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Abstract

Incentive options are held bymanagers and employees who invariably hold undiver-
sified portfolios with substantial amounts invested in their own company’s common
stock. This lack of diversification makes the subjective value of incentive items such
as options less than their market value. This paper derives a model for the marginal
value of such options or other incentive items. As such, it can be used to evaluate
heterogeneous options which mature on different dates. It can also be used each time
a new option is granted.

The identical model (with different parameters) can be used to determine three dif-
ferent values for each option, the market value, the subjective value and the objective
values. The market value is the value the option would have if it were held by an un-
constrained agent. The subjective value — the value of the holder — is less than the
market value because the option is held in an undiversified portfolio and because it is
exercised suboptimally from the market perspective. The objective value is the cost
to the firm of issuing the option and lies between the market and subjective values.
This value recognizes the suboptimal exercise but not the undiversified discount.

The model is no more difficult to use than is the Black-Scholes model. In fact, under
the same conditions, it is simply the Black-Scholes model with modified parameters.
The model can also be easily extended to handle vesting, employment termination,
indexing, repricing and any number of other features found in incentive options.
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1 Introduction

Many employees, managers, and executives have undiversified portfolios with large hold-

ings of their own firm’s stock. Such portfolios are not consistent with standard finance

theory which strongly recommends diversification. There are many reasons for such un-

diversified holdings. The stock in question may be in a pension or profit sharing plan over

which the employee has no control, or it may be phantom or restricted stock or incentive

options which cannot be sold. Some executives’ contracts require large holdings of the

company’s stock. Less explicitly, the restriction may be due to a large capital gain that the

manager is unwilling to realize, or the manager may simply feel “morally” constrained not

to sell his company’s stock.

Because managers hold undiversified portfolios, their stock ownership and equivalent

items such as incentive options have a subjective value to them which is less than their

market value. That is, the stock provides less utility than would an optimally balanced

portfolio with the same market value.

This problem has been analyzed by others. In particular, Carpenter [1998, 2000], Hall

and Murphy [2000], Kulatilaka and Marcus [1994], and Lambert, Larker, and Verrecchia

[1991] have considered how a lack of diversification affect the value and incentives of

option compensation. Each of these papers uses utility of terminal wealth to value a “block”

of options which mature on the date that utility is evaluated, and they compute the average

option value.

This paper adopts the opposite approach; it determines a model for the marginal value

of an option. As such, it can be used to evaluate heterogeneous options which mature on

different dates. It can also be used each time a new option is granted.

The same model (with different parameters) can be used to determine three different

values for each option. The first value is the market value — the value the option would

have if it were held by an unconstrained agent. The second value is the subjective value

to the grantee. This value is less than the market value because the option is held in an

undiversified portfolio and because it is exercised suboptimally from the market perspec-

tive. The third value is the objective value. This value recognizes the suboptimal exercise

but not the undiversified discount. It is the cost to the firm of issuing the option and lies

between the market and subjective values.

We examine this problem of subjective valuation in a simple framework. The investor

is a manager or employee of a particular firm. He is constrained to hold at least a certain

proportion of his wealth in the stock of his own firm until his retirement. After retirement

his portfolio is unconstrained. The model determines the discount in subjective value
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which should be assigned to the option due to the manager’s lack of diversification and

risk aversion.

Section 2 solves the manager’s consumption-investment problem. We use a standard

continuous-time consumption and portfolio selection problemwith a constant opportunity

set. This allows us to compare our answers to those introduced by Merton [1969]. Section

3 uses the consumption-investment problem to develop subjective discounting method.

Section 4 applies the subjective discounting to derivatives and other forms of incentive

compensation. Section 5 extends the analysis to permit early exercise and highlights the

differences between the market, subjective and objective values. Section 6 examines the

effects of vesting and employment termination on subjective values. Sections 7 and 8

apply the results to illustrate the specific problems of indexed incentive options and option

repricing.

2 The Constrained Portfolio Problem

In the absence of any constraints, themanager would allocate his wealth between themean-

variance efficient frontier of risky assets and default-free bonds in the usual fashion. For

simplicity we assume that the continuous-time CAPM holds so the efficient portfolio is

the market, but this is for the convenience of our discussion. Other equilibrium models

could be used as well. Before retirement, the manager will allocate his wealth between

three assets, the company’s stock, the market portfolio, and default-free bonds.1 After

retirement, the manager is no longer constrained and will hold only the market portfolio

and bonds until his death at time T ′′.2

We examine this problem for a manager with a power utility function defined over

lifetime consumption and bequest

1
γ

∫ T ′′

0
e−ρtCγ

t dt +
b
γ
Wγ

T ′′ (1)

1In general an additional asset, that portfolio (excluding the company’s stock and other restricted assets
like options) which is most highly correlated with his firm’s stock would also be held. This portfolio would
be used to reduce the undiversifiable risk imposed by the constraint of holding an excess of the company’s
stock. Here we assume that all the non-market risk of the individual stock is uncorrelated with other assets.
The same general methodology works if this is not the case. Alternatively, we can interpret the portfolio
identified asM below as the proper combination of the market and this hedging portfolio with v measuring
the remaining risk that cannot be hedged away.

2As we shall see, the time of death and the role of bequest is unimportant in this study since the investor
is unconstrained after retirement.
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where b is a multiplier determining the relative contribution to utility from consumption

and the bequest of wealth at time T ′′.

The evolution of the two risky assets is

dM/M =(µm − qm)dt + σmdωm

dS/S =(µ − q)dt + βσm dωm + v dω .
(2)

The dividend yields, qm and q, do not affect the consumption-portfolio choice problem;

they are displayed here for consistency with the pricing of derivatives developed later. The

Wiener process dωm governs the movement of the market portfolio. The Wiener process

dω is the idiosyncratic risk of the company’s stock and v2 is the residual variance. The

two Wiener processes are independent so the covariance between the stock and the market

is fully captured by β. The vector of cum-dividend expected returns and the variance-

covariance matrix are

µ =
(

µm
r + β(µm − r)

)
Ω =

(
β2σ2

m + v2 βσ2
m

βσ2
m σ2

m

)
(3)

where the CAPM relation µ = r + β(µm − r) has been substituted.

The derived utility function and the optimal consumption and portfolio choices are the

solution to the

0 = Max
C,w

[
1
γ
e−ρtCγ + 1

2
w′ΩwW2JWW +

(
[r +w′(µ− r1)]W − C

)
JW + Jt

]
(4)

with J(W,T ′′) = e−ρT ′′bWγ/γ.

During the investor’s retirement, the solution as given in Merton [1969] is3

w∗
m = µm − r

(1− γ)σ2
m

w∗
S = 0 C∗t = Ξ(t)Wt

where

Ξ(t) ≡A
[(
Ab1/(1−γ) − 1

)
eA(t−T

′′) + 1
]−1

A ≡ γ
1− γ

[
ρ
γ
− r − 1

2
1

1− γ

(
µm − r
σm

)2]
.

(5)

3Note that the stock is already represented in the market portfolio. Therefore, w∗
S = 0 indicates that no

extra investment is made in the stock.
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The derived utility of wealth function is

J(W, t) = 1
γ
e−ρt[Ξ(t)]γ−1Wγ . (6)

Before retirement the manager is constrained to hold at least a fraction α of his wealth

(beyond that represented in the market portfolio) in his company’s stock.4 We choose a

proportional constraint rather than a fixed number of shares constraint to approximate its

long-term intertemporal nature. The manager will usually be awarded (or receive through

exercise of options) additional shares over time. Furthermore, even if he not explicitly

restricted from selling some shares, he may well be subjected to implicit restraints.

For any α > 0, the constraint will be binding and the manager’s optimal portfolio

should hold exactly the minimum wS = α. The choice between the market portfolio and

the risk-free asset still must be made. The constrainedmaximization problemwithw∗
S = α

substituted in is

0 = Max
C,wm

[
1
2
[w2

mσ2
m + 2wmαβσ2

m +α2(v2 + β2σ2
m)]W2JWW

+ ([r +wm(µm − r)+α(µ − r)]W − C)JW + Jt + 1
γ
e−ρtCγ

]
subject to

J(W,T ′) = 1
γ
e−ρT

′
[Ξ(T ′)]γ−1Wγ .

(7)

The last condition comes from matching utility at retirement to the solution (6) of the

unconstrained problem after retirement.

The first-order conditions for a maximum are

(wm +αβ)σ2
mW2JWW + (µm − r)WJW = 0

e−ρtCγ−1 − JW = 0
(8)

Solving these gives a constrained optimum of

w∗
m = − JW

WJWW

µm − r
σ2
m

−αβ w∗
S = α

C∗ =
(
eρtJW

)1/(γ−1)
.

(9)

4Let mS be the fraction of the market portfolio which stock S represents, then the manager’s holding of
his own stock is α+w∗

mmS . Therefore, if the manager is constrained to hold at least the fraction α in his
own stock, we use an excess constant of α = α −w∗

mmS . Of course, except for very large companies mS
will be economically insignificant.
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As usual we guess a solution for the derived utility function of the form e−ρt[ξ(t)]γ−1Wγ/γ,
solve for the optimal controls using (9), and substitute into (7). We can then solve for the

unknown constant and the constrained optimum

w∗
m = µm − r

(1− γ)σ2
m
−αβ w∗

S = α C∗ = ξ(t)W

where

ξ(t) ≡ a
[(

a
Ξ(T ′)

− 1
)
ea(t−T

′) + 1
]−1

a ≡ γ
1− γ

[
ρ
γ
− r − 1

2
1

1− γ

(
µm − r
σm

)2
+ 1
2
α2v2(1− γ)

]

= A+ 1
2
γα2v2 .

(10)

The derived utility function is

J(W, t) = 1
γ
e−ρt[ξ(t)]γ−1Wγ . (11)

The optimal holding in the market portfolio is less than the unconstrained holding by

αβ. This serves to reduce the extra systematic risk which otherwise would be added by

the forced holding of an excess of the stock. The optimal holding of bonds is

1−w∗
m −α = 1− µm − r

(1− γ)σ2
m
+α(β− 1) . (12)

This is greater (less) than the unconstrained holding if the company’s stock’s beta is greater

(less) than one. Holding more (fewer) bonds serves to reduce (increase) the portfolio’s

effective leverage back closer to the desired level if beta is greater (less) than one. Optimal

consumption has the same form as in the standard problem; however, the amount will

differ as derived the utility function, J, will be different.

Were there no portfolio constraint on the manager, he would invest and consume as

given in (5) throughout his life. From the last line in (10), a > A if and only if γ > 0, and from

the second line in (10), ∂ξ(t;a)/∂a > 0. Therefore, compared to an unconstrained investor,

the constrained manager consumes a smaller (larger) fraction of his wealth if his relative

risk aversion is greater (less) than one. Similarly his marginal utility of wealth is larger

(smaller) in the constrained problem if his relative risk aversion is greater (less) than one.

Utility, of course, is always higher for the unconstrained problem. This dichotomy is due to

income-like and substitution-like effects. The constraint makes investment for the future

more costly (in terms of utility) and hence increases the relative cost of future consumption.
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This causes a substitution into current consumption. However, the constraint also reduces

overall utility, and this reduction in “income” reduces current consumption. As usual, if

relative risk aversion is greater (less) than one, the income (substitution) effect dominates.

Prior to retirement, the evolution of wealth, net of consumption, is

dW/W = [r +w∗
m(µm − r)+α(µ − r)− ξ(t)

]
dt +w∗

mσmdωm +αv dω

=
[
r + (µm − r)2

(1− γ)σ2
m
− ξ(t)

]
dt + µm − r

(1− γ)σm
dωm +αv dω .

(13)

Using Itô’s lemma the evolution of the manager’s marginal utility is

dJW =∂JW
∂t

dt + ∂JW
∂W

dW + 1
2
∂2JW
∂W2

dW2

=
[
−ρJW + (γ − 1)e−ρt[ξ(t)]γ−2ξ′(t)

]
dt

+ [ξ(t)]γ−1
[
Wγ−2 dW + 1

2
(γ − 2)Wγ−3 dW2

]
dJW
JW

= −
[
r − (1− γ)α2v2

]
dt − µm − r

σm
dωm − (1− γ)αv dω

(14)

before retirement and
dJW
JW

= −r dt − µm − r
σm

dωm (15)

after retirement. Note that the evolution of JW after retirement is identical to that before

retirement with α = 0.

3 Subjective Discounting

In the absence of arbitrage, there is a martingale pricing process Θt which can be use to

value any asset or future cash flow. The productΘtVt is amartingale for the (cum-dividend)

value Vt of any asset. For diffusion processes, this can be expressed as E[d(ΘV] = 0. For

the standard portfolio problem with no constraints, one martingale pricing process is the

marginal utility of any investor.
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Similarly, the constrained manager can compute a subjective value for any asset using

his own marginal utility function as a martingale pricing process, Θ(α) = JW . From (14),

the dynamics of the subjective martingale pricing process are

dΘ(α)
Θ(α)

=



−
[
r − (1− γ)α2v2

]
dt

− µm − r
σm

dωm − (1− γ)αv dω
t < T ′

−r dt − µm − r
σm

dωm T ′ < t < T ′′ .

(16)

The after-retirement subjective pricing process is also the market martingale pricing pro-

cess.

We refer to present values computed using Θ(α) with α > 0 as subjective values and

present values computed using Θ(0) as objective or market values.5 Two features of sub-

jective pricing are immediately obvious. First, the subjective interest rate, the negative of

the growth rate in Θ(α), is lower than the market interest rate. Second any covariance with

the residual risk of the company’s stock will reduce subjective prices.

The subjective interest rate

r̂ ≡ r − (1− γ)α2v2 (17)

is lower than the actual interest rate by an amount equal to the product of the relative risk

aversion, the square of the stock-holding constraint, and the residual variance. This means

that any certain payment in the future has a subjective present value to the manager higher

than it’s market value. The intuition for this result is immediate. One dollar at time T has

a higher subjective value than e−rT now because the latter would have to be invested in a

suboptimal fashion.

The subjective valuation of risky cash flows is also affected. Let X and X̂ denote the

market and subjective values of a future payment. Express the subjective dynamics as

dX̂/X̂ = µX̂ dt + βXσmdωm + vX dω+ σε dωε . (18)

The three Wiener processes capture the unexpected changes in the value of the cashflow

that are correlated with the market, correlated with the residual variation of the stock, and

uncorrelated with both. µX̂ is the subjective rate of return (or discount rate) required to
5Under some conditions objective and market values will differ. For example, incentive options are often

exercised suboptimally from a market perspective. The objective value of such an option is determined
using Θ(0) and the “suboptimal” exercise policy. The market value is determined using the optimal exercise
policy.
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hold this asset. We can determine the subjective discount rate using the martingale pricing

relation
0 =E[d(ΘX̂)] = E[Θ · dX̂ + X̂ · dΘ+ dX̂ · dΘ]
=ΘX̂

[
µX̂ − r̂ − βX(µm − r)− (1− γ)vXαv

]
dt .

(19)

Since the CAPM is assumed to hold for the true discount rates, µX = r + βX(µm − r).
Therefore,

µX̂ =µX − (r − r̂ )+ (1− γ)αvvX
=µX + (1− γ)αv(vX −αv) .

(20)

The subjective discount rate has two differences from the market discount rate for the

asset. It is lower by the subjective interest rate differential in (17) but higher by an amount

required to offset the company-specific unsystematic risk, if any, of the asset.

For the market portfolio or any portfolio with no company-specific risk (vX = 0), the
subjective discount rate will be lower than the objective discount rate by an amount equal

to the subjective interest rate differential. As a result, subjective values of such assets will

exceed market values just as they do for risk-free payments. For assets with company-

specific risk, subjective discount rates can be higher or lower than their market counter-

parts. The more company-specific risk there is the higher will be the subjective discount

rate and the lower the subjective value. If the company-specific risk of the asset is smaller

(larger) thanαv , the subjective discount rate will be less (greater) than the market discount

rate. For the stock itself vX = v and

µ̂ = µ + (1− γ)α(1−α)v2 (21)

so the stock’s subjective discount rate must exceed the market rate and the stock’s sub-

jective value must be less than the market value.

Paradoxically, the subjective discount rate is not monotone but quadratic in the con-

straint, α. This paradox is explained by noting that the decrease in the subjective interest

rate is proportional to the square of the constraint. However, the increase in the subjective

risk premium

µX̂ − r̂ = µX − r + (1− γ)αvvX (22)

is proportional to the constraint. Therefore, when α > vX/2v the subjective discount

rate is decreasing in α. For assets with little correlation with the company’s stock ( vX ≈
0), this will be true. Their subjective discount rates would be lower and their subjective

values higher if the constraint were tightened. For assets with large correlations with the

company’s stock, this condition will typically not be met unless the constraint is severe,

and such assets will be relatively less preferred if the constraint becomes tighter. This will
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usually be true only for assets like the stock itself or derivative contracts written on the

stock.

4 The Subjective Evaluation of Compensation

Stock-based payoffs are a common component of managerial compensation. The method-

ology developed here allows us to determine both the subjective valuation and incentive

effects of derivatives like incentive stock options and phantom or restricted stock.

4.1 Subjective Valuation

Let F(S, t) denote the subjective value of the option or other compensation item. Then by

Itô’s lemma6

0 =E[d(ΘF(S, t))]
=E

[
ΘFS dS +ΘFt dt + 1

2ΘFSSdS
2 + F dΘ+ dΘ FS dS

]
=Θ

[
(µ − q)SFS + Ft + 1

2σ
2S2FSS − [r − (1− γ)α2v2]F

− [β(µm − r)+ (1− γ)αv2]SFS
]
dt .

(23)

Using β(µm − r) = (µ − r), we can simplify this equation to

0 =1
2σ

2S2FSS + [r − q − (1− γ)αv2]SFS − [r − (1− γ)α2v2]F + Ft

=1
2σ

2S2FSS + (r̂ − q̂)SFS − r̂ F + Ft

where r̂ ≡ r − (1− γ)α2v2 q̂ ≡ q + (1− γ)α(1−α)v2 .

(24)

This equation applies only for times before retirement at T ′. After that, the usual Black-
Scholes equation will apply.7

The partial differential equation will be recognized as the Black-Scholes equation with

discounting at the subjective interest rate, r̂ , and a subjective adjustment to the dividend

yield. From (21), q̂ − q = µ̂ − µ; therefore, the risk-neutral drift used in the option pricing

equation is r̂ − q + (µ − µ̂). The last term must be added to the risk-neutral drift for

determining subjective prices because the state variable used is the actual stock price and
6Note the total risk of the stock is σ 2 ≡ β2σ 2

m + v2.
7In the examples below, we assume that the contracts terminate before the manager’s retirement, T < T ′.

Contracts which terminate later can be valued in a similar fashion with a “blended” interest rate and dividend
yield.
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not the subjective one. The adjustment is made because the stock price is growing at

the rate µ and not µ̂. The subjective value of various compensation packages can now be

determined from their payoffs.

As a first example, we compute the subjective value of a restricted share of stock which

must be held until time T . The payoff on this contract is F(S, T) = S. The subjective

present value of having the stock at time T with the restriction lifted is the solution to (24)

with F(S, T) = S8

P̂V t[ST ] = Ste−q̂(T−t) . (25)

The subjective present value of the share of stock includes the intervening dividends. If

these may be approximated as being paid continuously at a constant yield, q, the subjective
value of a share restricted until time T is

Ŝ(S, t;T) = P̂V t[ST ]+
∫ T

t
P̂V t[qSu]du = S

[
q
q̂
+ e−q̂(T−t)

(
1− q

q̂

)]
. (26)

The difference between the subjective value of a share of stock and the market value

can be substantial. For example, consider a manager with a relative risk aversion of 5

(γ = −4) who holds 50% of his wealth in his company’s stock with a dividend yield of 2%

and a residual risk of v = 20%. His subjective valuation of a share of stock restricted for

5 years is only 78.9% of the market value. For a less extreme case, γ = −2 and α = 25%,

the subjective value is 89.9% of the market value. For a more extreme case, γ = −6 and

α = 50%, the subjective value is only 71.8% of the market value.
8This present value can also be computed as

P̂V t[ST ] = e−µ̂(T−t)E[ST ] = e−µ̂(T−t)Ste(µ−q)(T−t) = Ste−q̂(T−t) .
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Incentive stock options can be valued in the same way. By examination of (24), the

subjective value of an incentive stock option is given by the Black-Scholes model, C(·),
with an adjusted interest rate and dividend yield9

Ĉ = C(Se−q̂(T−t), T − t;X, r̂ , σ) = Se−q̂(T−t)Φ
(
H(X)

)−Xe−r̂ (T−t)Φ
(
h(X)

)
where H(X) ≡

,n(S/X)+
(
r̂ − q̂ + 1

2σ
2
)
(T − t)

σ
√
T − t

and h(X) ≡ H(X)− σ
√
T − t .

(27)

Since q̂ > q and r̂ < r , the subjective value of the option is less than its market value.

The manager values the compensation in the form of stock options at less than the cost

of providing it to him apart from incentive effects which may lead to increase the stock’s

market value.

Table 1 shows the subjective values of incentive options for some typical cases at is-

suance with a maturity of ten years and after one year assuming the stock price has moved

by 15%. As discussed, the subjective value is smaller than the objective or market value.

Therefore, standard option pricing techniques will overestimate the value that themanager

will perceive in an option grant. The more risk-averse is the manager or the greater is the

stock restriction in place, the smaller is the subjective value of the option. As the table

indicates, the difference between the market and subjective values can be substantial. The

subjective value is less than half the market value in many circumstances which should

occur frequently and is less than 10% of the market value in cases which should not be

exceptional.

Note that for the tighter restrictions (α ≥ 50%) and more risk averse managers (γ ≤ −4),
the subjective value of the in-the-money options can be less than their intrinsic values even

though the stock is not paying dividends. This result is due to the high effective dividend
9Usually the stock received when an incentive options is exercised cannot be sold for a six months. So

when an incentive option is exercised a “restricted” share is received. As shown in (26), a restricted share is
worth less than an unrestricted share. If we take this factor into account, the condition at expiration of an
incentive option is Ĉ(S, T) = Max[RS − X,0] where R ≡ [q/q̂ + e−0.5q̂(1− q/q̂)] is the reduction factor for
a restricted share as given in (26). The value of the option is then C(RSe−q̂(T−t), T − t;X, r̂ , σ). For typical
parameters, this correction gives a reduction in the option’s value of only a few percent. For example for
α = 25%, γ = −4, σ = 30%, v = 20%, r = 5%, q = 0, the market and subjective values are reduced by 3.0%
and 3.5%, respectively.
Other dividend or interest rate structures can be accommodated as well. For example, for n discrete

dividends at a constant yield of y and/or a sloped yield curve with zero-coupon bond prices B(τ), the
subjective value of the option would be

Č = C
(
S(1−y)ne−q̌(T−t), T − t;XB(T − t), ř , σ

)
where q̌ ≡ (1− γ)α(1−α)v2 ř ≡ −(1− γ)α2v2 .

Here q̌ and ř are only the alteration in the dividend yield and interest rate. The actual dividend and interest
effects are captured in y and B(·), respectively.
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Table 1: Subjective Values of Stock Options

X = 100 r = 5% q = 0% σ = 30% v = 20%

Subjective value of call
Subjective value of call: as percent of market value:

Ĉ Ĉ/C

S = 100, T − t = 10 : Market value of option = 52.57
γ γ

α 0 −2 −4 −6 0 −2 −4 −6
10% 49.48 43.75 38.55 33.86 94.1% 83.2% 73.3% 64.4%
25% 45.81 34.26 25.07 17.91 87.1% 65.2% 47.7% 34.1%
50% 41.76 24.69 13.22 6.32 79.4% 47.0% 25.1% 12.0%
75% 39.81 19.55 7.51 2.17 75.7% 37.2% 14.3% 4.1%

S = 85, T − t = 9 : Market value of option = 37.66
γ γ

α 0 −2 −4 −6 0 −2 −4 −6
10% 35.46 31.37 27.67 24.32 94.2% 83.3% 73.5% 64.6%
25% 32.80 24.51 17.92 12.80 87.1% 65.1% 47.6% 34.0%
50% 29.73 17.39 9.25 4.42 78.9% 46.2% 24.6% 11.7%
75% 28.05 13.38 5.07 1.48 74.5% 35.5% 13.5% 3.9%

S = 100, T − t = 9 : Market value of option = 49.74
γ γ

α 0 −2 −4 −6 0 −2 −4 −6
10% 47.00 41.86 37.18 32.92 94.5% 84.2% 74.7% 66.2%
25% 43.69 33.24 24.78 18.08 87.8% 66.8% 49.8% 36.3%
50% 39.96 24.29 13.50 6.79 80.3% 48.8% 27.1% 13.6%
75% 38.04 19.32 7.87 2.49 76.5% 38.9% 15.8% 5.0%

S = 115, T − t = 9 : Market value of option = 62.46
γ γ

α 0 −2 −4 −6 0 −2 −4 −6
10% 59.17 53.00 47.34 42.16 94.7% 84.9% 75.8% 67.5%
25% 55.24 42.63 32.29 23.96 88.4% 68.2% 51.7% 38.4%
50% 50.87 31.92 18.40 9.63 81.4% 51.1% 29.5% 15.4%
75% 48.79 26.08 11.29 3.82 78.1% 41.8% 18.1% 6.1%
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yield, q̂, under the subjective process and our use of a European option pricing model.

This problem is discussed and resolved in the next section on early exercise.

4.2 Subjective Incentive Effects

How much incentive does the option provide? The incentive is the change in value as

perceived by the manager relative to the change in shareholder wealth; therefore, we are

interested in determining the change in the subjective value of the option for a given change

in the market value of the stock. Since our model uses the market value of the stock, the

usual delta calculation on the subjective value formula provides an instantaneous measure

of the incentive

∆̂ = e−q̂(T−t)Φ
(
H(X)

)
. (28)

Since H(X) is smaller for the subjective process and q̂ > q, the subjective delta will be
smaller than the delta given by the Black-Scholes model applied to the market price. So

standard option pricing techniques will overestimate the incentive provided.

Table 2 shows the subjective delta for some typical cases. As seen in the table, the

proportional effect on the deltas is smaller than on the values. Nevertheless, the subjective

deltas are still substantially smaller than the objective ormarket deltas; therefore, standard

option pricing models will often substantially overstate the incentive effects of options.

How effective are options in providing incentive from the viewpoint of the shareholders?

The cost of providing an option is its market or objective value. The incentive it provides

is its subjective delta. Therefore, the option’s true unit price of providing incentive is the

objective cost per unit of subjective delta, C/∆̂.

Table 3 shows the ratio of the objective cost to the subjective delta for the options

valued in Table 1 at the time of issuance. Using the Black-Scholes model we would compute

a cost per unit delta of 52.57/0.842 = 62.45. However, as seen it is much more costly

than this to provide incentive to a risk-averse manager. And as the amount of stock held

increases, the cost of further incentives is much higher.

The second panel shows the cost per unit of delta for a share of the company’s stock

with a ten-year restriction (matching the option’s expiration). The objective delta of a share

is one, so the cost per unit of (objective) delta is $100, substantially more than that for

the option. This is in accord with the usual sentiment that options are a cheap method of

aligning manager and shareholder interests. However, as seen in the third panel this may

no longer be the case when measured on a subjective basis. For very risk-averse managers

who already hold substantial stock, the objective-cost-subjective-benefit trade-off favors

13



Table 2: Subjective Deltas of Stock Options

X = 100 r = 5% q = 0% σ = 30% T − t = 10 v = 20%

Subjective delta
Subjective delta: as percent of market delta:

∆̂ ∆̂/∆

S = 100, T − t = 10 : Market ∆ of option = 0.842
γ γ

α 0 −2 −4 −6 0 −2 −4 −6
10% 0.802 0.726 0.656 0.591 95.3% 86.3% 77.9% 70.2%
25% 0.756 0.602 0.469 0.357 89.8% 71.5% 55.7% 42.4%
50% 0.711 0.477 0.291 0.158 84.4% 56.7% 34.5% 18.7%
75% 0.699 0.416 0.193 0.067 83.0% 49.4% 22.9% 7.9%

S = 85, T − t = 9 : Market ∆ of option = 0.779
γ γ

α 0 −2 −4 −6 0 −2 −4 −6
10% 0.743 0.673 0.608 0.548 95.3% 86.4% 78.1% 70.4%
25% 0.700 0.556 0.433 0.329 89.8% 71.3% 55.5% 42.2%
50% 0.654 0.433 0.261 0.141 83.9% 55.6% 33.5% 18.1%
75% 0.636 0.366 0.166 0.057 81.6% 47.0% 21.3% 7.3%

S = 100, T − t = 9 : Market ∆ of option = 0.829
γ γ

α 0 −2 −4 −6 0 −2 −4 −6
10% 0.792 0.723 0.658 0.597 95.6% 87.2% 79.3% 72.0%
25% 0.750 0.606 0.481 0.373 90.5% 73.1% 58.0% 45.0%
50% 0.707 0.486 0.306 0.174 85.3% 58.6% 36.9% 21.0%
75% 0.694 0.425 0.208 0.078 83.7% 51.2% 25.1% 9.4%

S = 115, T − t = 9 : Market ∆ of option = 0.865
γ γ

α 0 −2 −4 −6 0 −2 −4 −6
10% 0.829 0.760 0.695 0.634 95.8% 87.8% 80.3% 73.3%
25% 0.788 0.645 0.519 0.410 91.0% 74.5% 60.0% 47.4%
50% 0.747 0.529 0.346 0.205 86.3% 61.2% 39.9% 23.6%
75% 0.738 0.475 0.247 0.100 85.3% 54.9% 28.6% 11.5%
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Table 3: Cost per Unit of Subjective Delta

S = X = 100 r = 5% q = 0% σ = 30% T − t = 10 v = 20%

Cost per Unit of Objective Delta
for Option: 62.45

for Restricted Stock: 100

Incentive Effectiveness of Option
Relative to Restricted Share: 160.13%

Cost per Unit of Subjective Delta
for Option

γ
α 0 −2 −4 −6
10% 65.55 72.37 80.13 88.99
25% 69.53 87.38 112.09 147.14
50% 73.97 110.20 180.94 333.27
75% 75.21 126.35 272.15 788.37

Cost per Unit of Subjective Delta
for Restricted Share

γ
α 0 −2 −4 −6
10% 103.67 111.40 119.72 128.66
25% 107.79 125.23 145.50 169.05
50% 110.52 134.99 164.87 201.38
75% 107.79 125.23 145.50 169.05

Incentive Effectiveness of Option
Relative to Restricted Share

γ
α 0 −2 −4 −6
10% 158.14% 153.93% 149.41% 144.57%
25% 155.02% 143.32% 129.81% 114.89%
50% 149.41% 122.49% 91.12% 60.42%
75% 143.32% 99.12% 53.46% 21.44%
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using restricted shares. In extreme cases, using restricted stock can be almost five times

as cost-effective as options.

Smith and Stulz [1985] and others have recognized that one problem with using stock

is that its linear payoff may create an incentive for a risk-averse manager to undertake

risk reducing activities even at the expense of maximizing firm value. One advantage of

incentive options is they provide a convex compensation payoff that may eliminate this

problem. The measure of an option’s convexity is its gamma, Γ ≡ ∂2C/∂S2. Just as the
subjective delta differs from the objective delta, the subjective gamma will not be properly

measured by the objective gamma. The subjective gamma is

Γ̂ = e−q̂(T−t)
φ (H(X))
Sσ
√
T − t

. (29)

Unlike the delta, the Black-Scholes model of market prices can either under or overstate

the convexity provided by an incentive option. For our parameter values the subjective and

objective gamma are nearly identical at 0.0025. Increasing α or γ lowers the gamma and

vice versa.

4.3 Subjective Risk-Taking Effects

Incentive options have also been promoted as a means to overcome a manager’s hesitance

to take on risky projects. A manager’s personal risk aversion may make him reluctant to

adopt a risky project even if it is value maximizing from the company’s perspective. Since

options are worth more when the underlying asset is riskier, it is argued that incentive

options will counter this natural aversion.

This argument has merit even though tailoring the incentive option package to provide

the precise offset may not be easy. Grant too few options and the aversion of risky projects

remains. Grant too many options and the manager may have an incentive to over-invest in

risky projects even at the cost of reducing firm value. In addition, it is again the incentives

as measured by the subjective value which should matter, and the relation here is no longer

a simple one. Taking on a new project can change both the systematic and unsystematic

volatility. While only the total risk affects the market price of an option, each component

has a different effect on the subjective value. Furthermore, each manager involved in the

decision may have completely different subjective effects due to different risk-aversions

or α.

The sensitivity of the option price to volatility is called “vega”. We will measure both a

total-risk vega, and an unsystematic-risk vega, for both the market and subjective values.
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The total-risk vega (holding unsystematic risk constant) of the subjective value has the

same functional form as the vega in the Black-Scholes model

Λ̂σ |v ≡ ∂Ĉ
∂σ

∣∣∣∣∣
v
= Se−q̂(T−t)

√
T − tφ

(
H(X)

)
> 0 . (30)

The market-value vega is identical with q̂ and r̂ replaced by q and r . Both are positive;

however, the market-price model will overstate (understate) the volatility sensitivity for

sufficiently out-of-the-money (in-the-money) options.10 For near-the-money options either

case can be true. For example, for the parameters used in Tables 1 through 3, the true

vega (per percentage point change in σ ) is Λσ |v = 0.835. For α = 50% and γ = −2,
Λ̂σ |v = 0.873, and the subjective vega is larger than the objective vega for S > $81.87.
However, for α = 50% and γ = −6, Λ̂σ |v = 0.560, and the subjective vega is larger than the
objective vega only if S > $122.14.

Holding total risk constant, unsystematic risk has no effect on the market price. But

the subjective value is decreasing in unsystematic risk

Λv|σ ≡ ∂C
∂v

∣∣∣∣
σ
= 0

Λ̂v|σ ≡ ∂Ĉ
∂v

∣∣∣∣∣
σ
= ∂Ĉ

∂r̂
∂r̂
∂v

+ ∂Ĉ
∂q̂

∂q̂
∂v

=− 2(T − t)(1− γ)αv
[
αXe−r̂ (T−t)Φ

(
h(X)

)+ (1−α)Se−q̂(T−t)Φ
(
H(X)

)]
< 0 .

(31)

Increasing the unsystematic risk does not affect the market value of the option, but the

manager is now forced to bear more risk in his stock holding since it cannot be reduced

below the level α. This has a negative impact on the subjective value of the option.

It is perhaps more useful to examine the effects of systematic, β, and unsystematic

risks, v , holding the other constant. Since systematic risk has no direct effect on the

market or subjective values, its influence is only through changing the total risk. Increasing

systematic risk while holding unsystematic risk constant will increase total risk (assuming

β > 0) and, therefore, increase both the market and subjective values. In each case the vega

(Λ̂β|v ) is proportional to the standard vega in (30) with a proportionality factor of ∂σ/∂β.

Λβ|v = Λσ |v
βσ2

m
σ

Λ̂β|v = Λ̂σ |v
βσ2

m
σ

(32)

10Λσ |v ≷ Λ̂σ |v if S ≶ X exp
[
−
(
r − q − 1

2σ
2 +α[σ 2 − 1

2 (1− γ)v2]
)
(T − t)

]
.

17



Holding systematic risk constant and increasing unsystematic risk will increase total

risk and, therefore, increase the market value. Its effect on the subjective value is indeter-

minate since both total and unsystematic risk will increase.

Λv|β ≡ ∂C
∂v

∣∣∣∣
β
= ∂C

∂σ

∣∣∣∣
v

∂σ
∂v

= v
σ
Λσ |v > 0

Λ̂v|β ≡ ∂Ĉ
∂v

∣∣∣∣∣
β
= ∂Ĉ

∂σ

∣∣∣∣∣
v

∂σ
∂v

+ ∂Ĉ
∂v

∣∣∣∣∣
σ
= v

σ
Λ̂σ |v + Λ̂v|σ ≷ 0 .

(33)

Table 4 gives the various vega measures for an incentive option. As shown the market-

value total-risk vega can severely misrepresent the subjective-value vega — being either

too high or too low even for at-the-money options. Furthermore, unless the risk-aversion

is very small, the unsystematic-risk vegas are substantially larger in absolute value than

the total-risk vegas. Therefore, an increase in volatility is likely to have a negative impact

on the subjective value of incentive options unless the risk is largely systematic in nature.

For example, for a manager with a stock holding constraint of 50% and a risk-aversion of

5 (α = 0.5, γ = −4), the total-risk and unsystematic-risk vegas are Λσ |v = 0.764,Λv|σ =
−2.244. This means the total risk will have to increase almost three times as much as the

unsystematic risk for the manager’s options to even increase in subjective value. For the

option’s to provide actual risk-taking incentives to counter the manager’s risk-aversion,

the risk under consideration would have to be even more heavily weighted to systematic

risk.

5 Early Exercise of Incentive Options and the Objective Value

As shown in (24), the subjective value of an incentive option is determined as if the dividend

yield were larger and the interest rate smaller than they truly are. Because both larger

dividends and lower interest rates induce call option holders to exercise their options

sooner, incentive options will be optimally exercised in a fashion which appears to be

suboptimally early from a market perspective. In particular, even options on stocks not

paying dividends may be optimally exercised before expiration. In fact many incentive

options are exercised substantially before they expire. Often they are exercised as soon as

they vest.

The problem of valuing incentive options with “suboptimal” early exercise is often ap-

proximated in practice by simply using the expected time until exercise in place of the
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Table 4: Vegas of Incentive Options

Change in value for one percentage point change in voltility

S = X = 100 r = 5% q = 0% σ = 30% T − t = 10 v = 20%

Total-Risk Vega (Λσ|v and Λ̂σ|v)
for Market Value: Λσ |v = 0.764

γ
α 0 −2 −4 −6
10% 0.768 0.772 0.771 0.764
25% 0.783 0.797 0.775 0.721
50% 0.835 0.873 0.764 0.560
75% 0.926 1.006 0.733 0.358

Total-Risk Subjective and Objective
Vega Equality Point

Λσ |v ≷ Λ̂σ |v for S ≶ value below
γ

α 0 −2 −4 −6
10% 88.69 92.31 96.08 100.00
25% 79.85 88.25 97.53 107.79
50% 67.03 81.87 100.00 122.14
75% 56.27 75.96 102.53 138.40

Unsystematic-Risk Vega (Λv|σ and Λ̂v|σ)
for Market Value: Λv|σ = 0

γ
α 0 −2 −4 −6
10% −0.301 −0.819 −1.235 −1.559
25% −0.641 −1.548 −2.032 −2.187
50% −1.004 −2.121 −2.244 −1.766
75% −1.201 −2.425 −2.053 −1.059

Unsystematic-Risk Vega (Λv|β and Λ̂v|β)
for Market Value: Λv|β = 0.509

γ
α 0 −2 −4 −6
10% 0.211 −0.304 −0.721 −1.050
25% −0.119 −1.017 −1.515 −1.707
50% −0.447 −1.539 −1.735 −1.392
75% −0.584 −1.754 −1.564 −0.820
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actual time to expiration in whatever (European) option pricing model is being used. The

expected time until exercise is typically estimated from past experience.11

At best, this calculation could be used to determine the objective cost of the option

to the firm or shareholders. However, even using an unbiased estimate of the expected

time until exercise will not give a correct estimate of the option’s value. And this method

cannot be used to determine the subjective value since this will be smaller still due to the

extra discounting required to compensate for the lack of diversification.

A proper calculation must recognize that the decision to exercise is endogenous. To de-

termine the subjective value and the objective cost of the option, we must incorporate this

“early” exercise using American option pricing techniques just as we would to determine

the market value of an option on a stock actually paying dividends.

This “early” exercise has two effects. First since the exercise is optimal from a subjective

viewpoint, it increases the subjective value of the option above that previously calculated

using a European option pricing model. Second since the exercise is premature relative to

a market valuation, it reduces the objective cost of the option to below the market value

of a comparable freely traded option.

No formula is known for valuing American options with early exercise; however, a num-

ber of approximations are available. We will use the “barrier-derivative” approximation de-

veloped in Ingersoll [1998]. This method has been shown to be extremely accurate relative

to other commonly employed methods — particularly for long-term options. In addition

it can be readily modified to include vesting which restricts the exercise of the option for

some time after its initial grant. It can be used to determine all three values, the subjective

value, the market value, and the objective cost. In general all three of these values will

differ when early exercise is considered.

The value of an American option depends on the policy used to exercise it. The exercise

policy is characterized by a stock price at each point of time such that the call option is

exercised if the stock price is at or above that value. Let K(t) denote the exercise policy,
then the value of the option is the present value of Max[ST −X,0] if the stock price never
rises to K(t) plus the present value of K(t) − X received the first time the stock prices

reaches K(t). The policy that maximizes this present value is the optimal exercise policy,

and the present value under that policy is the value of the American option. This valuation

problem is a barrier option problem with an unknown barrier.

The barrier-derivative approximation method posits a parametric class of exercise poli-

cies represented by a barrier and computes the present value of exercising the option when
11This calculation generally reduces the computed value of the option; though it need not do so if a

European option pricing model has been employed and dividends are being paid.
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the stock price hits this barrier or when it expires in-the-money if it does not hit the barrier.

It then chooses the parameters that maximize the present value. This method determines

an approximation which is a lower bound to the actual value.12

We solve this problem using the class of constant exercise policies. We choose constant

policies for three reasons. (i) The valuation can be accomplished mostly with analytic

techniques, and, as shown in Ingersoll [1998], the best “constant” exercise policy gives

a value very close to the true value. (Errors are approximately 0.1% to 0.2% for ten-year

options.) (ii) We are not actually looking for the optimal policy, but a policy like one that a

typical manager actually adopts. (iii) This class is easily modified to allow for vesting.

The approximate value of the option computed for the constant exercise policy is

C 4 C∗barr = Max
k

Cbarr(S, t;T ;k)

where

Cbarr ≡ S
(
S, t;T ; {ST > X}&{Smax < k})−XD

(
S, t;T ; {ST > X}&{Smax < k})

+ (k−X)T(S, t;T ;k) .

(34)

S(S, t;T ;E) and D(S, t;T ;E) are a digital share and a digital option, respectively. They

are the present values at time t of receiving ST and $1 at time T if the event E occurs.

T(S, t;T ;k) is a first-touch digital. It is the present value at time t of receiving $1 the first
time (before expiration at T ) that the stock price reaches the barrier k. If the stock price

never reaches the barrier and is in-the-money at expiration, then the option is exercised

for ST − X. The present value of this exercise is given by the first two terms. If the first

touch at the barrier occurs before the option expires, then it is immediately exercised for

k−X. The present value of this is given by the last term.

As shown in Ingersoll [2000], the formulas for these three digital contracts are

S
(
S, t;T ; {ST > X}&{Smax < k})
= Se−q(T−t)

{
Φ
(
H(X)

)− Φ(H(k)
)− (k/S)2(λ+1) [Φ(H(XS2/k2)

)− Φ(H(S2/k)
)]}

12If the class includes the optimal exercise policy, then the value given will be correct and not an approxi-
mation. If it does not, then the exercise policy will be suboptimal and the resulting value will be lower than
the true value. Even if the policy is apparently far from optimal in appearance, the resulting value can be
very close to the correct value as shown in Ingersoll [1998].
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D
(
S, t;T ; {ST > X}&{Smax < k})
= e−r(T−t)

(
Φ
(
h(X)

)− Φ(h(k))− (k/S)2λ [Φ(h(XS2/k2))− Φ(h(S2/k))])
T(S, t;T ;k) = (k/S)λ−κΦ(Hκ(k)

)+ (k/S)λ+κΦ(hκ(k)
)

where Hκ(z) ≡ ,n(S/z)+ κσ2(T − t)
σ
√
T − t

hκ(z) ≡ Hκ(z)− 2κσ
√
T − t

λ ≡ r̂ − q̂
σ2

− 1
2

κ ≡
√
λ2 + 2r̂ /σ2 .

(35)

and H(z) and h(z) are defined in (27).

The market value, the subjective value, and the objective value can all be computed

with this method. Using the actual risk-neutral stochastic process in (34) and (35) will give

Cbarr(S, t;k∗), the value of the option if it were freely marketable. Using the risk-neutral

process, dS/S = (r̂−q̂)dt+σ dω, will give the subjective value of the option, Ĉbarr(S, t; k̂∗).
The value-maximizing exercise choices for the actual and subjective processes will also

differ, k∗ �= k̂∗.13 Finally, the objective cost of the option is determined using the subjective

valuemaximizing policy with the actual risk-neutral process, Cbarr(S, t; k̂∗). This is the cost
that the company perceives in the option under the exercise policy actually adopted by the

manager.

Table 5 shows the objective and subjective values of incentive options under various

conditions at issuance and one year later. The “value of marketed option” and the “Euro-

pean objective value of option” at the top of each panel are values equivalent to the market

values in the Table 1. The exact numbers differ because the dividend yield is now 1%. The

European objective value is a bit below the marketed value since it does not allow optimal

early exercise. The “European subjective” values in the top row of each panel are equiva-

lent to the subjective values in the Table 1. As before, the subjective value is less than the

objective value. The differences increase with an increase in the stock-holding restriction,

α, or risk aversion, 1− γ.

The true subjective value to the manager is given in the second row of each panel.

This is the value to the manager if he follows the optimal early exercise policy which is

approximated by the constant policy (k̂∗ on the last line). This value is always larger than

the European subjective value since the manager can always choose not to exercise. For

cases when the European subjective value is very low (tight restriction or high risk aversion),

the option is usually exercised quite a bit earlier than would an equivalent marketed option,

and the true subjective value is substantially larger than the European subjective value.

For example, for γ = −6, α = 75%, and S = 115, the true subjective value is more than six

13As with the true optimal policies, the option is exercised sooner under the subjective process, k∗ < k̂∗.
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Table 5: Objective and Subjective Values of Stock Options with Early Exercise

X = 100 r = 5% q = 1% σ = 30% v = 20%

S = 100, T − t = 10 :
Value of marketed option = 44.83 (k∗ = 666)
European objective value of option = 44.68

α = 25% α = 50% α = 75%
γ = −2 −4 −6 −2 −4 −6 −2 −4 −6

Eu. Subj. 28.67 20.73 14.62 20.29 10.57 4.91 15.75 5.78 1.59
True Subj. 31.52 25.84 21.59 25.11 18.22 13.74 21.33 13.98 9.81
Eu. (T = E[t̃k]) 41.72 39.62 37.62 39.33 35.65 32.29 37.49 32.48 28.22
True Obj. 42.05 38.94 35.74 38.48 32.56 27.29 35.53 27.58 21.39

E[t̃k] 8.53 7.61 6.81 7.49 6.09 4.99 6.76 5.05 3.85
k̂∗ (True Subj.) 255 207 181 202 164 145 180 146 131

S = 85, T − t = 9 :
Value of marketed option = 32.12 (k∗ = 647)
European objective value of option = 32.07

α = 25% α = 50% α = 75%
γ = −2 −4 −6 −2 −4 −6 −2 −4 −6

Eu. Subj. 20.55 14.85 10.49 14.33 7.43 3.46 10.82 3.93 1.09
True Subj. 22.01 17.58 14.22 16.91 11.48 7.93 13.83 8.08 4.83
Eu. (T = E[t̃k]) 30.31 29.04 27.86 28.84 26.72 24.88 27.72 24.95 22.73
True Obj. 30.40 28.38 26.29 28.04 24.14 20.59 26.03 20.73 16.46

E[t̃k] 8.14 7.56 7.06 7.48 6.59 5.88 7.00 5.91 5.12
k̂∗ (True Subj.) 245 200 177 195 161 144 175 144 130

S = 100, T − t = 9 :
Value of marketed option = 42.82 (k∗ = 654)
European objective value of option = 42.72

α = 25% α = 50% α = 75%
γ = −2 −4 −6 −2 −4 −6 −2 −4 −6

Eu. Subj. 28.13 20.75 14.97 20.23 10.98 5.37 15.81 6.18 1.87
True Subj. 30.50 25.18 21.15 24.44 17.91 13.61 20.81 13.82 9.77
Eu. (T = E[t̃k]) 39.96 37.97 36.09 37.68 34.22 31.07 35.91 31.23 27.23
True Obj. 40.33 37.50 34.58 37.06 31.62 26.71 34.31 26.95 21.11

E[t̃k] 7.75 6.95 6.25 6.84 5.61 4.63 6.19 4.68 3.59
k̂∗ (True Subj.) 249 203 179 199 163 145 177 145 130

S = 115, T − t = 9 :
Value of marketed option = 54.17 (k∗ = 660)
European objective value of option = 54.01

α = 25% α = 50% α = 75%
γ = −2 −4 −6 −2 −4 −6 −2 −4 −6

Eu. Subj. 36.37 27.27 20.02 26.82 15.10 7.70 21.54 8.97 2.90
True Subj. 39.89 33.89 29.43 33.12 25.96 21.46 29.17 21.70 17.79
Eu. (T = E[t̃k]) 50.08 47.23 44.43 46.83 41.59 36.51 44.24 36.82 29.85
True Obj. 50.82 47.08 43.23 46.53 39.40 32.99 42.98 33.36 25.80

E[t̃k] 7.31 6.26 5.34 6.12 4.52 3.24 5.29 3.31 1.91
k̂∗ (True Subj.) 253 206 181 202 164 145 180 146 131
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times as large as the European subjective value — a difference which is more than 13% of

the stock price.

The third row of each panel shows a value commonly calculated in practice. A European

pricing model is used with a time to maturity set equal to the expected time until the

option is exercised. These times are usually estimated based on past experience. Here

we compute the risk-neutral expected time until the optimal (constant) exercise barrier is

reached. Since the barriers depend on the restriction and the risk aversion, the expected

time to exercise also differs with these parameters. The optimal barriers and the expected

time until exercise are given in the sixth and fifth row of each panel.14

The fourth value in each panel is the true objective cost. This is the present value to

the company shareholders of the future payout. As they do not perceive the “discount” in

value due to a lack of diversification, it is computed using the optimal subjective exercise

policy with the objective risk-neutral evolution. This value is less than the marketed value

of the option because it recognizes that the manager follows an exercise policy which is

suboptimal in objective terms. Nevertheless, it is still substantially in excess of the subjec-

tive value. The table shows that the commonly used practice of estimating the value with

an adjusted expiration date does reasonably well only when the stock-holding restriction

and relative risk aversion are small.

This table may also help explain an empirical anomaly cited in the literature, namely

that CEOs seem to exercise their options earlier than do other executives. André, Boyer, and

Gagné [2001] report that “non-CEO executives seem to exercise their stock options about a

calendar year than the CEO” and that they are “more likely to exercise when a new CEO has

been appointed.” The explanation they give a based on a tournament model. However, the

model here may also supply an answer. If CEOs hold a greater fraction of their wealth in

the company stock (have a higher α), then we should expect them to exercise earlier. For

example, if a CEO has 75% of his wealth in a company’s stock and another executive has
14The expected time until the barrier is hit can be easily determined from the first-touch digital’s value.

Let ψ(tk) be the probability density of the fist-passage time to k, then the first-touch digital’s value is the
expected discounted value of $1 where the expectation is over the time until payment

T(S, t;k) =
∫ T

t
e−r(tk−t)ψ(tk)dtk .

With a suitable reinterpretation of the parameters, this will be recognized as themoment generating function
of the distribution. The expected value can be computed in the usual fashion

E[t̃k] =(T − t)
[
Φ
(− h(k)

)− (k/S)2λΦ(− h(S2/k)
)]+ ,n(k/S)

λσ 2

[
Φ
(
h(k)

)− (k/S)2λΦ(− h(S2/k)
)]

−
√
T − t
λσ

[
φ
(
h(k)

)− (k/S)2λφ(− h(S2/k)
)]

.
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Table 6: Objective and Subjective Deltas of Stock Options with Early Exercise

X = 100 r = 5% q = 1% σ = 30% v = 20%

S = 100, T − t = 10 :
Delta of marketed option = 0.74
European objective delta of option = 0.74

α = 25% α = 50% α = 75%
γ = −2 −4 −6 −2 −4 −6 −2 −4 −6

Eu. Subj. 0.52 0.40 0.30 0.40 0.24 0.13 0.35 0.15 0.05
True Subj. 0.60 0.54 0.51 0.54 0.48 0.45 0.51 0.45 0.42
Eu. (T = E[t̃K]) 0.73 0.73 0.72 0.72 0.71 0.70 0.72 0.70 0.68
True Obj. 0.68 0.62 0.56 0.62 0.51 0.41 0.56 0.42 0.30

S = 85, T − t = 9 :
Delta of marketed option = 0.69
European objective delta of option = 0.68

α = 25% α = 50% α = 75%
γ = −2 −4 −6 −2 −4 −6 −2 −4 −6

Eu. Subj. 0.48 0.37 0.28 0.37 0.22 0.11 0.31 0.13 0.04
True Subj. 0.53 0.47 0.42 0.46 0.38 0.31 0.42 0.32 0.25
Eu. (T = E[t̃K]) 0.67 0.67 0.66 0.67 0.65 0.64 0.66 0.64 0.62
True Obj. 0.64 0.59 0.54 0.58 0.49 0.40 0.54 0.41 0.31

S = 100, T − t = 9 :
Delta of marketed option = 0.74
European objective delta of option = 0.73

α = 25% α = 50% α = 75%
γ = −2 −4 −6 −2 −4 −6 −2 −4 −6

Eu. Subj. 0.53 0.42 0.32 0.42 0.26 0.14 0.36 0.17 0.06
True Subj. 0.60 0.54 0.51 0.54 0.48 0.45 0.51 0.45 0.42
Eu. (T = E[t̃K]) 0.73 0.72 0.71 0.72 0.71 0.70 0.71 0.70 0.68
True Obj. 0.68 0.63 0.57 0.62 0.51 0.41 0.57 0.42 0.31

S = 115, T − t = 9 :
Delta of marketed option = 0.78
European objective delta of option = 0.77

α = 25% α = 50% α = 75%
γ = −2 −4 −6 −2 −4 −6 −2 −4 −6

Eu. Subj. 0.57 0.45 0.35 0.46 0.29 0.17 0.40 0.20 0.08
True Subj. 0.65 0.62 0.60 0.62 0.59 0.60 0.60 0.60 0.66
Eu. (T = E[t̃K]) 0.77 0.77 0.76 0.76 0.76 0.75 0.76 0.75 0.75
True Obj. 0.71 0.65 0.59 0.64 0.53 0.42 0.59 0.43 0.31
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Table 7: Cost per Unit of Subjective Delta (with Early Exercise)

S = X = 100 T − t = 10 r = 5% q = 1% σ = 30% v = 20%

Cost per Unit of Market Delta: 60.38

α = 25% α = 50% α = 75%
γ = −2 −4 −6 −2 −4 −6 −2 −4 −6

Eu. model 85.99 111.54 148.26 110.33 186.13 353.60 129.05 291.13 888.91
True model 70.25 71.50 70.50 71.02 67.61 61.09 69.33 61.24 50.82
T = E[t̃K] 57.06 54.61 52.27 54.27 49.98 46.05 52.12 46.28 41.24

only 50%, then we would expect to see the CEO exercise 1.4, 1.0 or 1.1 years earlier than the

other executive if they both had the same risk aversion (γ = −2,−4, and −6, respectively).
Furthermore, we would not expect them to wait longer than a newly appointed CEO who

would likely have a much smaller stock holding.

The deltas of the option calculated with the same models are given in Table 6. As

with the values, we see that ignoring the early exercise of incentive options can vastly

understate their deltas. For realistic parameter values, the true subjective deltas can be

many times larger than those computed with a European model. Using the expiration-

adjusted European option pricingmodel is reasonably accurate only for small stock holding

restrictions and risk aversions. In other cases it vastly overstates the subjective deltas as

do the European and market models.

Table 7 shows the cost per unit delta for the option when first issued calculated with

various models. The parameters are the same as used in Tables 5 and 6. The “market”

cost per unit “market” delta is $60.38. Using a European option pricing model ignoring

early exercise gives an objective cost per unit of subjective delta that ranges from $85.99

to $888.91 for the parameters considered. The apparent cost is higher for a larger stock

holding restriction or greater risk aversion because the subjective delta is lower in those

cases.

The true objective cost per unit of subjective delta is substantially lower— ranging from

$50.82 to $70.25, because the true subjective delta of this option is substantially above the

European-model subjective value. And an increase in the stock holding restriction or risk

aversion can either increase or decrease the cost per unit of subjective delta. Furthermore

because the objective cost is affected as well as the subjective delta, the market-based

model can either over or under estimate the true effectiveness of options in providing

incentives.
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6 Restrictions on Exercising: Vesting and Termination

Two features of incentive options that affect early exercise are vesting and termination

of employment. An incentive option cannot be exercised until it vests and can only be

exercised while the manager is employed or during any post-employment grace period for

exercise. The grace period is commonly one to three months, but longer periods are also

seen. Some incentive options continue to be exercisable up to their original expiration

date. This is most commonly true in the case of retirement. Generally, if an employee is

terminated before his options vest, he loses al rights to them although there have been

several court cases which have found the opposite. In this section we examine the effects

of vesting and termination. Since these issues have been considered before, we confine

our attention to how they interact with the subjective valuation models developed here.

6.1 Vesting

There are a number of different schemes used to vest options. The most common are cliff

vesting, straight vesting, stepped vesting, and performance vesting. With cliff vesting, all

options granted on a given date vest after a set period of time, usually two to four years.

With straight and stepped vesting, options granted in a given year vest gradually over time.

For straight vesting the same proportion vests each year. For stepped vesting a different

proportion vests each year. For example, 25% of the options would vest after each year

for four year with straight vesting and 10%, 20%, 30% and 40% might vest each year with

stepped vesting. Performance vesting links the vesting of the options to meeting certain

targets in sales, income, etc. Many options also vest sooner or even immediately in case of

a sale, IPO, merger, or other similar event for the firm.

Vesting clearly reduces the subjective value of the option since it restricts when exercise

can occur. For the same reason, it reduces the “market” value of the option — the value it

would have if marketable. The market value is affected less than the subjective value since

incentive options are often exercised much earlier than marketable options would be an

are therefore more apt to run afoul of the vesting rule. The objective cost of the option can

either increase or decrease. In particular, if the manager wishes to exercise his option very

early under the optimal subjective exercise policy, vesting may force him to delay doing

so and increase the objective cost of the option.

To determine the value of an optionwith cliff vesting, we solve the barrier problemusing

the class of policies which preclude exercise prior to vesting at time T ◦, and are constant
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after the option vests. That is, for a constant policy approximation, exercise occurs when

the stock price first reaches K(t) for15

K(t) =
∞ t ≤ T ◦ ,
k t > T ◦ .

(36)

The approximate value of the option computed for the constant exercise policy in (36)

is
C 4 C∗barr-v = Max

k
Cbarr-v(S, t;T ;k)

where

Cbarr-v ≡S
(
S, t;T ◦; {ST ◦ > k}) −XD

(
S, t;T ◦; {ST ◦ > k})

+ S(S, t;T ; {ST > X}&{Smax(T ◦,T ) < k})
−XD(S, t;T ; {ST > X}&{Smax(T ◦,T ) < k})

+ (k−X)T
(
S, t;T ;k& ST ◦ < k

)
.

(37)

If the stock price is above k when the option vests at time T ◦, then it is exercised

immediately for ST ◦ − X. The present value of this exercise is given in the digitals in the

first two terms. These digitals mature at time T ◦. If the stock price never reaches the

barrier and is in-the-money at expiration, then the option is exercised for ST − X. The

present value of this exercise is given by the digitals in the second two terms. These

digitals mature at time T ◦. If the first touch at the barrier occurs before the option expires,
then it is immediately exercised for k − X. The present value of this is given by the last

term.
15K(T ◦) = ∞ rather than k since exercise at t = T ◦ is handled directly with the first two terms in (37)

rather than with the barrier to properly account for the exercised value when ST◦ > k.

28



The formulas for the digitals used here are

S
(·;{ST > X}&{Smax(T ◦,T ) < k})
=Se−q(T−t)

{
Φ2
(−H(k),−H◦(k), ρ

)− Φ2(−H(X),−H◦(k), ρ
)

− (k/S)2(λ+1) [Φ2(−H(S2/k),H◦(S2/k),−ρ)− Φ2(−H(XS2/k2),H◦(S2/k),−ρ)] }
D
(·;{ST > X}&{Smax(T ◦,T ) < k})
=e−r(T−t)

{
Φ2
(− h(k),−h◦(k), ρ)− Φ2(− h(X),−h◦(k), ρ)

− (k/S)2λ [Φ2(− h(S2/k),h◦(S2/k),−ρ)− Φ2(− h(XS2/k2), h◦(S2/k),−ρ)] }
T
(·;k& ST ◦ < k

) = (k/S)λ−κΦ2(−Hκ(k),H◦
κ(k),−ρ)+

(
k/S

)λ+κΦ2(−hκ(k),h◦κ(k),−ρ)

where ρ ≡
√
(T ◦ − t)/(T − t) ,

(38)

Φ2(·) is the standard bivariate cumulative normal function, and the other quantities are

defined in (27) and (35). H and h functions with a ◦ superscript are evaluated with an

expiration date of T ◦.

Table 8 compares the values of options which vest immediately and after one, two,

three, and four years. The values of straight and stepped vesting options can be computed

as equal or appropriately weighted averages of the values of the cliff-vested options given

here.

Obviously, vesting has no effect on the European objective or subjective values of the

option. It has very little effect (less than one cent) on the market value since, for these

parameter values, it is very unlikely it would be optimal to exercise the option before it

vests. If the dividend yield were higher, the volatility lower, or the maximum vesting period

longer, then vesting would affect the market value more.

The big effect of vesting is on the true subjective and objective values. Vesting must

decrease the subjective value of the option, and, as seen in the table, the magnitude can

be significant. For a manager with a stock holding restriction of 50% and a relative risk

aversion of 5, vesting after four years reduces the subjective value of the option by more

than 10%. For a manager with α = 75% and γ = −6, the reduction in value is more than

43%. Straight or stepped vesting would have a proportionately smaller effect. On the other

hand, for the parameters considered here, vesting always increases the objective cost of

the option. For example for α = 50% and γ = −4, and α = 75% and γ = −6, four-year
vesting increases the objective cost by 16% and 59%, respectively.
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Table 8: Objective and Subjective Values of Stock Options with Vesting

S = X = 100 T − t = 10 r = 5% q = 1% σ = 30% v = 20%

T ◦ − t = 0 :
α = 25% α = 50% α = 75%

γ = −2 −4 −6 −2 −4 −6 −2 −4 −6
True Subj. 31.52 25.84 21.59 25.11 18.22 13.74 21.33 13.98 9.81
True Obj. 42.05 38.94 35.74 38.48 32.56 27.29 35.53 27.58 21.39

T ◦ − t = 1 :
α = 25% α = 50% α = 75%

γ = −2 −4 −6 −2 −4 −6 −2 −4 −6
True Subj. 31.52 25.84 21.57 25.11 18.16 13.48 21.32 13.77 9.12
True Obj. 42.05 38.96 35.88 38.51 32.96 28.57 35.65 28.77 24.31

T ◦ − t = 2 :
α = 25% α = 50% α = 75%

γ = −2 −4 −6 −2 −4 −6 −2 −4 −6
True Subj. 31.51 25.78 21.36 25.05 17.78 12.65 21.17 13.06 7.84
True Obj. 42.09 39.27 36.69 38.86 34.38 31.13 36.45 31.25 28.06

T ◦ − t = 3 :
α = 25% α = 50% α = 75%

γ = −2 −4 −6 −2 −4 −6 −2 −4 −6
True Subj. 31.47 25.57 20.91 24.85 17.15 11.62 20.85 12.16 6.62
True Obj. 42.26 39.88 37.84 39.53 36.06 33.62 37.61 33.69 31.30

T ◦ − t = 4 :
α = 25% α = 50% α = 75%

γ = −2 −4 −6 −2 −4 −6 −2 −4 −6
True Subj. 31.34 25.21 20.29 24.51 16.37 10.55 20.39 11.21 5.54
True Obj. 42.54 40.63 39.07 40.34 37.70 35.88 38.84 35.91 34.12

For all vesting periods:
α = 25% α = 50% α = 75%

γ = −2 −4 −6 −2 −4 −6 −2 −4 −6
Eu. Subj. 28.67 20.73 14.62 20.29 10.57 4.91 15.75 5.78 1.59
Eu. (T = E[t̃k]) 41.72 39.62 37.62 39.33 35.65 32.29 37.49 32.48 28.22†
Eu. Obj. 44.68 for all parameter values
Mkt. Value 44.83 for all parameter values

† For γ = −6 andα = 75%, the expected time until the optimal subjective barrier
is hit is 3.85 years. For the option which vests after four years, a maturity of
four should be used instead of 3.85. This gives a value of 28.80 in place of
28.22.
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Table 9 compares the subjective deltas of options which vest immediately and after

one, two, three, and four years. It also gives the objective cost per unit of subjective delta

for these options.

The effects on the deltas are similar to those on the subjective value. In particular, the

subjective delta is a decreasing function of the duration of the vesting period. So since the

objective cost is generally increased by vesting and increased more with a longer vesting

period, vesting significantly increases the cost per unit of subjective delta.

As shown in the table, the delta can be as much as four times smaller than the market

delta for reasonable parameters and the cost per unit delta can be as great as three times

as large as the cost measured using market data.

6.2 Termination of Employment

To determine the effects of early exercise due to termination of employment, we must alter

the original pricing equation. Let π(t) denote the risk-neutral probability that the option
must be exercised at time t due to termination, and let π(T) = 1 − ∫ T−0 π(s)ds denote

the probability that the option expires before employment termination. When termination

occurs the option must be exercised for S −X or discarded if it is out of the money. If the

option has not yet vested, then (with a few exceptions) it cannot be exercised.

The pricing equation as altered to account for termination is16

0 = 1
2σ

2S2FSS + (r̂ − q̂)FS − r̂ F + Ft +π(t) [Ψ(S, t)− F]

where Ψ(S, t) =
Max(S −X,0) if t ≥ T ◦,
0 if t < T ◦.

(39)

This equation is identical to (24) except for the final term. This term captures the expected

change in the value of the option from its “alive” value, F , to its “terminated” value, Ψ(·).
This change occurs at time t with probability π(t).

If the probability of termination is independent of the stock price process, then the

subjective and objective values of the option can be determined as a probability-weighted

average of the values of options with different maturities.

Cw/term. 4 Max
k

[∫ T

T ◦
π(τ)Cbarr-v(S, t;τ ;k)dτ

]
(40)

16If there is an exercising grace period of duration τ after termination during which the option must be
exercised, then π(t) is equal to the probability of termination occurring at time t − τ , and the conditions
for Ψ(S, t) are t ≷ T ◦ + τ . Of course, the option can also be exercised voluntarily during the grace interval.
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Table 9: Subjective Deltas of Stock Options with Vesting

S = X = 100 T − t = 10 r = 5% q = 1% σ = 30% v = 20%

Subjective Delta

Delta of Marketable option = 0.74†

α = 25% α = 50% α = 75%
γ = −2 −4 −6 −2 −4 −6 −2 −4 −6

T ◦ − t = 0 0.60 0.54 0.51 0.54 0.48 0.45 0.51 0.45 0.42
T ◦ − t = 1 0.60 0.54 0.50 0.54 0.48 0.42 0.51 0.43 0.36
T ◦ − t = 2 0.60 0.54 0.49 0.54 0.45 0.37 0.50 0.39 0.28
T ◦ − t = 3 0.59 0.53 0.47 0.53 0.42 0.33 0.48 0.35 0.23
T ◦ − t = 4 0.59 0.51 0.45 0.51 0.39 0.29 0.47 0.31 0.18

Objective Cost per Unit of Subjective Delta

Market Cost per Unit of Delta on Marketable option = 60.38†

α = 25% α = 50% α = 75%
γ = −2 −4 −6 −2 −4 −6 −2 −4 −6

T ◦ − t = 0 70.25 71.50 70.50 71.02 67.61 61.09 69.33 61.24 50.82
T ◦ − t = 1 70.25 71.57 71.07 71.10 69.34 67.69 69.77 66.97 68.30
T ◦ − t = 2 70.38 72.80 74.75 72.41 76.11 83.20 72.81 80.55 99.06
T ◦ − t = 3 71.03 75.46 80.56 75.12 85.21 102.15 77.57 96.80 137.57
T ◦ − t = 4 72.20 79.06 87.60 78.74 95.67 124.08 83.25 115.11 185.21

† The market value and delta of the option are affected by vesting; however, the
differences in value are less than 0.01.
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where Cbarr-v(·) is defined in (37). Note that a single exercise policy must be chosen, not one

for each expiration date; i.e., the integral is maximized and not each integrand separately.

Of course, the integral may be interpreted as a sum when appropriate.

The qualitative effect of termination can be seen in the solution provided above. The

possibility of termination is similar to reducing the time to expiration of an option. This, of

course, reduces the various values and means that early exercise is even more likely since

the “penalty” for exercising (surrendering the remaining option value) is now less severe.

Table 10 shows the subjective and objective values of incentive options for a manager

with a 5% probability of termination each year. This possibility of termination reduces the

market value of a ten-year option by 19% from $44.83 to $36.30 because the option might

have to be exercised before it is optimal to do so — or even discarded before expiration.

The percentage effects on the objective and subjective value of the option are a bit less

because the incentive option will be exercised earlier than would an equivalent marketed

option so termination-forced exercise is less likely to occur. For high stock holding re-

strictions or high risk aversion, the termination effect is smallest. Again the reason is that

under these conditions the optimal exercise occurs earlier.

For options that vest after four years, the termination possibility has a larger effect on

all values. If termination occurs before the option has vested, then it cannot be exercised

even if it is in the money. This loss reduces the value of the marketed option to 74.5% of

the no-termination value. The subjective and objective values are also reduced more than

for an option that vests immediately but less than is the market value.

7 Indexed Incentive Options

In the next two sections we illustrate how the methods developed in this paper can be used

to analyze incentive option problems. The examples we choose are indexed options and

option repricing. Indexing incentive options has many advocates who argue it reduces the

cost of incentive options and does not reward managers for market-based gains in value or,

conversely, penalize them for market-based losses in value. Option repricing has become

prevalent in recent years and has drawn much criticism.

An indexed option is one whose strike price rises or falls along with some portfolio

or index. The usual choices for the portfolio are the market or some industry or sector

portfolio. Let the evolution of the index be

dI/I =(µI − qI)dt + σI dωI

=(µI − qI)dt + βIσm dωm +ψv dω+ υdωε .
(41)
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Table 10: Objective and Subjective Values of Stock Options with Employee Termination

S = X = 100 T − t = 10 r = 5% q = 1% σ = 30% v = 20%

Termination Probability 5% each year

Immediate Vesting (T ◦ − t = 0)

Value of Marketable Option = 36.30
(81.0% of No-Termination Value)

α = 25% α = 50% α = 75%
γ = −2 −4 −6 −2 −4 −6 −2 −4 −6

True Subj. 26.30 21.92 18.59 21.27 15.85 12.26 18.21 12.40 8.98
True Obj. 34.37 32.08 29.68 31.72 27.25 23.23 29.45 23.41 18.65

Percent of No-Termination Value

α = 25% α = 50% α = 75%
γ = −2 −4 −6 −2 −4 −6 −2 −4 −6

True Subj. 83.4% 84.8% 86.1% 84.7% 87.0% 89.3% 85.4% 88.7% 91.5%
True Obj. 81.7% 82.4% 83.1% 82.4% 83.7% 85.1% 82.9% 84.9% 87.2%

Vesting after Four Years (T ◦ − t = 4)

Value of Marketable Option =33.40
(74.5% of No-Termination Value)

α = 25% α = 50% α = 75%
γ = −2 −4 −6 −2 −4 −6 −2 −4 −6

True Subj. 23.90 19.37 15.66 18.81 12.65 8.19 15.65 8.67 4.32
True Obj. 32.06 30.96 30.02 30.78 29.15 27.97 29.86 27.98 26.79

Percent of No-Termination Value

α = 25% α = 50% α = 75%
γ = −2 −4 −6 −2 −4 −6 −2 −4 −6

True Subj. 76.3% 76.8% 77.2% 76.7% 77.3% 77.7% 76.8% 77.3% 77.9%
True Obj. 75.4% 76.2% 76.8% 76.3% 77.3% 78.0% 76.9% 77.9% 78.5%
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If the strike price is linked to the total return on the index, then qI = 0 regardless of any

dividends actually paid on the index.

The second line decomposes the risk of the index into itsmarket risk, the risk correlated

with the nonsystematic risk of the stock, and the risk uncorrelated with both. The three

Wiener processes in the second line are independent, andψ is the regression coefficient of

the index on the nonsystematic risk of the stock; i.e.,ψ ≡ Cov[dI/I, dS/S − βdM/M]/v2.

If the index is the market, then ψ = υ = 0 and the index has no nonsystematic risk

correlated or uncorrelated with the stock.

The two-factor subjective pricing equation equivalent to (24) for derivatives on the stock

and the index can be derived as before. By Itô’s lemma

0 =E[d(ΘF(S, I, t))]
=E

[
ΘFS dS +ΘFI dI +ΘFt dt + 1

2ΘFSSdS
2 +ΘFSI dS dI + 1

2ΘFIIdI
2

+ F dΘ+ dΘ FS dS + dΘ FI dI
]

=Θ
[
(µ − q)SFS + (µI − qI)IFI + Ft + 1

2σ
2S2FSS + ρσσISIFSI + 1

2σ
2
I I

2FII

− [r − (1− γ)α2v2]F − [β(µm − r)+ (1− γ)αv2]SFS

− [βI(µm − r)+ (1− γ)αψv2]IFI
]
dt .

(42)

So the two-factor subjective partial differential pricing equation is

0 = 1
2
σ2S2FSS + ρσσISIFSI + 1

2
σ2
I I

2FII + (r̂ − q̂)SFS + (r̂ − q̂I)IFI − r̂ F + Ft

where q̂I ≡ qI + (1− γ)α(ψ−α)v2
(43)

and the other variables are as defined in (24).17

The most common type of indexed option is the out-performance option with a payoff

when exercised at time t of Max[St−XIt/I0,0]. UsingMargrabe’s [1978] option-to-exchange
formula, the European subjective value of an out-performance option is

Ĉ(S, I, t) = C
(
Se−q̂(T−t), t;T , IX/I0, q̂I ,Υ)

where Υ2 ≡ σ2 − 2ρσσI + σ2
I = (β− βI)2σ2

m + v2(1−ψ)2 + υ2 .
(44)

17The correlation coefficient, ρ, is the total correlation between the stock and index, ρ ≡
Cov[dS/S,dI/I]

/
(σσI) = (βIβσ 2

m + ψv2)
/
(σσI). Note that the index dividend adjustment here shows

the general case. For the stock itself, ψ = 1, and for the market or any other asset uncorrelated with the
stock’s residual risk, ψ = 0, as in the interest rate adjustment.
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However, as with regular options, the out-performance incentive option will generally

be exercised before it matures so an American model must be used. The true subjective

and objective values can be determined most easily by a change of numeraire. In the

index numeraire, the out-performance option’s payoff upon exercise is Max[st−x,0]where
st ≡ St/It is the price of the stock in the index numeraire, and x = X/I0 is the indexed

strike price. Therefore, the out-performance option can be priced as a simple American

option with a strike price of x using an index-numeraire risk-neutral subjective evolution

of the stock of ds/s = (q̂I − q̂)dt + Υ dωs. All of the other features which we have already

examined, such as vesting, termination, etc., can be handled in this fashion as well for the

out-performance option.

If the index used is themarket portfolio, then υ = 0. In this common case, most indexed

options will be less valuable than unindexed options both objectively and subjectively.

Sufficient conditions for this to hold are qm < r and β > 1
2 .
18

Table 11 shows the objective and subjective values of market-indexed out-performance

incentive options at issuance. For these parameter values, the market value of an indexed

option is 55% as large as the market value of a regular option. The subjective and objective

values are more affected. The subjective value of an index option has a value ranging

from 37% to 49% of the regular option. The objective values range from 40% to 53% of

that of a regular option. This discrepancy is due to the different effects of systematic and

nonsystematic risk.

Risk increases the value of an option. For the market price, the type of risk is irrele-

vant. For the subjective and objective values, nonsystematic risk increases the expected

payoff but simultaneously increases the effective discount rate. For the regular option,

both systematic and nonsystematic risk increase the volatility and expected payoff of the

option. For the indexed option, the systematic risk has little effect on the payoff and only

the nonsystematic risk matters.19 Therefore, virtually all of the risk giving rise to the in-

dexed option’s payoff is also subject to the discount-rate-increasing reduction in present

value.

8 Repricing of Incentive Options

Repricing involves the lowering of the strike price on incentive options after the stock

price has fallen. This is accomplished either by simply altering the strike price on the

18Call option values are increasing in the interest rate and volatility. If β > 1
2 , then Υ < σ , and qm is used

in place of the interest rate. For subjective valuation q̂m < r if qm < r .
19The systematic risk affects the payoff of an indexed option only through the small tracking error due to

any difference in beta between the stock and the index.
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Table 11: Objective and Subjective Values and Deltas of Out-Performance Incentive
Options

S = X = 100 T − t = 10 q = 1% qm = 1.5% σ = 30% v = 20% β = 1

Values

Value of marketed option = 24.50
European market value of option = 24.18

α = 25% α = 50% α = 75%
γ = −2 −4 −6 −2 −4 −6 −2 −4 −6

Eu. Subj. 11.73 6.71 3.59 5.75 1.57 0.32 2.80 0.29 0.01
True Subj. 15.30 11.82 9.41 10.95 7.32 5.34 8.40 5.16 3.65
True Obj. 22.12 19.76 17.45 18.99 14.86 11.78 16.25 11.48 8.63

Deltas

Delta of marketed option = 0.60
European market delta of option = 0.59

α = 25% α = 50% α = 75%
γ = −2 −4 −6 −2 −4 −6 −2 −4 −6

Eu. Subj. 0.34 0.22 0.13 0.19 0.06 0.02 0.11 0.01 0.00
True Subj. 0.48 0.45 0.42 0.44 0.41 0.40 0.42 0.39 0.39
True Obj. 0.53 0.46 0.39 0.44 0.32 0.24 0.36 0.24 0.17

Cost per Unit Delta

Marketed option: 40.53
European model: 40.91

α = 25% α = 50% α = 75%
γ = −2 −4 −6 −2 −4 −6 −2 −4 −6

Indexed 45.69 44.20 41.09 43.18 36.36 29.78 38.90 29.08 22.33
Regular 70.25 71.50 70.50 71.02 67.61 61.09 69.33 61.24 50.82
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incentive option or by replacing the existing out-of-the-money options with new at-the-

money options.

The practice became widespread in the late 1990s20 and more recently has begun to

draw substantial criticism.21 For example, in October 1998 alone, more than 100 compa-

nies announced such repricings or filed plans with the SEC to do so. Starting in 1999, the

FASB required that firms repricing their incentive options make future accounting charges

against earnings when the stock price subsequently rose.22 This ruling by the FASB slowed

the repricing of incentive options but only for one year. The substantial drop in stock

prices in 2000, particularly in the high-tech sector where incentive options are widely used,

brought a resurgence of repricing despite the required accounting charge.23

The argument in favor of repricing is that deep out-of-the-money options provide lit-

tle incentive to perform. The argument against repricing is that the employee is given a

windfall when it occurs. As well as simply being viewed as unfair, the windfall shields

against the previous stock price drop and thereby reduces their ex ante incentives to the

extent such repricings might have been anticipated. To circumvent this latter problem,

some repricings are constructed as an exchange where the old out-of-the-money options

are swapped for fewer new at-the-money options. Usually the values of the swapped op-

tions are equated using the Black-Scholes or other option pricing model.24

The costs and effects of repricings have invariably been examined using market-based

models. For example consider a firm which grants ten-year incentive options at $100. With

r = 5%, q = 0, and σ = 30%, each option will be worth $52.57 and have a delta of 0.842.

Suppose after one year the stock price has fallen to $80. Each option is now worth $33.82
20A survey of 113 firms by Pricewaterhouse Coopers revealed that 17.1% had repriced some options be-

tween 1988 and 1996. By 1998 that had risen to 42.9%.
21The criticism can be found in numerous proxy fights over repricing, the most famous of which was

probably the State ofWisconsin Investment Board vs. General Data Comm. The SEC ruled in the board’s favor
and declared repricings were not “ordinary business”. Shareholder proposals on repricings can therefore no
longer be omitted from proxies. In addition Institutional Shareholder Services recommends a vote against
incentive option plans if the company has a history of repricing options or has the express ability to reprice
underwater stock options without first securing shareholder approval.

22FASB interpretation FIN 44 deems that once the strike price has been changed it can no longer be con-
sidered "fixed" at the time of the grant as required for a qualified option. Therefore, once an option has
been repriced the difference between the strike price and the price at exercise must be recognized as a
compensation expense. The same rule applies if options are canceled and replaced by others with a lower
strike within six months before or after the cancellation.

23In addition, many companies have devised modified programs to sidestep the FIN 44 ruling. These
include: extending the life of the underwater options, granting new options only six months and a day after
cancellation of the original, replacing options with stock grants, and granting “paired” options with a strike
equal to the current stock price and which expire six months and a day after the stock price reaches the
original strike.

24Dial and Murphy [1995] describe one of the earliest Black-Scholes repricings implemented by General
Dynamics in February 1991.
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and the delta has decreased to 0.759. If the option is repriced by replacing it with a new

ten-year, at-the-money option, it will be worth $42.05, and the delta will be restored to

0.842. This is an increase in value of $8.24 or 24%.25 Clearly repricing can be costly if

there are a substantial number of options.

Now consider this same case evaluated objectively by the firm and subjectively by a

manager with α = 0.25 and γ = −4 when v = 20%. The option’s subjective value and

delta are $28.82 and 0.573 originally and $17.44 and 0.476 after the stock price falls.

Subsequent to the replacement, the subjective value and delta are $23.06 and 0.573. Again

the subjective delta is restored to its original value, but manager views the windfall as a 32%

increase in value — even more than indicated by the market-price model. The objective

cost, which was originally $44.52 per option, increases from $29.49 to $35.62 with the

repricing.

Therefore, the market-based model concludes that the repricing increases the value

and delta of each option by $8.24 and 0.083 — a cost of $99.25 per unit of delta. In

actuality, the more important subjective delta is increased by 0.097 at an objective cost of

$6.13 — a cost of only $63.32 per unit of delta. So the cost-benefit of the repricing is not

nearly as bad as the market model would suggest. In fact, in these terms, the repricing

is cheaper than the original option which had a cost-benefit ratio of 44.52/0.573 = 77.68.

The market-based model comes to exactly the opposite conclusion since it’s original and

repricing cost-benefit ratios are 62.45 and 99.25.

Suppose, instead, a Black-Scholes repricing is used. Model prices of the market values

are used to determine the replacement ratio so each existing option will be replaced by

33.82/42.01 = 0.804 new options. The market value per original option will remain at

$33.82 after the repricing but the delta per original option will be reduced to 0.804·0.842 =
0.677.

A value-preserving repricing like this can never be justified based on the same model

used in the repricing itself. The value will always remain unchanged, but the delta will

drop so incentives will also be lessened.

A Black-Scholes repricing can make sense when the subjective delta and objective cost

are considered. The 0.804 new options will have a total subjective delta of 0.461. This is

smaller than the pre-repriced delta of 0.476, but the objective cost is also lower, $28.64

rather than $29.49. The 85 cent savings only gives up 0.015 units of delta. In fact, the

cost-benefit ratio of $54.75 is substantially below that on a one-for-one repricing ($63.32)

and on the original option ($77.68).
25If the strike price is simply lowered to $80 and the same expiration date is kept, the new value and delta

will be $39.79 and 0.829. The remaining analysis below is similar.
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This analysis has been on the ex post effects of repricing. The possibility of repricing

also has ex ante effects. Managers recognizing that their options might be repriced after

a fall in the stock price will understand that the value and delta of the option will be

miscalculated by a model that ignores repricing. Brenner, Sundaram, and Yermack [2000]

and Johnson and Tian [2000] have studied this problem using a market based model. The

calculated value of the option will understate (overstate) the actual value of the option if

the contract received in the repricing is more (less) valuable than that given up. Similarly

the delta will be overstated (understated). The former statement is obvious; the latter

follows from the first since the understatement in value is largest when the stock price is

lowest and repricing is more apt to occur. The size of the effect will depend on the type

of repricing and likelihood that it will occur under various conditions. The subjective and

objective values will similarly be affected.

For example, suppose it is known that the option will be repriced by replacing it with a

new at-the-money optionwhen price falls to L.26 Then the pre-repriced value of the contract

is the solution to the market or subjective pricing equation with the usual maturity and

early-exercise conditions. To handle repricing we apply

Ĉ(L, t) = Ĉ(L, t; t + T − t0;L) (45)

For the ex ante objective or market values we use the ex post objective or market value on

the right hand side.

The value of the option before it is repriced is

C = S
(
S, t;T ; {Smin > L}&{ST > X})−XD

(
S, t;T ; {Smin > L}&{ST > X})

+ ˆC(L,0; t + T ;L)T(S, t;T ;L) .
(46)

For a given L, the value C(·) is a constant. It can be determined before the time the

repricing occurs and is a constant.

If early exercise must be considered because the stock is paying dividends or a subjec-

tive or objective value is being determined, then repricing occurs at L and exercise occurs
26Usually it is not known exactly when a repricing will occur. In this case we can estimate the option value

and delta by taking an average across the possible repricing barriers using the risk-neutral probability of
each.
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at an upper boundary. Again using a constant exercise policy approximation, the value of

the option is

C 4S
(
S, t;T ; {Smin > L}&{Smax < k}&{ST > X})
−XD

(
S, t;T ; {Smin > L}&{Smax < k}&{ST > X})

+ C(L,0;θ;L)T
(
S, t;T ;L; {τL < τk}

)+ (k−X)T
(
S, t;T ;k; {τk < τL}

)
.

(47)

The first two terms give the present value of the payoff of ST − X at expiration if the

option is in-the-money and has not been repriced or exercised. The third term gives the

present value of the repriced option if repricing occurs. The final term gives the present

value of early exercise. The variables τL and τk are first-passage times — the times when

the stock price first reaches L or k. The option is repriced only if it has not been exercised,
τL < τk; it is exercised at k only if it has not been repriced, τk < τL. The option may also be

exercised after it is repriced though this would be at a price lower than k. This exercising
will be reflected in the value Ĉ(L,0; t + T ;L). The value of the digitals are

S
(
S, t;T ; {Smin > L}&{Smax < k}&{ST > X})

= Se−q(T−t)
∞∑

n=−∞

(
k/L

)2n(λ+1) [Φ(H(XLAn/k)
)− Φ(H(LAn)

)]
− (k1−nLn/S)2λ+2 [Φ(H(S2X/LkAn)

)− Φ(H(S2/LAn)
)]

D
(
S, t;T ; {Smin > L}&{Smax < k}&{ST > X})

= e−r(T−t)
∞∑

n=−∞

(
k/L

)2nλ [Φ(h(XLAn/k)
)− Φ(h(LAn)

)]
− (k1−nLn/S)2λ [Φ(h(S2X/LkAn)

)− Φ(h(S2/LAn)
)]

T
(
S, t;T ;k; {τk < τL}

) = (k
S

)λ ∞∑
n=1

[(
SAn

L

)−λ
Φ
(
hκ(L/An)

)+ (SAn

L

)λ
Φ
(
Hκ(L/An)

)
−
(

S
LAn

)λ
Φ
(−Hκ(LAn)

)− ( S
LAn

)−λ
Φ
(− hκ(LAn)

)]

T
(
S, t;T ;L; {τL < τk}

) = (L
S

)λ ∞∑
n=1

[(
S

kAn

)λ
Φ
(−Hκ(kAn)

)+ ( S
kAn

)−λ
Φ
(− hκ(kAn)

)
−
(
SAn

k

)−λ
Φ
(
hκ(k/An)

)− (SAn

k

)λ
Φ
(
Hκ(kAn)

)]

where An ≡ L2n−1/k2n−1
(48)
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Similar analysis can be applied to other repricing problems. For example suppose any

repriced option may itself be repriced. The value of an option subject to repricing at a

series of stock prices, L1, L2, . . ., can be valued using this same method recursively. The

greater the number of possible repricings, the higher is the ex ante option value and the

lower is its delta.

If the strike price is reset to any other fixed multiple of the prevailing stock price or if

there is an n for one repricing, the same method is used. At repricing, the option would

be worth nĈ(L, t; t + T − t0;aL) for known values of n and a so this value is used on the

right-hand side of (45).

For a Black-Scholes repricing, the right-hand-side of (45) is [C(L, t;T ;X)/C(L, t;T + t −
t0;L)]Ĉ(L, t; t+T−t0;L). In this fraction the option prices are always the (modeled) market

values, never the objective of subjective values. This problem can be handled in the same

fashion with a time-dependent payoff at first touch. See Ingersoll [2000].

9 Conclusion

Incentive options are an important component of compensation. Understanding the true

cost and incentive effects of these options is likewise important. Recently companies have

been required to estimate and report the cost of granted options. Usually this is done by

using the Black-Scholes or binomial model or simple modifications thereof. This paper

shows that these models my substantially misstate the cost and incentive effects of such

options.

A model was developed which allows estimating the costs of such options. The same

model can be used to determine the market value, the subjective value and the objective

value. The latter value, which is actual the cost to the firm of issuing the option is particu-

larly important and has usually be completely neglected — even in analyses which look at

subjective values.

The model here is no more difficult to use than is the Black-Scholes model. In fact,

it is simply the Black-Scholes model with modified parameters. Since the model is based

on the Black-Scholes model, it can easily be extended to handle all of the modifications

seen in incentive options. Vesting, employment termination, indexing, and repricing were

discussed here. Other problems can also be tackled.27

27See Ingersoll [2001] for example for a treatment of “reload” options.
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