. Methodologies similar to those used in event studies could be applied

in such situations.

[Figure 13 about here.]

4 Further implications

When Knightian uncertainty is present, the value of being able to hedge increases drastically. It

no longer depends solely on risk aversion, but now also on aversion towards uncertainty about

probabilities. As we saw in Sections 2 and 3, this can introduce effects of orders of magnitude

larger than what is implied by risk aversion.

The value of removing barriers to hedging is higher under Knightian uncertainty. The two

examples of such barriers we mentioned in Section 1 were information costs within venture

capital and regulations within broadband industries. The barrier for venture capital is inherent,

and seems hard to overcome. Other barriers might not be. Regulatory barriers for broadband

in several European countries are constructed to protect the public service dimension of media.

The results in this paper emphasize the potential costs of such constructed barriers.

Agency problems arise under Knightian uncertainty. Even if the shareholders of a company

can hedge, managers who can not might choose conservative probability assessments in their in-

vestment analyses. This paper further underlines the importance of developing incentive schemes

that resolve such issues. Moreover, in situations with Knightian uncertainty, the importance of

relating compensation to realized states of the world (e.g., indexed options) is high-lighted.

Investment analyses could be modified to incorporate Knightian uncertainty. Today few, if
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any, companies use models that directly take Knightian uncertainty into consideration. Rather,

it is introduced indirectly through robustness and scenario analyses together with conservative

decision rules. However, if management of a company would adopt the MEU model (or some

other method to incorporate Knightian uncertainty, e.g., robust control methods), it could for-

mally incorporate the framework into its investment analyses. In this context, robustness and

scenario analyses could be viewed as proxies of such an analysis tool.

The model in this paper is consistent with several real world deviations from the NPV rule.

Empirical analysis of the predictions lined out in Section 3.3 would further test the validity of

the model.
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A SEU and MEU approaches to decision making - Background

to Section 1

Models with Knightian uncertainty distinguish between two different types of lotteries: those where probabilities
are “objectively” known, and those where they are not. Lotteries where probabilities are known are called roulette
lotteries, whereas those with “uncertain” probabilities are called horse lotteries. The distinction was originally
made by Knight (1921), and the terminology was introduced by Anscombe and Aumann (1963).

The Gilboa & Schmeidler (GS) approach to decision making follows the Anscombe & Aumann (AA) model
in that it works on two-stage lotteries, where the first stage is a “state of the world horse lottery”, and the second
is an “objective roulette lottery”. The GS approach leads to multiple expected utility (MEU) optimization. A
closely related model, is the Choquet expected utility (CEU) model introduced in Schmeidler (1989). In the
CEU model, the multiple priors are replaced with non-additive probability distributions and Choquet integrals.
We choose to use the MEU model, as it is easier to work with sets of priors than with nonadditive probability
measures, and because the multiple priors have an intuitively clear meaning.

Following the notation of Gilboa and Schmeidler (1989), we assume a space of outcomes, X. In this paper we
will assume that X is a compact set in R representing possible dollar payoffs (and in the multi-period context, a
compact set in R

n, representing payoffs in each time period). The set of roulette lotteries, Y ⊂ [0, 1]X , is defined
as

Y
def
=

{
y : X → [0, 1]

∣∣∣ y(x) �= 0 for finitely many x ∈ X, and ∑
x∈X

y(x) = 1
}
. (35)

The horse dimension is induced by the set of states of the world, S0. In this paper, we assume that S0 is of finite

dimension. Σ is an algebra of subsets on S0, and we can without loss of generality work on the space S
def
= S0/Σ

of equivalence classes induced by Σ (i.e., s0 ∼= s1 ⇔ ∀F ∈ Σ, s0 ∈ F ⇒ s1 ∈ F ). The generic set of acts is

Y S def
= {f : S → Y }. The decisions under consideration will be on a subset of the generic set, L ⊂ Y S.
We define convex linear operations on elements of Y in the classical “compound lottery” manner: for

y1 : X1 → [0, 1], y2 : X2 → [0, 1], (36)

we have y
def
= αy1 + (1− α)y2 ∈ X1 ∪X2 defined as

y(x) = αŷ1(x) + (1− α)ŷ2(x), (37)

where for i = 1, 2, ŷi(x) = yi(x) if x ∈ Xi and ŷi(x) = 0 if x /∈ Xi. The probabilities are constructed from the
compound lottery, with probability α giving the right to play y1 and with probability 1− α, the right to play y2.

Convex linear operations on elements of Y S are defined pointwise:

h = αf + (1− α)g ⇔ ∀s ∈ S : h(s) = αf(s) + (1− α)g(s). (38)

We embed Y in Y S by viewing elements of Y as constant acts:

y ∈ Y ⇒ ys ∈ Y S has ys(s) = y,∀s ∈ S. (39)

We call the set of constant acts Lc. We assume that L is a convex set in Y S, containing Lc. The structure of
these spaces is shown in Figure 14.

[Figure 14 about here.]

We consider a decision maker who is faced with choosing between different elements of L. We assume that
the decision maker has an “at least as good as” preference relation ⊂ L×L. f, g, and h are elements in L, and
we assume that the preference relation satisfies:

Axiom A.1 Weak order

∀f∀g : f  g or g  f, f  g and g  h⇒ f  h. (40)

With the weak order axiom it is straight forward to define the �,≺,�,∼= relations in the standard way. We also
assume the following axioms:

Axiom A.2 Continuity

∀f∀g∀h : f � g and g � h ⇒ ∃α ∈ (0, 1),∃β ∈ (0, 1) : αf + (1− α)h � g and g � βf + (1− β)h, (41)
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Axiom A.3 Monotonicity
∀f∀g,∀s ∈ S : f(s)  g(s)⇒ f  g, 22 (42)

Axiom A.4 Nondegeneracy
¬(∀f∀g : f  g). (43)

The axiom that separates the von Neumann Morgenstern (v-N M) and AA models from the GS model is the
independence axiom. The v-N M/AA “type” axiom is on the form

Axiom A.5 Independence (von Neumann & Morgenstern /Anscombe & Aumann)

∀f∀g∀h,∀α ∈ (0, 1) : f � g ⇔ αf + (1− α)h � αg + (1− α)h. (44)

The difference between the v-N M and the AA approach is the choice of L. In the v-N M approach, L = Lc, i.e.,
there is no horse dimension, and all probabilities are given. In the AA approach, L is larger than Lc, and decision
makers have room to form their own subjective probabilities over the horse dimension.

The following subjective utility maximization theorem follows from (and implies) the axioms:

Theorem A.1 Subjective expected utility theorem (Anscombe & Aumannn)
Assume that a decision maker’s preference relation follows axioms A.1 - A.5. Then, there exists a function,

u : R → R (the utility function) and a probability distribution, µ : 2S → [0, 1] (the subjective probability) such
that:

f  g ⇔
∫ ∫

u(x)df(µ)dµ ≥
∫ ∫

u(x)dg(µ)dµ, 23 (45)

where df , dg are the probability distributions induced by the known probabilities of the roulette lottery associated
with f and g respectively. The utility function is unique up to an affine transformation.

We call an individual who satisfies axioms A.1 - A.5 an SEU-optimizer.
For the special case when L = Lc, i.e., when there are only objective probabilities, the theorem reduces to

the von-Neumann Morgenstern version:

Theorem A.2 Expected utility theorem (von-Neumann Morgenstern)
Assume that a decision maker’s preference relation follows axioms A.1 - A.5, and L = Lc. Then, there exists

a utility function u : R→ R, such that:

f  g ⇔
∫

u(x)df ≥
∫

u(x)dg, (46)

where df , dg are the probability distributions induced by the known probabilities of the roulette lottery associated
with f and g respectively. The utility function is unique up to an affine transformation.

Thus, the v-N M expected utility theorem is on the form: If a decision maker satisfies the stated axioms and a
probability is given, then he will make decisions between different lotteries as if he has a utility function, for which
he maximizes expected utility. The expected utility theorem of AA on the other hand endogenizes the probabilities,
and is on the form: If a decision maker satisfies the stated axioms, then he will make decisions between different
lotteries as if he has a (subjective) probability distribution, and utility function for which he maximizes expected
utility.

The contribution of the GS approach is to weaken the independence axiom. There are two methods of doing
this. We follow the multiple priors approach (Gilboa and Schmeidler 1989). The other method leads to the
Choquet measure model, (Schmeidler 1989). The multiple priors approach replaces the independence axiom with:

Axiom A.6 C-independence

∀f ∈ L,∀g ∈ L,∀h ∈ Lc,∀α ∈ (0, 1) : f � g ⇔ αf + (1− α)h � αg + (1− α)h. (47)

A notion of uncertainty aversion is also needed:
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Axiom A.7 Uncertainty aversion

∀f∀g,∀α ∈ (0, 1) : f ∼= g ⇒ αf + (1− α)g  f. (48)

Thus, with C-independence, the decision maker is only assumed to be able to make the independence comparison
with roulette lotteries.

With these tools, and expected utility theorems can be derived:

Theorem A.3 Multiple priors Expected Utility (MEU) Theorem (Gilboa & Schmeidler) Assume
that a decision maker’s preference relation follows axioms A.1 - A.4, A.6, A.7. Then there is a closed, convex
(nonempty) set of probability distributions, C, which we call the core, and a utility function, u, such that

f  g ⇔ min
µ∈C

∫ ∫
u(x)df(s)dµ ≥ min

µ∈C

∫ ∫
u(x)dg(s)dµ. (49)

Here, df(s) and dg(s) are the (discrete additive) probability measures induced by the roulette lotteries played if the
state of the world turns out to be s, and the act chosen is f and g respectively. The utility function is unique up
to an affine transformation.

We call decision makers that satisfy axioms A.1 - A.4, A.6, A.7 MEU maximizing, and define

U(f |C) def
= min

µ∈C

∫ ∫
u(x)df(s)dµ. (50)

B Two period investment example - Details of Section 2

B.1 Decision maker’s optimization problem

The investor maximizes:

U(P,Cξ)
def
= max

α
min
µ∈Cξ

∫ ∫
log(1 + α(r/P − 1))dpdµ

= max
α

min
z

{
(19/40 − z/2) log(1 + α(9/(10P ) − 1)) +

(19/40 − z/2) log(1 + α(13/(10P ) − 1)) + (1/20 + z) log(1 + α(2/(10P ) − 1))
}
,

−ξ × 19/20 ≤ z ≤ ξ/20, (51)

with respect to α. The minimum will be reached at one of the endpoints of Cξ (or both), so we need to consider
which endpoint is the right one. The first order condition is:

0 =
(−1 + 9/(10P ))(19/40 − z/2)

1 + α(−1 + 9/(10P )) +
(−1 + 13/(10P ))(19/40 − z/2)

1 + α(−1 + 13/(10P )) +
(−1 + 1/(5P ))(1/20 + z)

1 + α(−1 + 1/(5P )) , (52)

and the solutions are:

α̃ =
(
2685P − 6910P 2 + 4000P 3 − 1900Pz + 1800P 2z ±

√
5P

×
√
651861 − 1237180P + 591220P 2 − 1366680z + 2548000Pz − 1103200P 2z + 722000z2 − 1368000Pz2

+648000P 2z2)
)
/(2(−468 + 3220P − 4800P 2 + 2000P 3)). (53)

By checking the second order conditions we arrive at the positive root being a global maximum. The denominator
has roots at P = 1/5, P = 9/10 and P = 13/10. For P < 1/5 or P > 13/10 there will be arbitrage opportunities.
Inside of this region, there will be no arbitrage opportunities. We need to consider P = 9/10, separately, as there
is a pole at this point24.
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B.2 Cost of capital increases

For the analysis of demand as a function of uncertainty in Figure 6, we fix P in (53), and calculate demand as a
function of ξ for P = 1, 9/10 and 8/10:

α̃ =




(225 + 100ξ −
√
5
√
5901 + 78120ξ + 2000ξ2)/96, P = 1, ξ ≤ 11/171,

9(31− 180ξ)/(14(21 + 20ξ)), P = 9/10, ξ ≤ 31/171,
(−283− 460ξ +

√
202489 − 171640ξ + 211600ξ2)/150, P = 8/10, ξ ≤ 51/171,

0 Otherwise.

(54)

For the preferred sets in Figure 7, we calculate

U(α1, α2|Cξ)
def
= min

µ∈Cξ

∫ ∫
log(1 + (r/P − 1))dpα1,α2dµ

= min
−ξ×19/20≤z≤ξ/20

{
(19/40 − z/2) log(1 + 9α1/10− α1 − α2) +

(19/40 − z/2) log(1 + 13α1/10 − α1 − α2) + (1/20 + z) log(1 + 2p2/10 − α1 − α2)
}
. (55)

Once again, we only need to focus on the endpoints. We plot the result for ξ = 0, ξ = 2/10 and ξ = 6/10. For
the preferred set with changed probabilities in Figure 15, we simply choose ξ = 0, P(sH) = 0.76.

To see how increased uncertainty is different from changed (subjective) probabilities, we study Figure 15,
where the decision maker’s behavior in both situations is shown. We see that in the latter case, changing from
P(sH) = 0.95 to P(sH) = 0.76 expands the set of preferred projects “upwards”, contrary to the first situation,
with increased uncertainty, which “decreases in all directions”.

[Figure 15 about here.]

Finally, for the IRR calculation, Figure 8, we calculate

IRR(ξ)
def
= min

α1+α2=1,

U(α1,α2|Cξ)≥0

min
−ξ×19/20≤z≤ξ/20

{
(19/40− z/2)(1 + 9α1/10− α1 − α2) +

(19/40 − z/2)(1 + 13α1/10− α1 − α2) + (1/20 + z)(1 + 2α2/10− α1 − α2)
}
− 1,

(56)

which is the formula for the internal rate of return in this two period model.

B.3 Decision maker behaves differently

For the case without uncertainty, z = 0, and the demand curve simply is

α̃ =
2685P − 6910P 2 + 4000P 3 +

√
5P
√
651861 − 1237180P + 591220P 2

2(−468 + 3220P − 4800P 2 + 2000P 3)
. (57)

For ξ = 1/20, we have to check z ∈ {−19/200, 1/200}. However, in the region where utility is negative for both
endpoints, the investor will be better off by simply choosing to invest everything in the riskfree project. Taking
this into consideration, the resulting demand curve is:

α(P ) =




5009P − 13478P 2 + 8000P 3 + P
√
10570849 − 20149324P + 9845284P 2

8(−234 + 1610P − 2400P 2 + 1000P 3)
, P < 1931/2000,

0, 1931/2000 ≤ P ≤ 1931/2000,
5389P − 13838P 2 + 8000P 3 + P

√
11(1197659 − 2272644P + 1085004P 2)

8(−234 + 1610P − 2400P 2 + 1000P 3)
, P > 2119/2000.

(58)
Similarly for ξ = 1/10, we make the same considerations, ending up with:

α(P ) =




581P − 1642P 2 + 1000P 3 + P
√
130705 − 250764P + 126564P 2

2(−117 + 805P − 1200P 2 + 500P 3)
, P < 221/250,

0, 221/250 ≤ P ≤ 133/125,
2(169P − 433P 2 + 250P 3 + 2P

√
3250− 6166P + 2941P 2)

−117 + 805P − 1200P 2 + 500P 3
, P > 133/125.

(59)
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C The multiperiod MEU investment model with proofs - De-

tails of Section 3

C.1 The multiperiod MEU model

There are T time periods, where T can be very large but is finite. In each time period, there is a state space, Si,
i = 1, . . . , T . The total state space is

S def
= S1 × S2 × · · · × ST . (60)

The cardinality of each Si can vary with i, but is always finite. The total cardinality, |S| =
∏T

1
|Si| is denoted

with N . We always assume that N ≥ 2.
We study a decision maker’s problem of at time 0 choosing between projects, which generate (possibly zero)

cash flows between time period 1 and T . There is a riskfree project, priskfree and (w.l.o.g.) we normalize the
problem to study excess cash flow, i.e., priskfree generates zero cash flow in each time period, independently of the
realization of S .25

We call the intertemporal set of roulette lotteries, Y def
= Y T , and an intertemporal project is then a function:

p : S → Y. (61)

We define convex combinations of projects, αp1 + (1 − α)p2 in the same way as for the one-period model. We

assume a convex set of projects, P̃ ⊂ YS that contains the constant acts,

P̃c def
= {p : ∃y ∈ Y,∀s ∈ S : p(s) = y}. (62)

Following the one-period model, we assume that the decision maker has a preference relation ⊂ P̃ × P̃ , which
satisfies axioms A.1-A.4, A.6, A.7 of appendix A. The MEU theorem from appendix A follows immediately. The

only difference from appendix A is that the space of outcomes X needs to be replaced by X def
= X1×X2×· · ·×XT ,

but the only requirement in Gilboa and Schmeidler (1989) is that X is a compact set, which holds true as long as
each Xi is compact, so the theorem goes through. Thus, the decision maker’s MEU is

U(p|C) def
= min

µ∈C

∑
s∈S

µ(s)×
∫
U(x)dp(s), 26 (63)

for some closed convex core of probabilities, C over S and some utility function, U : X → R. Faced with a set of
projects, P ⊂ P̃ , the decision maker solves the following optimization problem:

max
p∈P

U(p|C), (64)

For elements µ ∈ C we write µs for the probability that s occurs (instead of µ(s)).
To make the model operational we make the following assumption on the utility function

Assumption C.1 Time-separable utility over risk dimension

∃u : ∪Ti=1Xi → R : U(X ) =
T∑
i=1

ρ−iu(xi), for some ρ > 0. (65)

Without loss of generality, we can assume u(0) = 0. We furthermore make the standard assumption that u is
the restriction to ∪Ti=1Xi of a weakly concave function, u : R→ R, and standard assumptions on u’s asymptotic
behavior. To summarize, we assume:

Assumption C.2

1. u(0) = 0,

2. u is weakly concave and strictly increasing,

3. limx→∞ u(x)/x = 0,27

For the propositions in Section 3, we will also need the stronger assumption on u,

Assumption C.3

u is strictly concave and two times continuously differentiable.

Moreover, for Lemma C.1 we need an assumption on the behavior of u at −∞.
Assumption C.4

∃c : limx→−∞ u(x)/x < c.

These assumptions on u only depend on the decision maker’s behavior over P̃c, so they are neither weaker,
nor stronger than when made within the v-N M framework.
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C.2 Ordering of uncertainty and uncertainty aversion

The definitions in this section are dependent on the information sets that decision makers use to make their
assessments. This is natural, as we now separate uncertainty, which depends on the information set, from
uncertainty aversion, which is an individual quality. We will therefore write C(I) to denote the core for a decision
maker, given the information set, I.

Definition C.1 Consider two MEU optimizing decision makers, A and B: Given the same information set I, A
is said to be weakly more uncertainty averse than B if B’s core is not bigger than A’s: CB ⊆ CA.

For the definition of strict uncertainty aversion, we need a metric over the core. We use the Euclidean metric on
R

N restricted to S , and call it d. We also write ∂C for the boundary of C (under the d metric),

Definition C.2 Consider two MEU optimizing decision makers, A and B: Given the same information set I, A
is said to be strictly more uncertainty averse than B, if d(CB, ∂CA) > 0.

In words, the definitions capture that if the two decision makers are given the same information, then A will
optimize over a larger core than B. We call decision makers with cores consisting of a single probability measure
uncertainty neutral (under a certain information set). Here, we have used the definition of distances between sets

d(C1, C2)
def
= inf

c1∈C1
c2∈C2

d(c1, c2), (66)

where d on the r.h.s. is a pointwise distance function.
For the definition of more uncertain information, we use the following:

Definition C.3 Consider two information sets, I1 and I2: Given a set of MEU-optimizing decision makers, I2
is said to be weakly more uncertain than I1, if for any decision maker, C(I1) ⊆ C(I2):

Definition C.4 Consider two information sets, I1 and I2: Given a set of MEU-optimizing decision makers, I2
is said to be strictly more uncertain than I1, if it is weakly more uncertain, and d(C(I2), ∂C(I1)) > 0.

In words, the definitions capture that any decision maker will choose a larger core when given information I2
compared with I1. We note that, as with risk aversion, these orderings are highly partial.

Finally, some of our propositions will depend on there being an objective measure of the probability measure
an uncertainty neutral decision maker would choose. We say that this is the case if:

Assumption C.5 Objective uncertainty neutrality
There exists a set-to-point mapping:

T (C) ∈ C, (67)

such that, if C has non-empty interior, T (C) lies in the interior of C, and given an information set I, and a set
of decision makers, DM:

∀A ∈ DM,∀B ∈ DM : T (CA(I)) = T (CB(I)). (68)

We call T the objective mapping.

In words, this assumption means that even though each decision maker is allowed to have a unique core, everyone
agrees what it means to be uncertainty neutral (compare with risk neutrality where everyone agrees on what it
means to be risk neutral). The definition of uncertainty aversion agrees with GS’s original, but refines it in that
it makes it possible to speak of degrees of uncertainty aversion. A final note: In principle, these definitions must
be made modulo a given set of decision makers. However, we do not write out this dependence explicitly, as it
would become notationally cumbersome.

C.3 The sets of projects

We define sets of projects for the decision maker to choose between. There are three types of sets we are interested
in. The first is the simplest:

P = {p1, p2, . . . , pn} ⊂ P̃ . (69)

We call the riskfree project generating zero excess cash flow in each time period in each state of the world, priskfree,
and we assume that priskfree is not included in P . We also assume that n is finite and, unless otherwise stated, that
n ≥ 2. The optimization problem over P is the simplest, and the set of optimal projects will of course always be
nonempty and finite. This corresponds to picking one project, without the option to choose the riskfree project.

Similarly, we can include the riskfree project in the decision problem, P̄ def
= P ∪ {priskfree}. We define P ∗ to be

the set of optimal projects, and P0 to be the set of projects worth as least as much as the riskfree project.
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We are also interested in cases when the decision maker can choose to divide investments between different
projects. However, the linear combinations of acts used in Appendix A are over probabilities, and will not
correspond to what we would intuitively think of as divided investments. Rather, αp1+ (1−α)p2 will for each of
the states of the world give the decision maker the outcome of project p1(s) with probability α and the outcome
of project p2(s) with probability 1 − α. The definition we need is instead one where the outcome is the sum of
the outcome of αp1 and (1 − α)p2, played independently. We therefore define a project combination operator,

⊕ : P̃ ×P̃ → Y, where p1⊕p2 in each realized state of the world, s, maps to the roulette lottery with probabilities
for different outcomes: P(x) = P(x1 + x2 = x). Similarly, we define α • p as the roulette lottery with the same
probabilities, but with scaled outcomes, αp(s). We assume that the range of these operations are in P̃ . We define
two extensions of the original set of projects:

Definition C.5 Set of combined projects

L∆(P) def
= {⊕n

1 (αi • pi) :
n∑

i=1

αi = 1, αi ≥ 0}, (70)

Definition C.6 Set of combined projects with short-selling

L/(P)
def
= {⊕n

1 (αi • pi) :
n∑

i=1

αi = 1}28. (71)

Each project thus comes at a normalized cost of unity when the investment is made (at time t = 0). We note that
these operations are not vector space operations as in general, p⊕ p �= 2p. We do the same for the set including
the riskfree project, P̄ and define L∆(P̄) and L/(P̄).

We define a metric between elements in Y by d(x, y) =
∑T

t=1

∫
|F t

y − F t
x|. Here F t

y is the cumulative
distribution function of outcomes at time t for lottery y, and similar for lottery x. We use this metric to define

a metric over projects, dp(p1, p2)
def
=

∑
s∈S d(p1(s), p2(s)). We note that L/ (and L∆) are complete spaces under

the d metric.
We need notation for enumerating outcomes: For a specific project, p ∈ L/, we denote the kth outcome of

the lottery, played in the specific state of the world, s, at a specific time, t, by xs,k,t. Moreover, the conditional
probability for xs,k,t conditional on the realized state of the world, s, is P(xs,k,t|s). The outcomes and probabilities
for the specific projects, pi ∈ P , i = 1, . . . , n are denoted by xis,k,t, and P(xis,k,t|s) respectively.

C.4 Existence and properties of solution to decision problem

We are interested in the properties of P ∗(L/(P)) and P0(L/(P)), which we denote by P ∗ and P0 for short. We
need the following lemma:

Lemma C.1 Consider a specific set of projects, P = {p1, . . . , pn}, a core C, and a utility function, u, satisfying
the conditions of Assumptions C.2 and C.4. Then there exists constants c̃, c̃′, such that for all projects in L/(P),
pa = ⊕n

1 (αi • pi) and pb = ⊕n
1 (βi • pi), the following inequalities hold:

|U(pa|C)− U(pb|C)| ≤ c̃× dp(pa, pb) ≤ c̃′‖α− β‖, (72)

where the Euclidean metric in R
n is used in the second inequality.

Proof.
We begin with the left inequality. For a specific µ, we have

|U(pa|{µ}) − U(pb|{µ})| =
∣∣∣∑
s∈S

µs

(∫
U(x) dpa(s)−

∫
U(x) dpb(s)

)∣∣∣ ≤

≤ N max
s∈S

∣∣∣
T∑
t=1

ρ−t
(∫

u(x) dpta(s)−
∫

u(x) dptb(s)
)∣∣∣ ≤

≤ N
( T∑

t=1

ρ−t
)∣∣∣

T∑
t=1

(∫
u(x) dpta(s)−

∫
u(x) dptb(s)

)∣∣∣. (73)

For a specific s, we have

d(pa(s), pb(s)) =

T∑
t=1

∫
|F t

pa(s) − F t
pb(s)|. (74)
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A consequence of Assumption C.4 is that du/dx < c (where the differential has a Radon-Nikodym interpretation)
implying that

∣∣∣
T∑
t=1

(∫
u(x) dpta(s)−

∫
u(x) dptb(s)

)∣∣∣ =
∣∣∣

T∑
t=1

(∫
u′(x)F t

pa(s)dx−
∫

u′(x)F t
pb(s)dx

)∣∣∣ ≤
T∑
t=1

∫ ∣∣∣u′(x)
(
F t
pa(s) − F t

pb(s)

)∣∣∣dx ≤ c

T∑
t=1

∫ ∣∣∣F t
pa(s) − F t

pb(s)

∣∣∣ = cd(pa(s), pb(s)). (75)

Plugging in (75) into (73), we arrive at

|U(pa|{µ}) − U(pb|{µ})| ≤ cN
( T∑

t=1

ρ−t
)
dp(pa, pb), (76)

and as the constants do not depend on µ, we immediately arrive the inequality

|U(pa|C)− U(pb|C)| ≤ cN
( T∑

t=1

ρ−t
)
dp(pa, pb), (77)

For the right inequality, we define
q = max

i,s,k,t
xis,k,t, (78)

and note that

dp(pa, pb) =
∑
s∈S

T∑
t=1

∫ ∣∣∣F t
pa(s) − F t

pb(s)

∣∣∣ =
∑
s∈S

T∑
t=1

∫ ∣∣∣∑
k

( n∏
i=1

P(xis,k,t|s)
)(
Θ

(
x−

n∑
i=1

αix
i
s,k,t

)
−Θ

(
x−

n∑
i=1

βix
i
s,k,t

))∣∣∣ dx ≤
≤

∑
s

∑
t

∑
k

∑
i

q|αi − βi| = c̃0
∑
i

|αi − βi|. (79)

Here, Θ(x) is the Heaviside step function. The desired result follows from the equivalence of absolute (l1) and
Euclidean distances in finite dimensions.

✷

An immediate consequence is that U(·|C) is a continuous mapping and thus P0 = U−1([0,∞)|C), is closed.
The same argument holds for L/(P̄), L∆(P), and L∆(P̄)). Also, the (strict) concavity of u of implies that
P0(L/(P) is (strictly) concave, and the same argument holds for each combination of P ∗, P0, L/ and L∆, P and
P̄ . Thus, all sets are (strictly) convex.

We need a no arbitrage condition:

Assumption C.6 No arbitrage

∀p ∈ L/(P̄) : ∀s ∈ S,∀k : y(s)k ≥ 0⇒ p = priskfree. (80)

This leads to the following lemma, which ensures that the preferred sets are bounded:

Lemma C.2 If u satisfies the conditions of Assumption C.2, and the set of projects satisfies the no arbitrage
condition C.6, then P0(L/(P)) is bounded, i.e.,

∃c,∀p = ⊕n
1 (αi • pi) : p ∈ P0 ⇒ ‖α‖ ≤ c. (81)

46



Proof. For a fixed core, C, we wish to find an α0, such that if maxi |αi| > α0, then U(⊕n
1 (αi • pi)|C) < 0. If

this is the case, then the equivalence between the maximum and Euclidean distance functions in finite dimensions
immediately implies the desired result.

We have

U(⊕n
1 (αi • pi)|C) = min

µ∈C

∑
s∈S

T∑
t=1

∑
k

µs

( n∏
i=1

P(xis,k,t|s)
)
u
( n∑

i=1

αix
i
s,k,t

)
. (82)

We define

π = min
µ∈C

min
s,t,k,i

µs

( n∏
i=1

P(xis,k,t|s)
)
, (83)

x = max
s,t,k,i

xis,t,k, (84)

x = max{xis,t,k, : xis,t,k < 0}. (85)

It is clear that, π > 0, 0 < x < ∞, and x < 0. For specific values of α1, . . . , αn, we define α = maxi |αi|. From
(82), we immediately get:

U(⊕n
1 (αi • pi)|C) ≤ πu(αx) +

∑
s,k,t,i

u(αx) ≤ πu′(0)xα+Ku(αx), (86)

where K is independent of α. By Assumption C.2:3, we know that there is an α0, such that α > α0 implies that,

u(αx) <
πu′(0)|x|

K
α, (87)

so by (86), U(⊕n
1 (αi • pi)|C) < 0, whenever α > α0, and we are done.

✷

The same argument holds for P0(L/(P̄)), and of course for each L∆ and P ∗.
In the light of Lemma C.2 it is clear that Assumption C.4 is not needed for P0 and P ∗ to be closed. The

assumption was only needed to take care of arbitrarily large negative αs and βs. For bounded αs and βs it will
trivially hold true, and as we have now shown that all sets involved are bounded, U(·|C) is continuous on these
sets, and they will therefore be closed.

The properties of the different sets are summarized in Table 3.

[Table 3 about here.]

C.5 Proofs of propositions in Section 3

C.5.1 Proof of Proposition 3.1

We begin by proving (ii): Without loss of generality, we can assume that α1 > 0.
We assume that the core is smooth, i.e., the boundaries of the cores are strictly convex, twice continuously

differentiable manifolds. This assumption, will be relaxed later.
For notational convenience, we introduce

us(α)
def
=

∫ T∑
j=1

ρ−ju(αx)dp(s), (88)

expected utility if α is invested in the risky project and realized state of the world is us. We also introduce

C1 def
= C(I1), C2 def

= C(I2) and

U1(α)
def
= U(α|C1) = min

µ∈C1

∫ ∫ T∑
j=1

ρ−ju(αx)dp(s)dµ, (89)

i.e., MEU, if α is invested in the risky project under information set I1.
We need a normality assumption:
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Assumption C.7 Normality of risky project’s expected utility There exists a bijection, m : S ↔ {1, . . . , N},
such that for all α:

∀s, s′ : m(s) ≤ m(s′)⇔ u
′
s ≤ u

′
s′ . (90)

Furthermore, for all α, the inequality is strict for some states of the world:

∃s, s′ : u
′
s < u

′
s′ . (91)

For a fixed µ, ∫ ∫ T∑
j=1

ρ−ju(αx)dp(s)dµ, (92)

is strictly concave, as it is a linear combination with positive weights of concave functions, with at least one
strictly concave function. U1(α), being a the minimum over a compact set of strictly concave functions, will of
course also be strictly concave. Furthermore, the noarbitrage condition together with Assumption C.2 implies
that U1(±∞) = −∞.

Under information set I1, the investor solves

max
α

U1(α) = max
α

min
µ∈C1

∫ ∫ T∑
t=1

ρ−tu(αx)dp(s)dµ

= max
α

min
µ∈C1

∑
s∈S

µs

( T∑
t=1

ρ−t
∑
k

P(xs,k,t|s)× u(αxs,k,t)
)
. (93)

This is a standard concave optimization problem, and the properties of U1 implies that there is a unique α for
which the maximum is achieved. Moreover, the smoothness and strict convexity of C1 imply that a unique µ
realizes the maximum. We call these α∗ and µ∗ respectively. We can define µ∗ as a function of α: µ∗ = µ(α∗).
We differentiate U1 at α

∗, and get

U ′
1(α

∗) =
∑
s∈S

µ′
sus +

∑
s∈S

µsu
′
s, (94)

where u′
s

def
= dus/dα, and respectively for µ. As µ(α

∗) minimizes
∑

s∈S µsus, the first term must sum to zero,
leading us to the following necessary and sufficient first order condition for a maximum of U1:

∑
s∈S

µ∗
su

′
s(α

∗) = 0. (95)

We trivially have ∀s ∈ S , us(0) = 0, which together with the normality assumption implies that us(α) has the
same ordering as induced by the normality, i.e.,

∀α > 0 : m(s) ≤ m(s′)⇔ us(α) ≤ us′(α), (96)

with at least one inequality strict.
We study what happens to the optimal α and µ when the increase in uncertainty is “small”, i.e., when

0 < d(∂C2, ∂C1) < ε0 for some “small” ε0. As I2, is strictly more uncertain than I1, there is an open neighborhood
around µ∗ on the N-simplex that belongs to C2. We call the (unique) realized minimizing α and µ under I2, µ∗∗

and α∗∗ respectively. We define ∆α = α∗∗ − α∗. The restrictions of the core being smooth and strictly concave
implies that µ is twice continuously differentiable.

We define the minimizing core under information set I2, with investments fixed at α∗:

µ̃
def
= argmin

µ∈C2

∫ ∫ T∑
j=1

ρ−ju(α∗x)dp(s)dµ, (97)

The Lagrangian first order condition for constrained optimization implies that for small ε0,

∀s ∈ S : µ̃s = µ∗
s − ε

(
us(α

∗)− 1

N

∑
s′∈S

us′(α
∗)

)
+O(ε2), (98)

for some ε, 0 < ε < Const× ε0.
The first order condition at the new optimum is:

∑
s∈S

µ∗∗
s u′

s(α
∗∗) = 0. (99)
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By Taylor expanding (95) around µ∗ and α∗, (or equivalently, by using the implicit function theorem), and
plugging (98) into (99), we get

0 = −
∑
s∈S

((
us(α

∗)− 1

N

∑
s′∈S

us′(α
∗)

)
u′
s(α

∗)
)
ε+

(∑
s∈S

µ∗
su

′′
s (α

∗∗)
)
∆α + h.o.t.

def
= −Aε+B∆α+ h.o.t. (100)

As each us is weakly concave and there is at least one us that is strictly concave, B must be negative.
We use the normality condition to show that A is positive. We rewrite∑
s∈S

((
us −

1

N

∑
s′∈S

us′
)
u′
s

)
=
1

N

(
N

∑
s∈S

usu
′
s −

∑
s,s′∈S

us′u
′
s

)
=
1

N

∑
s,s′∈S

m(s)>m(s′)

(
(us − us′)(u

′
s − u′

s′)
)
. (101)

However, the normality condition immediately implies that each of the terms us − us′ , as well as each of the

u
′
s − u

′
s′ terms is non-negative when α > 0, with at least one strictly positive term. Therefore, A is positive. To

satisfy (100), ∆α must therefore be negative, i.e., α∗∗ < α∗.
We have shown that a “small” strict increase in uncertainty implies that α strictly decreases. To show that

this result holds true for “large” increases, we view a large increase as a sum of small increases. We can for
example do this by parametrizing the boundary of C1, and linearly transform it to the boundary of C2 by adding
an extra “scale” parameter, λ. We thus define a parametric surface, such that:

∂C1 = {Θ(ϕ1, . . . , ϕN−2; λ = 0), ϕ1 ∈ Φ1, . . . , ϕN−2 ∈ ΦN−2},
∂C2 = {Θ(ϕ1, . . . , ϕN−2;λ = 1), ϕ1 ∈ Φ1, . . . , ϕN−2 ∈ ΦN−2}, (102)

and such that

Θ(ϕ1, . . . , ϕN−2;λ2)−Θ(ϕ1, . . . , ϕN−2;λ1) ⊥
∂Θ(ϕ1, . . . , ϕN−2; 0)

∂ϕi
, i = 1 . . . , N − 2. (103)

Now, we can view the total increase in uncertainty as a large (possibly infinite) sequence of small increases,
by choosing 0 = λ0 < λ1 < · · · < λi < λi+1 < · · · < λI = 1. As each increase is small, we can use the local
argument above to prove that in each step, ∆αi < 0. Moreover, after the steps have been carried through, we
have reached the unique optimum on ∂C2. The total change in α is the sum of the local changes, which will be
negative, and we are done29.

For the general case, when the boundaries of the cores are not twice continuously differentiable, we use a
denseness argument. For each λi, we take a sequence of strictly convex, two times continuously differentiable

manifolds, Θj
i , j = 1, 2, . . ., that converge to Θ(·;λi) in maximum norm. For each such pair, we define ∆αj

i

def
=

α∗(i, j+1)−α∗(i, j), where α∗(i, j) is the optimal fraction invested in the risky project under the strictly convex
core with boundary Θj

i .

Now, the previous argument holds for each j, for each ∆αj
i . Furthermore, the convergence in maximum norm

of each sequence of manifolds, Θj
i to Θ(·;λi), together with the strict concavity of U(Θ

j
i ) immediately implies

that
lim
j→∞

∆αj
i = ∆αi, ∀i. (104)

Thus, if we show that αj
i is uniformly negative as j becomes large, we are done.

In (100), A is uniformly greater than zero (as α converges and thus is bounded, and as u, u′ are continuous).
A similar argument shows that B is uniformly bounded. Finally, the higher order terms are uniformly of order
o(ε) + o(∆α) in (100). This is seen by including second order terms, and noting that even though the µ′′

s terms
might become large as j approaches infinity (which can happen in regions where the core is not strictly concave),∑

s∈S
µ′′
sus, (105)

is uniformly of order o(ε) + o(∆α), as µ′′
s terms can only become large in orthogonal directions to u. Therefore,

∆αi = limj→∞∆αj
i < 0, and we are through.

The proof of (i) is immediate as U(·|C(I)) is a nonincreasing function of uncertainty, which follows trivially
as the minimum over a larger set can not increase.

Remark: The normality assumption is a technical condition. Without it, increasing α can actually decrease
uncertainty, by approaching a perfect hedge. The idea is shown in Figure 16, for a simple example with two states
of the world. To the left, a situation that satisfies the normality condition is shown. An increased uncertainty
moves decreases the investment in the risky project. To the right, a nonnormal situation appears, and in some
regions, an increased uncertainty leads to increased investments.

[Figure 16 about here.]

✷
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C.5.2 Proof of Proposition 3.2

We use the same notation as in the proof of proposition 3.1, but with vector notation, i.e., we introduce the
vector, α = (α1, . . . , αn)

∗, as the fraction invested in projects (we use ∗ to denote transpose, to avoid confusion
with time periods, T , and derivatives, ′). We call the project arising from investing α, pα. We define

us(α)
def
=

∫ T∑
j=1

ρ−ju(x)dpα(s), (106)

U1(α)
def
= U(pα|C1) = min

µ∈C1

∫ ∫ T∑
j=1

ρ−ju(x)dpα(s)dµ. (107)

Proof of (i): For a point p /∈ Γ, there are two states s1, s2, for which us1 > us2 . Assume that µ is an element
in the core that achieves the minimum of U1. As we are dealing with compact sets, and continuous functions,
such an element can always be found. Then, for ε > 0, choosing the new probabilities:

µ̃s1 = µs1 − ε, µ̃s2 = µs2 + ε, µ̃s = µs, s /∈ {s1, s2}, (108)

will decrease MEU. Furthermore, by the definition of strict increased uncertainty, for ε small enough, µ̃ ∈ C2, and
we are done.

Proof of (ii): From (i), we know that U(p|C(I2)) is negative for all p ∈ ∂P 1
0 . Furthermore, U(·|C(I1)) is

continuous, and as ∂P 1
0 is compact we have:

sup
p∈∂P1

0

U(p|C(I2)) < 0. (109)

The continuity of U(·|C(I2)) implies that each point on ∂P 2
0 is at a positive distance from ∂P 1

0 . Once again,
we use compactness to take the infimum of these distances, which will be realized and therefore must be strictly
larger than zero.

Thus, we have:
dp(∂P1

0 ,P2
0 ) > 0. (110)

✷

C.5.3 Proof of Proposition 3.3

We use the same notation as in the proof of proposition 3.2. We also use vector notation for expected utility in
different realized states of the world, ū(α) = (us1 , us2 , . . . , usN )

∗ for some ordering of s ∈ S . Thus, ū : Rn → R
N

maps investments in projects to implied expected utility in each state of the world.

(i): We begin with proving the proposition when the moment conditions are satisfied. As P 2
0 is the minimum

over a larger core, than P 1
0 it is clear that P 2

0 is weakly included in P 1
0 . We need to show that the inclusion is

strict.
We define the first moment of the roulette lottery for project i in state s:

τ si
def
=

∑
k

∑
t

P(xis,k,t|s)xis,k,tρ−t, 1 ≤ i ≤ n, s ∈ S , (111)

and the moment conditions:

Definition C.7 Moment conditions
The projects in P are said to satisfy the moment conditions if

∃i,∃i′,∃s,∃s′ : τ si τ
s′
i′ �= τ si′τ

s′
i . (112)

We have ū(0) = 0. Furthermore, the strict concavity of u implies that 0 is a boundary point of P 1
0 . To see

this, assume the contrary, i.e., that 0 lies in the interior of P 1
0 . Then, there is an α �= 0, such that U1(α) = 0,

and U1(−κα) = 0 for some κ > 0. But, we know from the proof of Proposition 3.1 that U1 is strictly concave,
immediately implying that U1(0) > 0 and we have a contradiction.
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We Taylor expand ū around 0 to get:

ū(α) = c1Mα+ o(‖α‖). (113)

Here, M ∈ R
N×n is a matrix with elements Mi,j = τ si

j , and c1 = u′(0) (where u′ is the derivative of u). The
moment conditions imply that the rank of M is at least two. The implicit function theorem immediately implies

that there is a neighborhood of 0, in which the Γ0
def
= {α : ū(α) = 0} is a manifold of dimension at most N − 2.

As P 1
0 has nonempty interior, we know that its boundary is a (piece-wise) manifold of dimension N − 1, which

implies that close to 0, “almost all” p ∈ ∂P 1
0 satisfy p /∈ Γ0. For any such p, it is clear from Proposition 3.2 that

p /∈ P 2
0 , and thus P

2
0 is a strict subset of P

1
0 .

(ii): We now prove the result when the moment conditions are not satisfied, but there is a project in L/(P̄)
satisfying the normality condition. We call this project p.

As P 1
0 has non-empty interior, the rank of M can not be zero, and thus it is exactly one. Therefore, there

exist s and i for which τ si �= 0. For such an s, we define the vector τ = (τ s1 , . . . , τ
s
n)

∗. The implicit function
theorem ensures that in a neighborhood of 0, Γ0 is a manifold of dimension N − 1, to a first order approximation
defined by:

Lτ = {l ∈ R
n : τ∗l = 0}. (114)

It is clear that p /∈ Lτ , as any p ∈ Lτ will violate the normality condition at α = 0. Therefore, there is an
ε �= 0 such that ε • p ∈ P 1

0 . Without loss of generality, we assume that ε > 0. We define

κ = max
r
{r : U(r • p|C(I1)) ≥ 0}. (115)

It is clear from the continuity of U(·|C(I1)) that κ • p ∈ ∂P 1
0 . Moreover, the normality condition implies that

κ • p /∈ Γ0, as us has the same ordering as induced on u′
s by the normality ordering. We can once again use

Proposition 3.2 to ensure that κ • p /∈ P 2
0 and we are done.

✷

Remark: It is clear that for a set of projects to fail to satisfy both the normality and moment conditions,
the projects have to be close to degenerate, both compared with each other (by the moment condition) and each
project across the states of the world (by the normality condition). One such set of projects that fail to satisfy
both the moment and normality condition is when all projects give rise to the same roulette lottery in every state
of the world. Of course, in such a situation, the level of uncertainty is irrelevant.

C.5.4 Proof of Proposition 3.4
The assumptions on the projects are:

Assumption C.8 Assumptions on projects, p1, . . . , pn

1. Each project has nonnegative expected payoff in each time period, t = 1, . . . , T .

2. Each project has a positive IRR.

3. There are two projects that have different IRRs.

We denote the objective probability by µ, µ = T (C), where T is the objective mapping. The decision maker
invests αi in project i. We use vector notation α = (α1, α2, . . . , αn). As P

1
0 ∈ L∆, we only need to consider

nonnegative α. The αs therefore satisfy
n∑

i=1

αi = 1, αi ≥ 0. (116)

To calculate the IRR30, we need to study the roots of the polynomial:

Q(z|α) def
= −zT +

T∑
t=1

(∑
s∈S

∑
k

µsP(xs,k,t|s)xs,k,t
)
zT−t

=
∑
i

αiqi(z) = −zT + aT−1z
T−1 + aT−2z

T−2 + · · ·+ a0. (117)
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Assumptions C.8:1-2 imply that all a0, . . . , aT−1 are nonnegative, with at least one positive ai, regardless of
α. We can therefore use Descartes’ rule to ensure that Q(z|α) has exactly one positive real root regardless of α.
Furthermore, theory of analytic functions ensures that the root is a continuous function of α. We call this root
z0.

We now prove that the minimal z0 in the set of preferred projects (under information set I1) as a function of
α can not lie in the interior of P 1

0 . To do this we use a special case of Lemma 3.1 in Walden (1999).

Lemma C.3 Suppose Q(z) is a polynomial of degree T , with a simple root at z0 and that Q′(z0) = R. Further-

more, suppose Q̃(z) is a polynomial of degree less than T , with Q̃(z0) = A �= 0. Then ∃c > 0,∃ε0 > 0 : 0 < |ε| <
ε0 ⇒ Q(z) + εQ̃(z) has a simple root in

B(z0 − εR/A, γ), γ = cε2. (118)

Here, B(z0 − εR/A, γ) is the open ball in the complex plane, with center at z0 − εR/A and radius γ.

Proof: See Walden (1999). The proof is a straight forward application of Rouché’s theorem.

To see that the minimum IRR can not lie in the interior of P 1
0 , let us assume the contrary, and that the

minimum is realized by α∗. The root is real and simple (implied by Descartes rule). Moreover, for any α∗∗, with∑
i
α∗∗
i = 0, we have Q(z|α∗ + εα∗∗) = Q(z|α∗) + εQ̃(z), where Q̃(z) is a polynomial of degree not higher than

T − 1.
We can choose α∗∗ such that Q̃(z0) �= 0. Assuming the contrary would imply that there is a b such that

qi(z0) = b, for all i, which by (117) would imply that b = 1, and that qi(z0) = zT , i.e., that IRR(pi) = z0 − 1
for all i, in violation with assumption C.8:3. Thus, there are i, and j, such that qi(z0) �= qj(z0), and by choosing

α∗∗
i = 1, α∗∗

j = −1, and α∗∗
k = 0, ∀k /∈ {i, j}, we get Q̃(z0) = qi(z0)− qj(z0) �= 0.

Thus, the conditions of Lemma C.3 are satisfied. By choosing ε small enough, we get cε2 << |ε|R/A and by

choosing such a small ε, we can ensure that the positive real root of Q+ εQ̃ is strictly smaller than that of Q. We
have a contradiction and, thus, the minimum must be realized on ∂P 1

0 .
From Proposition 3.2 we know that P 2

0 does not contain any elements of ∂P
1
0 , so z0 does not belong to P

2
0 .

Furthermore, as P 2
0 is compact, the infimum over IRR’s under information set I2 is realized (on ∂P 2

0 ), and thus
strictly larger than under I1.

✷

C.5.5 Proof of Proposition 3.5

(i): For this proposition, we define projects by their α representations. With this representation, P 1
0 and P 2

0

are subsets of R
n. The idea is that when u(x) ≡ x, P 1

0 and P 2
0 will be cones, and that P 2

0 will have a smaller
n-dimensional solid angle than P 1

0 . To show this, we proceed as follows: The condition for being in the preferred
set for a specific µ is: ∑

s

µs
∑
t

∑
k

P(xs,k,t|s)xs,k,t ≥ 0. (119)

We can rewrite this in vector notation as
µ∗Aα ≥ 0, (120)

where A ∈ R
N×n, µ ∈ R

N and α ∈ R
n. The strong moment conditions imply that the rank of A is at least two.

For the case with no uncertainty, when C1 contains a single element, assumption (C.8:2) immediately implies
that ξµ

def
= µ∗A has only positive coefficients, ξµ ∈ R

n
++. The set of preferred project in this case is a halfspace,

Lµ
def
= {l ∈ R

n : ξ∗µl ≥ 0}, (121)

bounded by the hyperplane ξ⊥µ
def
= {l ∈ R

n : ξ∗µl = 0}.
For a general core, C1, the set of preferred projects will be the intersection

P 1
0

def
= ∩µ∈C1Lµ, (122)

which, being an intersection of closed half-spaces will be a closed cone. Furthermore, as F (I1) > 0, the cone
is non-trivial, implying that the boundary of the cone is a (piece-wise) manifold of dimension n − 1. As A has
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rank at least two, this means that the points on the boundary of the cone that satisfy Aα = 0 form a surface of
dimension at most n− 2. Thus, ”nearly all” α on the boundary satisfy Aα �= 0.

Pick any such α. We know that µ∗Aα = 0, implying that Aα can not be a constant vector. Furthermore, the
definition of strictly increased uncertainty implies that for any β ∈ R

n, such that
∑

βi = 0, for ε small enough,

µ2 = µ+ εβ ∈ C2. (123)

Therefore, we can always find a µ2 ∈ C2 such that

µ∗
2Aα = (µ+ εβ)∗Aα = 0 + εβAα < 0. (124)

Thus, any nontrivial α belonging to ∂P 1
0 and with Aα �= 0, does not belong to P 2

0 . Furthermore, the continuity
of A, and compactness of C2 implies that there is a neighborhood around such an α that does not belong to P 2

0 .
Therefore, P 2

0 ’s cone must have strictly smaller solid angle than P
1
0 ’s.

Now, it is immediate by the definition of F (I)

F (I) def
= lim

γ→∞
λ(γB ∩ P0(I))
λ(γB ∩N ) , (125)

that when taken for two cones, F converges to the fraction of their two n-dimensional solid angles, and as the
solid angle of the denominator is constantly n×V (n)/2, where V (n) is the volume of the n-dimensional unit ball,
we are done.

(ii): This is immediate, as the set of preferred projects can not increase when uncertainty increases.

✷

C.5.6 Proof of Proposition 3.6
As in Proposition 3.5, we define projects by their α representations, and view P 1

0 and P
2
0 as subsets of R

n.

(i) The relationship between DM1’s and DM2’s utility functions can be written

u1(x) = u2(x)R(x), (126)

where R(x) is a strictly decreasing continuous function, such that R(0) = 1. For points on Γ, we can pick any
µ ∈ C2 and get the MEU. Specifically, we choose an µ that belongs to C1. The condition for lying on ∂P 2

0 is:

∑
s

µs
∑
t

∑
k

P(xs,k,t|s)u2(xs,k,t) = 0. (127)

As there are non-zero outcomes, and as R(x) is a strictly decreasing function, we have:

∑
s

µs
∑
t

∑
k

P(xs,k,t|s)u2(xs,k,t)R(xs,k,t) < 0, (128)

which immediately implies that U1(p) < 0 for any project on (Γ ∩ ∂P 1
0 ) \ {priskfree}. The result follows from the

continuity of U .

(ii) In a neighborhood of priskfree, the decision makers are, to a first order approximation, riskneutral. There-
fore, the implicit function theorem implies that in such a neighborhood, P 1

0 and P
2
0 are, to a first order approxi-

mation, cones.
Thus, in a small neighborhood of priskfree, B, we can use a similar argument as in the proof of Proposition 4.4:

The moment conditions imply that P 2
0 ’s cone has a smaller n-dimensional solid angle than P

1
0 ’s, so we immediately

have

FB(P
2
0 , P

1
0 ) =

λ(P 2
0 ∩ B)

λ(P 1
0 ∩ B)

< 1, (129)

for a small enough neighborhood, B, of the riskfree project.

✷
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Notes

1We use the phrase “NPV rule” for both the decision rule that the sum of discounted expected
cash flows should be greater than zero, and that the internal rate of return on expected cash
flows should be greater than the adjusted discount rate (the hurdle rate). Without capital
constraints, and disregarding the problem of multiple IRRs, the two methods give identical
results for whether a project should be undertaken or not.

2In the survey of Sandahl and Sjögren (2003), 52.3% of the respondents use the net present
value rule, which is higher than in earlier Swedish surveys: Renck (1966) - 10.7% and Yard
(1987) - 37.6%.

3Venture capital is used as a general term to include private equity from seed stage, through
early stage and expansion stage, but with focus lying on the earlier stages of financing.

4David Cromwell, former CEO of JP Morgan’s Private Investments branch uses a somewhat
lower rate, and writes: “IRRs in excess of 25% per annum [...] are sought by investors in
private equity situations”, in lecture notes of MBA course in venture capital and private equity
investments, Yale School of Management.

5The story is less clear if we wish to study realized rates of returns for venture capital, because
of the lack of data. Thomson Financial Securities Data reports yearly aggregate returns of 22.7%
for US early seed venture capital investments between 1980 - 2000. Also, in Venture Economics
1985, p.69, rates of return for 29 partnerships between 1965-1984 of 26% are reported.

This is far above the S&P yearly return of 15.7% during the same time period. However,
recent studies propose that the returns might be lower. As the majority of reported rates of
return are based on appraisal values, i.e., are for funds that have not liquidated, they are based
on the funds’ (unrealized) estimations. Cochrane (2003) argues that this creates a selection
bias. When taking the bias into account, returns in his sample decrease from 108% to 15%.
Chen, Baierl, and Kaplan (2002) report returns of 13.4% for 148 funds that liquidated between
1960-1999. One could also argue against basing measures on only liquidated funds. If only the
poorly performing funds liquidate, we get a selection bias in the opposite direction. Thus, the
difficulty in finding reliable data for the venture capital industry makes it an open question how
high realized rates of returns actually are.

6 The notation � describes the preference relation over lotteries for an investor (with �, $,
≺, ∼= defined respectively), whereas ≥, ≤ are reserved for numerical inequalities.

7For more details, see conference material from the McKinsey broadband conference in Tel
Aviv, Israel, February 7, 2002.

8Even though Weeds (2002) in a recent paper proposes a model with two competing firms
where there are real option like noncooperative equilibria.

9In the investment context we will call these acts projects.

10Here,
∫ · dµ has a probabilistic interpretation, i.e.,

∫
hdF

def=
∫
h(x) dF

dx dx, where dF
dx is the

Radon-Nikodym derivative of the c.d.f, F . Thus, µ is not a dummy variable for integration, but
represents a probability distribution over the horse dimension.

11This is of course not a natural assumption in a real investment context. It is used to avoid
having to take “boundary conditions” into account, which would complicate the theory. In a
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real life situation, we would not expect any other project than possibly the riskfree project to
be held in negative amounts.

12 This is in fundamental contrast to the SEU model where the probabilities move when the
subjective probabilities change. The result of changed probabilities, but without uncertainty are
shown in Figure 15 in Appendix B.

13As the payoffs are risky, we calculate the IRR using expected payoffs, throughout the paper.

14Technically we are dividing two sets of infinite measure. To overcome this problem, we need
to take limits of bounded sets in the right way. This is the price paid for having a “risk neutral”
decision maker. The precise way of doing this is given in Section 3.

15This type of effect could be used in an aggregate framework to explain the equity premium
puzzle, as suggested in Epstein and Wang (1994). Similar arguments can also be used to explain
the own-equity effect as in Boyle, Uppal, and Wang (2003) and other under-diversification puzzles
as argued in Mukerji and Klibanoff (2002).

16As we have normalized to excess return over the riskfree project, we could have 0 < ρ < 1,

17For L/(P̄), investing everything in the riskfree project will of course always achieve a perfect
hedge. The set will therefore typically be a manifold of dimension n+ 1−N if N ≤ n+ 1 and
a single point if N > n+ 1.

18It can be shown that Assumption 3.2:3 implies that Γ can not cover the whole of L/(P).
However, it can be “thick” in the sense that it has nonempty interior in L/(P).

19It is actually possible to choose a coarser topology, induced by the distances between the
cumulative distribution functions for the respective projects. For more details, see Appendix C.

20Increased uncertainty aversion is defined in analogy with increased uncertainty, in Appendix
C.

21In the sense of Arrow and Pratt, i.e., DM2’s absolute risk aversion, −u′′/u′ is pointwise
strictly higher than DM1’s.

22The preference relation on Y is here induced from the preference relation on L, and the
embedding of Y in L.

23Here and henceforth, we use a notation with two integrals, to emphasize the two dimensions
of the set-up. The notation in GS papers only uses the integral over the horse dimension, and
views u as an affine function on Y . As we are working with finite state spaces the integrals
should be thought of in the Riemann-Stieltjes sense.

24This can either be done by omitting the term from the optimization, or by asymptotics,
P → 9/10. Either way, it is straight forward.

25In principle, we would need T riskfree projects to span the full riskfree pay-off space. How-
ever, we can pick one such project to represent the risk free project, as it is only used as reference
point, against which other projects are measured. In fact, the only project we need to compare
with is the risk free project that optimizes the decision maker’s utility over time (in absence of
risky projects). Another reference project is the annuity project that pays the same amount in
every time period. The advantage of the latter is that in the case with time-separable utility, it
leads to identical excess utility functions in each time period, which simplifies notation. There-
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fore, we use the annuity choice of riskfree project, but note that all results hold true with the
optimal project as reference point too.

26In the intertemporal model, we use a sum notation over the state space instead of Riemann-
Stieltjes integrals, to stress the finiteness of this space.

27This is not the most general form. A sufficient (but less intuitive) condition is that limx→∞
u(x)

u(−x) =
−∞.

28The symbols ∆ and / are used to associate with the unit simplex and a subspace respectively.

29The “trick” could of course also have been carried to the limit, ∆λ→ 0, leading to:

∆α =
∫ 1

0

dα

dλ
dλ < 0. (130)

.

30Here, IRR is calculated over expected cash flows: IRR def= IRR(E((p)), as is normally done
in real world investment analyses. An alternative definition would be IRR def= E(IRR(p)).
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Figure 1: Decision tree for owner in production investment example.
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Figure 2: Left: Increased risk enters the lottery by increasing the spread of outcomes. Right: Increased
uncertainty enters the lottery by increasing the probabilities for bad outcomes.
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Figure 3: Sketch of two stage lottery in Gilboa & Schmeidler model. There are three states of the world
with uncertain probabilities, each giving rise to a roulette lottery with known probabilities.
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Figure 4: Example of core of priors for decision maker that resolves Ellsberg paradox. The core of priors
is the line on the unit simplex. The core is defined as: C = {(µred, µblue, µyellow) : µred = 1/3, µblue =
1/3− ξ, µyellow = 1/3 + ξ, ξ ∈ [−1/6, 1/6]}.
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Period 1 2
Investment Payoff

Consumption

t

Figure 5: Two period investment example. At t = 1, money is invested. At t = 2, payoffs are realized,
and immediately consumed.
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Figure 6: Demand for risky project as a function of uncertainty for different prices: P = 0.8, 0.9 and
1.0. When demand is positive, it decreases with increased uncertainty. When demand is zero, it stays
zero with increased uncertainty.
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Figure 7: Sets of preferred projects for different levels of uncertainty: ξ = 0, ξ = 0.2, ξ = 0.6. As
uncertainty increases, the set of preferred projects decreases. The dotted line is perfectly hedgeable, i.e.,
the decision maker is indifferent towards the level of uncertainty on this line.
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Figure 8: Required (expected) internal rate of return to undertake a project as a function of uncertainty.

69



Figure 9: Fraction of NPV positive projects that the decision maker will undertake as a function of
uncertainty. For high uncertainty, a large fraction of NPV positive projects will be avoided by decision
maker.
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Figure 10: Demand for risky project as a function of price for: Left - case with no uncertainty (SEU
case), ξ = 0, Middle - ξ = 0.2, Right - ξ = 0.6. With uncertainty, the demand curve has kinks, and there
is a whole region where demand is neither positive nor negative.
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Figure 11: Set of preferred projects under no uncertainty aversion and RRA ≡ 1 (solid line), under
uncertainty aversion with ξ = 0.2 and RRA ≡ 1 (dotted line), and under no uncertainty and RRA ≡ 1.2
(dashdotted line). The A region contains projects that an MEU optimizer would invest in, but a SEU
optimizer with RRA ≡ 1.2 would avoid. The B region contains projects that an SEU optimizer with
RRA ≡ 1.2 would invest in, but an MEU optimizer would avoid. The implied RRA for behavior consistent
with MEU optimization grows unboundedly towards the riskfree project, (α1 = 0, α2 = 0).
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Figure 12: Left: C(I2)) is weakly more uncertain than C(I1)) as the boundaries of the cores have a
common point. Right: C(I2)) is strictly more uncertain than C(I1)) as the boundaries of the cores do
not have common points.
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Figure 13: Illustrative: Preferred sets for decision maker: A - Risk and uncertainty neutral, B - Risk
neutral but uncertainty averse, C - Risk averse but uncertainty neutral, D - Risk and uncertainty averse.
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Figure 14: Structure of spaces in Gilboa & Schmeidler/Anscombe & Aumann axiomatic approach to
decision making under uncertainty.
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Figure 15: Sets of preferred projects for different prior probabilities: P(sH) = 0.95 and P(sH) = 0.76. In
contrast to the case with increased uncertainty, the set of preferred projects increases in some directions
and decreases in others.
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Figure 16: Left: Decision maker’s optimization problem under normality assumption. The thick line
shows utility in state of the world sH and sL as a function of α, starting at (0, 0) for α = 0. For low
uncertainty, the tangency line perpendicular to prior µ1 is the optimal solution. For high uncertainty,
the tangency line perpendicular to prior µ2 is optimal, implying α2 < α1. Right: Possible situation
if normality assumption is violated. In this case the situation is reversed in certain regions, implying
α2 > α1.
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v ∈ V p0 p1 p2

(sH, qH) 1 1.3 0
(sH, qL) 1 0.9 0
(sL, qH) 1 0 0.2
(sL, qL) 1 0 0.2

Table 1: Payoffs of projects in different states of the world.
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v ∈ V p0 p1 + p2

(sH, qH) 1 1.3/P
(sH, qL) 1 0.9/P
(sL, qH) 1 0.2/P
(sL, qL) 1 0.2/P

Table 2: Returns, r, of projects in different states of the world with restricted choices, p1 + p2.

80



P0 P ∗

P P̄ P P̄

P closed closed closed closed
bounded bounded bounded bounded

nonempty nonempty nonempty

L∆ closed closed closed closed
bounded bounded bounded bounded
convex convex convex convex

nonempty nonempty nonempty

L/ closed closed closed closed
bounded bounded bounded bounded
convex convex convex convex

nonempty nonempty nonempty

Table 3: Summary of derived results for P0 and P ∗ for different combinations of L/, L∆, and
with or without riskfree project. All sets that are nonempty will consist of a single element
under the additional assumption that the decision maker is strictly risk averse.
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