PREDICTING THE EQUITY PREMIUM
(WITH DIVIDEND RATIOS)

Amit Goyal
Goizueta Business School at Emory
Ivo Welch
Yale School of Management
NBER

This paper can be downloaded without charge from the
Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract_id=158148
Predicting the Equity Premium
(With Dividend Ratios)*

Amit Goyal†
Goizueta Business School at Emory

and

Ivo Welch‡
Yale School of Management and NBER

November 21, 2002

Abstract

Our paper suggests a simple recursive residuals (out-of-sample) graphical approach to evaluating the predictive power of popular equity premium and stock market time-series forecasting regressions. When applied, we find that dividend-ratios should have been known to have no predictive ability even prior to the 1990s, and that any seeming ability even then was driven by only two years, 1973 and 1974. Our paper also documents changes in the time-series processes of the dividends themselves and shows that an increasing persistence of dividend-price ratio is largely responsible for the inability of dividend ratios to predict equity premia. Cochrane (1997)’s accounting identity—that dividend ratios have to predict long-run dividend growth or stock returns—empirically holds only over horizons longer than 5–10 years. Over shorter horizons, dividend yields primarily forecast themselves.

*The paper and its data is available from http://welch.som.yale.edu/. We thank Eugene Fama, Ken French, Will Goetzman, Shingo Goto, Charles Lee, Richard Roll, Pedro Santa-Clara, Eduardo Schwartz, Jay Shanken, Robert Stambaugh, and especially Luis Viceira and Tuomo O. Vuolteenaho for feedback. Finally, we are grateful especially to the editor Ravi Jagannathan, both for feedback and encouragement.

†Contact: Amit Goyal. US mail address: Goizueta Business School at Emory, 1300 Clifton Road, Atlanta, GA 30322.
‡Contact: ivo.welch@yale.edu. US mail address: 46 Hillhouse Avenue, Box 208200, New Haven CT 06520-8200.
The use of aggregate dividend ratios to predict stock market returns or the equity premium has a long tradition in finance (Dow (1920)). Dividend ratios are the total dividends paid by all stocks ($D(t)$), divided by the total stock market capitalization, either at the beginning of the year (the dividend yield, $P(t-1)$) or at the end of the year (the dividend price ratio, $P(t)$). The equity premium (or market premium) is the return on the stock market ($R_m(t)$) minus the return on a short-term risk-free treasury bill ($R_f(t)$). A typical regression specification might be

$$[R_m(t) - R_f(t)] = \gamma_0 + \gamma_1 \cdot \left[\frac{D(t-1)}{P(t-1)} \right] + \epsilon(t). \quad (1)$$

More recently, Ball (1978), Rozeff (1984), Shiller (1984), Campbell and Shiller (1988), and Fama and French (1988, 1989) have reinvigorated this interest. (Cochrane (1997) surveys the literature.) Generally, dividend ratios are found to be statistically significant predictors, especially for annual equity premia. Our paper begins by replicating these findings: After defining the variables in Section I, Section II shows the well known fact that the dividend yield predicted in-sample prior to the 1990s (even though it seems to have disappeared in the 1990s). This empirical regularity, that dividend ratios seem to predict equity returns, ranks amongst the most important findings of academic finance, and it shows no signs of subsiding (e.g., Campbell and Viceira (2002)). For example, a citation search lists more than 200 published articles citing the Fama and French (1988) article alone. In turn, a number of theories have recently appeared that build on the impact of predictability. For example, Barberis (2000), Brennan, Schwartz, and Lagnado (1997), Campbell and Viceira (1999), Liu (1999), Lynch (2001), and Xia (2001) build models for how investors should divide their assets between stocks and bonds, based on the premise that equity premia vary in a predictable fashion.

Our paper suggests a simple graphical method to evaluate and diagnose the forecasting ability of predictive regressions. Our out-of-sample diagnostic differs from more common in-sample tests in that forecasting regressions are themselves estimated only with then-available data: both the “conditional dividend ratio model"
(the prevailing forecasting regressions) and the “unconditional historical equity premium model” (the prevailing simple moving average) are estimated as rolling forecasts to predict one-year ahead equity premia. Our diagnostic, in Figure 3, simply graphs the difference in the respective squared prediction errors over time. Although graphing recursive residuals is not novel, the fact that it has been neglected in this literature means that some rather startling facts about predictability have been generally overlooked.

Our diagnostic shows that dividend ratios’ presumed equity premium forecasting ability was a mirage, apparent even before the 1990s. Despite good in-sample predictive ability for annual equity premia prior to 1990, Section III shows that dividend ratios had poor out-of-sample forecasting ability even then. Our diagnostic illustrates over what time periods one might imagine finding predictive ability, and makes it immediately obvious that any pre-1990 out-of-sample dividend ratio model positive predictive ability hinged on only two years, 1973 and 1974. Thus, our paper concludes that the evidence that the equity premium has ever varied predictably with past dividend ratios has always been tenuous: a market-timing trader could not have taken advantage of dividend ratios to outperform the prevailing moving average—and should have known this. By assuming that the equity premium was “like it always has been,” a trader would have performed at least as well in most of our sample.

Our paper then delves deeper into our particular predictive variable, the dividend ratio, and why—despite good theoretical reasons—it had such poor predictive ability. Section IV investigates a plethora of alternative specifications. Despite our best attempts, we could not detect robust out-of-sample predictive ability of the standard dividend ratio models in any variation. The paper then goes on to investigate the reason for the discrepancy between in-sample and out-of-sample performance. It is poor parameter stability. However, if Campbell and Shiller (1988) are right, changes in the dividend processes themselves could have demanded non-stationary dividend ratios’ coefficients in explaining the equity premium. Indeed, Section V documents that dividend ratios have become more non-stationary over time, itself
a phenomenon not commonly known. As of 2001, the dividend-ratios themselves have practically become random walks. Consequently, we can use the Campbell and Shiller (1988) theory to instrument the dividend ratio market premium forecasting coefficients with their own time-varying auto-regression coefficient estimates. Unfortunately, despite a good theoretical justification, the instruments cannot do better than the plain dividend ratios, casting even more doubt on the theory of the dividend ratios as useful stock market predictors.

This leaves us with the puzzle as to what dividend price ratios really predict. In Section VI, we show that although in the early part of the sample, the dividend-price ratio used to be a good predictor of dividend growth rate, in recent years the ratio's predictive ability has shifted towards an ability to predict its own future value (higher autoregressive root of dividend-price ratio) rather than one-year ahead equity premia or dividend growth rates. Only on horizons greater than about 5 to 10 years does the Cochrane (1997) accounting identity (that dividend yields have to predict long run dividend growth or market returns) begin to dominate the self-predictive properties of the dividend yield. We believe this explains why, for most of the sample period, the predictability of stock returns over annual horizons has been weak.

Section VII produces a data-snooped estimate of what changes in the dividend ratio coefficients would have to look like to make the dividend ratio a useful variable. A theory predicting future equity premia with lagged dividend ratios would have to predict slowly increasing coefficients until mid-1975, followed by slowly decreasing coefficients thereafter. In a sense, actual estimated betas seem to show a delayed reaction to the best-fit betas. Moreover, the data-snooped coefficients often indicate that a negative coefficient is called for—not too attractive for an investor drawn to dividend ratio models based on theoretical considerations.

Section VIII reviews other critiques of the dividend ratio forecast. Section IX concludes.
I Data

Our paper relies on the well-known (value-weighted CRSP index) return on the stock market \(R_m(t) \equiv \log\left(\frac{P(t) + D(t)}{P(t - 1)}\right) \), where \(P \) is the stock price level and \(D \) paid dividends; the return on 3-month risk-free treasury bill (called \(R_f(t) \) and obtained from Ibbotson) \(rf(t) \equiv \log[1 + R_f(t)] \) to compute equity premia; and on the aggregate stock market's dividend-price ratio \(DP(t) \equiv \log\left(\frac{D(t)}{P(t)}\right) \) and dividend-yield \(DY(t) \equiv \log\left(\frac{D(t)}{P(t - 1)}\right) \). We use only annual data. Dividends are computed as sum of the last 12 months dividends, and are not reinvested over the last year period. The data are available on our website. Table 1 provides the descriptive statistics for the series. The properties of our series are well-known. The average log equity premium was 6.3% in our sample period, the average dividend yield was 4.3%. Figure 1 plots the time series of our regressand (the equity premium) and our regressors (the dividend ratios). The latter makes it apparent that there is some nonstationarity in the dividend ratios. The dividend ratios are almost random walks, while the equity premia are almost i.i.d. Not surprisingly, the augmented Dickey and Fuller (1979) test indicates that over the entire sample period, we cannot reject that the dividend ratios contain a unit-root (see Stambaugh (1999) and Yan (1999)).

II In-Sample Fit

Table 2 correlates the equity premium with the lagged dividend yield. Panel A confirms the findings in Fama and French (1988, Table 3). Prior to the 1990’s, the dividend yield \(DY(t) \) had significant forecasting power, the dividend price ratio \(DP(t) \) had acceptable forecasting power. The \(t \)-statistics, both plain and Newey-West adjusted for heteroskedasticity and autocorrelation range from 1.75 to 3.40. However, when the sample is extended into 2000, the in-sample predictive ability disappears.
None of the t-statistics reaches conventional statistical significance levels, and the coefficient estimates indicate little economic significance.\(^1\)

[Insert Table 2: In Sample Univariate Regressions]

III Out-of-Sample Forecasts

Even a sophisticated trader could not have used the regression in Table 2 to predict the equity premium. A trader could only have used prevailing information to estimate his model, not the entire sample period. Figure 2 shows the time-series of dividend-yield and dividend-price ratio coefficients when only prevailing data is used to estimate them. The figures indicate that a historical observer would have progressively lowered his assessment of the influence of the dividend yield, but progressively *increased* his estimate of the influence of the dividend price ratio. (Non-stationarity of the underlying dividend model is a theme of our paper, and will be covered in more detail below.) Nevertheless, only the dividend-yield beta coefficient would have indicated to an observer a reliably non-zero coefficient for a large part of the sample period. This is due to a small indicated standard error of the estimate.

[Insert Figure 2: Updating Coefficients]

Another illustration of the changing dividend model coefficients are regression coefficients by estimation subsamples. Table 3 estimates the dividend models in different subperiods. The dividend price ratio coefficient starts out at about zero from 1926 to 1946, increases to about 0.2 to 0.25 from 1946 to 1970 (with very high statistical significance), and then returns to about zero post 1970 (and with no statistical significance). The dividend-yield coefficient just declines over the sample period in its point estimate, but appears most reliable in the middle period, 1946 to 1970.

[Insert Table 3: Sub-Samples]
Naturally, a historical observer would also not have had the privilege of knowing that realized equity premia would rise. Thus, the question remains how the prevailing dividend ratio regressions perform when compared against the prevailing equity mean.

[Insert Table 4: Out-of-Sample Performance: Forecast Errors]

Table 4 displays statistics on the prediction errors when the dividend models and the alternative unconditional equity premium forecast (based simply on the historical mean) are estimated only with prevailing data. Table 4 shows that the dividend yield failed to outperform the unconditional mean even in the 1946–1990 period. The dividend price ratio, ironically an insignificant in-sample performer, could marginally outperform the prevailing mean from 1946 to 1970 (albeit not at statistically significant levels when we use a Diebold and Mariano (1995) statistic) and from 1946 to 1990. With a Diebold and Mariano (1995) statistic of 2.04, it has a p-value of 4.6%—just statistically significant.

Yet, the dividend price ratio, too, failed to outperform the prevailing equity premium mean from 1971 to 2000 or from 1946 to 2000.

The main contribution of our paper to the literature—and our suggestion for other authors predicting equity premia—is our graphical diagnostic in Figure 3. It makes it easy to understand the relative performance of the forecasting models. Plotting the cumulative sum-squared error from the unconditional model minus the cumulative sum-squared error from the dividend ratio model, a positive value indicates that the dividend ratio has so-far outperformed the unconditional model. A positive slope indicates that the dividend ratio had lower forecasting error than the unconditional moving average equity premium in a given year.

The figure shows that the dividend-yield practically never seemed to have outperformed the unconditional forecast. The dividend price ratio sometimes did, but like the dividend yield, it had only two really good predictive years prior to 1990s, 1973 and 1974. The figure is also the only instance in which we use 2002 data (ending November 2001), a year in which the dividend ratio prediction of lower returns
actually came true. The figure shows that 2001 is only a blip, and unable to rescue the dividend ratio models. A natural question is why Fama and French (1988), who perform similar tests, come to different conclusions. The reason is their sample period, indicated by the arrow in the figure. Over their period, the slope of the line is sufficiently positive to give the dividend ratios an edge. However, extending the test period forward or backward yields different conclusions.

We also computed a Diebold and Mariano (1995) statistic year by year to see when the cumulative prediction error would have indicated superior dividend ratio performance. Naturally, for dividend yields, it never could. For dividend-price ratios, however, ignoring the 1950’s (when we had few observations), the dividend-price ratio had seemingly superior sample performance in 1984, 1987, and 1990 (with DM-statistics of 2 to 2.1 [roughly equivalent to a t-statistic]). Considering that the 1973 and 1974 outliers drive this marginal significance, an observer should have at least paused. But, even not considering outliers, the same observer would not have concluded superior performance in 1985–1986, 1988–1989, and post-1990.

[Insert Figure 3: Cumulative Relative Out-of-Sample Sum-Squared Error Performance]

IV Alternative Specifications

We also tried numerous variations. None of these variations impact our conclusion that the out-of-sample performance has always been poor.

1. We tried reinvesting the dividends, instead of summing them. There is practically no difference.

2. We tried changes in dividend ratios, because the dividend ratio is close to stationary. These changes in dividend ratios performed worse in forecasting than the dividend ratios themselves.

3. We tried simple returns and yields, instead of log returns and yields. For $D(t)/P(t)$ and $D(t)/P(t – 1)$, on an out-of-sample basis, the conditional prediction had an RMSE of 16.9% and 18.2% respectively, while the unconditional
prediction had an RMSE of 17.2%. Again, the unconditional model beats the dividend yield models and performs no worse statistically than the dividend-price ratio model.

4. We tried predicting on different horizons (monthly, quarterly, multi-yearly), although annual horizons seem to have been generally agreed to have the least statistical problems and the best or close-to-best performance. Sometimes, other frequencies improve the relative performance of the unconditional model, sometimes they improve the relative performance of the dividend-yield model. Under no frequency did we find the dividend yield model to outperform in predicting at a halfway statistically significant manner.

5. We tried to reconcile our definitions to match exactly those of Fama and French (1988). This included using only NYSE firms, predicting stock returns (rather than premia), and a 30-year estimation window. None of these changes made any difference. As already mentioned in our discussion of Figure 3, the only significant difference is the choice of sample period. The Fama-French out-of-sample period began just after the dividend-yield model had ended a 10-year poor run, and ended just three years before DP(t) began deteriorating.4

6. We tried different “fixed number of years” estimation windows. The unconditional model typically performs better or as well as the dividend ratio models if five or more years are used for parameter estimation.

7. We tried standardized forecasts to see if the regressions/means could identify years ex-ante in which it was likely to perform unreliably. (In other words, we used the regression prediction standard error to normalize forecast errors.) Again, the unconditional model (its forecast also standardized by its standard deviation) beat both versions of the conditional model.

8. We tried a convex combination of the dividend yield model prediction and the unconditional prediction. Such a “shrunk dividend yield” model does not produce meaningfully better forecasts than the unconditional model alone.
9. We tried forecasting with the Stambaugh (1999) correction for high serial correlation in the dividend yield. This *worsens* the out-of-sample performance, even though the average dividend-yield coefficient decreases by 0.05 on average in the DP(t) specification and increases by 0.006 in the DY(t) specification. For DP(t) the RMSE increases from 15.84% to 16.02%; for DY(t), the RMSE increases from 17.54% to 17.60%. Both specifications continue to perform worse (though not significantly) than the unconditional model.

10. We tried forecasting the E/P ratio. The equivalent table is in the Appendix. In brief, we do not find that earnings ratios perform any better than dividend ratios.

11. We tried similar out-of-sample forecasts for alternative variables proposed by Lamont (1998) and Lee, Myers, and Swaminathan (1999), at least for years in which we could find or reconstruct the appropriate data. Lamont (1998) adds earnings and scaled stock prices; and Lee, Myers, and Swaminathan (1999) adds more complex measures based on analyst and accounting valuation measures for the Dow-30. We found that these models have been similarly unable to beat the simple prevailing equity premium average in an out-of-sample forecasting horserace in a statistically or economically significant fashion.

12. We tried a similar experiment for forecasts of the equity premium using the risk-free rate. We find some in-sample predictive ability on short frequencies (1-month to 1-quarter), but little in-sample predictive ability on longer frequencies (1-year). In any case, the *out-of-sample* predictive ability on annual horizons (RMSE of 17.31%) is considerably worse than the unconditional mean equity premium (RMSE of 15.86%). Again, we do not believe there is much predictive ability coming from the short-term interest, either.

In sum, variations on the specification and variables did not produce instances which would lead one to believe that dividend yields or other variables can predict equity premia in a meaningful way. The conditional dividend yield DY(t) regression models predicts worse than the prevailing unconditional equity premium at least since 1946. The conditional dividend ratio DP(t) regression models predict
no better than the prevailing unconditional equity premium. The data do not support the view that dividend ratios were ever an effective forecasting tool, even over the 1946–1990 period. It is not likely that there is a simple dividend ratio model which has superior out-of-sample performance. More likely, one may have to rely on alternative variables.

Finally, one should recognize that different published papers may have come to slightly different results, depending on how they lag the price deflator. For example, Bossaerts and Hillion (1999) employ the more common dividend yield \((D(t)/P(t-1)) \) rather than the dividend price ratio \((D(t)/P(t)) \). Consequently, our results explain why they find much such poor out-of-sample performance in their 5-year out-of-sample period. Fama and French (1988) report both measures, but emphasize the better performance of the \(D(t)/P(t) \) measure.

V Instrumenting the Changing Dividend Yield Process

[Insert Figure 4: Estimating Changing Regression Coefficients]

If the theory is correct, changes in the dividend-yield auto-correlation and in the dividend-yield’s ability to predict changes in dividend growth could themselves imply changes in the dividend-yield ability to predict the equity premium. Figure 4 plots estimated regressive coefficients for our three main series, using all the date up-to-date.

Annual stock market returns (\(Rm(t) \)) have had low correlation, and have recently outright shown almost no correlation with \(DP(t-1) \). However, the other two series have changed their process parameters. The dividend growth rate \(\Delta D(t) \) used to be strongly negatively correlated with \(DP(t-1) \)—it is i.i.d. today. The dividend price ratio \(DP(t) \) had only mild auto-correlation in post-WW2 period, but it is practically a random walk today: prices continue to be roughly a random walk with relatively high variance, while dividends have remained not only stationary but also low variance.
These process changes can be used to enhance the dividend-ratio forecasting coefficients for the equity premium. Campbell and Shiller (1988) derive the following relationship:

\[
R_{m}(t+1) = \log \left[\frac{P(t+1) + D(t+1)}{P_t} \right] = \log \left[\frac{P(t+1) + D(t+1)}{D(t+1)} \cdot \frac{D(t)}{P(t)} \cdot \frac{D(t+1)}{D(t)} \right] \\
= \log \left[e^{DP(t+1) - DP(t+1)} + e^{DP(t)} \right] + \Delta D(t+1). \tag{2}
\]

Assume \{DP(t)\} follows a stationary process with mean \(\overline{DP(t)} = \overline{d} - \overline{p} \). Expand \(f(x) = \log(1 + e^x) \) using Taylor expansion around \(\overline{x} \).

\[
f[x(t+1)] \approx f(\overline{x}) + f'(\overline{x})[x(t+1) - \overline{x}] \\
\log \left(1 + e^{DP(t+1)} \right) \approx \log \left(1 + e^{DP(t)} \right) \\
+ \left[\frac{e^{DP(t)}}{1 + e^{DP(t)}} \right] (DP(t+1) - DP(t)). \tag{3}
\]

Define \(\kappa = 1 / \left(1 + e^{DP(t)} \right) \) and \(k = -\log \kappa - (1 - \kappa) \log \left(\frac{1}{\kappa} - 1 \right) \). After some algebra,

\[
R_{m}(t+1) \approx -\kappa \cdot DP(t+1) + DP(t) + \Delta D(t+1) + k. \tag{4}
\]

Taking covariances with \(DP(t) \) and dividing by variance of \(DP(t) \),

\[
\frac{\text{Cov}(R_{m}(t+1), DP(t))}{\text{Var}(DP(t))} \approx 1 - \kappa \cdot \frac{\text{Cov}(DP(t+1), DP(t))}{\text{Var}(DP(t))} \\
+ \frac{\text{Cov}(\Delta D(t+1), DP(t))}{\text{Var}(DP(t))} \\
\Rightarrow \beta_{R_{m}(t+1),DP(t)} \approx 1 - \kappa \cdot \beta_{DP(t+1),DP(t)} + \beta_{\Delta D(t+1),DP(t)}. \tag{6}
\]

Note that these approximations work only for raw returns (instead of equity premia) and dividend-price ratios (but not for dividend yields). Our new model thus uses equation (6). Specifically, recursive forecasts are carried out for the dividend growth rate and dividend price ratio. The betas from these regressions are then substituted into equation (6) to obtain an instrumented beta for stock return forecast.
Figure 5 plots the time-series of naive stock return betas and the time-series of instrumented CS-based betas. Note from equation (6) that the CS return beta is driven with opposite signs by the two auxiliary betas (both of which show an upward trend from Figure 4). The CS beta has in recent years declined because of large increase in autocorrelation of dividend price ratio. In any case, the two betas plotted in Figure 5 shows that the CS betas are typically slightly lower than the ordinary betas, and more so in the 1950’s and from 1975 into the early 1990’s.

One can decompose changes in the predictive coefficient itself into changes in the persistence of the dividend-yield and into changes in the ability of the dividend yield to predict future dividends. Differencing equation (6), we get

$$
\Delta \beta_{\text{Rm}(t+1),\text{DP}(t)} = -\kappa \cdot \Delta \beta_{\text{DP}(t+1),\text{DP}(t)} + \Delta \beta_{\text{AD}(t+1),\text{DP}(t)}
$$

where κ can be calibrated to be about 0.96 ($= 1 / (1 + e^{-3.28})$) for U.S. data. That is, parameter variation in the predictive coefficient can be due to parameter variation in the dividend yield process or in the dividend yield vs. dividend growth relation. Using these equations, we can run a variance decomposition for US data. $\Delta \beta_{\text{DP}(t+1),\text{DP}(t)}$ accounts for 14.7%, while $\Delta \beta_{\text{AD}(t+1),\text{DP}(t)}$ accounts for 31.7% of the variation in recursive $\Delta \beta_{\text{Rm}(t+1),\text{DP}(t)}$ in univariate regressions (for sample 1946–2000).

Table 5 shows the results. The table shows how three models predicting the prevailing stock return (not equity premia) perform: the prevailing dividend price ratio regression, the Campbell-Shiller instrumented dividend price ratio regressions which explicitly take the changing process on dividend yields and dividend growth ratio into account, and the prevailing unconditional stock return mean. Unfortunately, despite good theoretical justification, the forecasting ability does not improve using Campbell and Shiller (1988) identities. Having taken the theory as seriously as we could, we have thus become even more skeptical about the ability of the dividend ratios to predict equity premia.
VI The Source of Poor Predictive Ability

This leaves us with the puzzle as to what the underlying source of this poor predictive ability is. Cochrane (1997) argues that that the dividend-price ratio must forecast either the future returns or the dividend growth rate. His argument relies on a modification of equation (4). Rearranging the terms in equation (4) and recursing forward, we obtain,

\[DP(t) = Rm(t+1) - \Delta D(t+1) + \kappa \cdot DP(t+1) - k \]
\[= \sum_{i=0}^{\infty} \kappa^i [Rm(t+1+i) - \Delta D(t+1+i)] + \text{constant}. \]

(8)

The second row of this expression indeed demonstrates Cochrane’s accounting identity that dividend-price ratio must forecast either the long-run future returns or the long-run dividend growth rate. However, for finite-period ahead prediction, the first row is more informative than the second row: The dividend-price ratio must predict either the next period stock return, or the next period dividend growth rate, or the next period dividend-price ratio. Table 6 estimates the finite-period equation (8). The top panel shows that we are now almost fully capturing the components of the dividend yield over any horizon. The bottom panel decomposes the dividend yield's predictive components: Over periods of up to 5 years, the dividend yield primarily predicts itself. It is only for periods of longer than 5 years that the dividend yield ceases predicting itself, and instead begins predicting stock market returns and dividend growth. Figure 4 shows that the dividend-price ratio used to be a good predictor of dividend growth rate in the early part of the sample, but in recent years its predictive ability has shifted towards predicting its own future value (higher autoregressive root of dividend-price ratio) instead of either dividend growth or future returns. Again, this explains why, for most of the sample period, the predictability of stock returns with dividend price ratios has been weak.

[Insert Table 6: Decomposition of Dividend Yield Components Over Different Horizons]
VII A Description of The Empirically Best Time-Varying In-Sample Coefficients

What coefficient variations produces better out-of-sample prediction? That is, what kind of dividend-yield coefficient does it take to add useful information to the prevailing mean in terms of out-of-sample prediction?

Given that we have failed to find any out of sample predictive ability of dividend yields from a sound theoretical perspective, it is useful to entertain some descriptive investigations into the time-series properties of the dividend-yield coefficient. This is the ultimate data snooping.

[Insert Figure 6: The Perfect Dividend Ratio coefficients To Maximize Relative Out-Of-Sample Performance]

Figure 6 plots the dividend-yield coefficient that perfectly fits the next out-of-sample data point, using as intercept the prevailing average equity premium up to each date. Although some of the troughs and peaks necessarily line up with the well-known stock market ups and downs, the two are not the same (due to time-series changes in the dividend yield and changes in the prevailing equity premium mean). We also overlay a 5-year moving average version over the coefficient series.

The best dividend ratio coefficient would be erratic in the pre-WW2 era, would be negative in the post-WW2 era but steadily increasing until about 1975 (the oil-shock), and would be slowly declining post 1975. Comparing the optimal ex-post beta to our ex-ante beta (Figure 5), the actual betas show a significant delay relative to the ex-post best betas: the actual beta continues to drop post-WW2 and increases only post-1973, just as the optimal beta ends its increase and starts its decrease; and the actual beta drops only post-1996, long lagging an ongoing decline in the optimal beta.

There are two important remaining questions: First, why is the pattern post-WW2 and post-1975 so different? Are there regime changes (Pástor and Stambaugh (2001), Viceira (1996), Jagannathan, McGrattan, and Scherbina (2000)); and if so,
why did they lead to these particular changes in the dividend yields? Second, what should an investor do if our inference is correct that the best ex-post (data-snooped) dividend-yield was/is negative? Is the true relationship between dividend-yields and expected returns negative, as it has been out-of-sample? Our sharp rise post-WW2 is simply back to a zero coefficient, not to a positive coefficient. Should such an investor put money into the market when the dividend ratios are low, contrary to all theory?

VIII Other Dividend Ratio Critiques

Fama and French (1988) ranks among the most influential papers of the last decade, so it is not surprising that a number of other papers have pointed out concerns in using the dividend yield (or ratio) to predict equity premia and stock returns and/or introduced other variables. For example, Goetzmann and Jorion (1993) use a bootstrap to evaluate the in-sample predictive performance of coefficient estimates and find that the Fama and French (1988) coefficient estimates are upward biased. Nelson and Kim (1993) examine coefficient biases and come to similar conclusions. Goetzmann and Jorion (1995) find that predictability in a longer sample (since 1872) is marginal and argues that these tests are influenced by survivorship bias. Hodrick (1992) finds that Hansen-Hodrick and Newey-West statistics are biased on longer than 1-year horizon. Stambaugh (1999) and Yan (1999) find that near-nonstationarity in the dividend ratios biases the t-statistics and R^2. None of these entertains our simple out-of-sample naive benchmark comparison. Fama and French (1989) also use our naive benchmark, but their dividend forecast model even seems to outperform out-of-sample relative to their in-sample performance. (It is easy to miss this evidence, because the focus in Fama and French (1989) is the addition of fixed income variables to the dividend-yield.) Independently, Lee and Swaminathan (1999) find that the dividend yield has poor out-of-sample predictive ability in competition with their value-price ratio. After inclusion of their V/P measure, the dividend yield has no marginal explanatory power. Their more
sophisticated model employing the V/P measure can beat a “static investment allocation” model, but only mildly so. Similarly, Lee, Myers, and Swaminathan (1999) find that, from 1963–1996, traditional market ratios had little (in-sample) predictive power. Ang and Bekaert (2001) derive a structural model of equity premia based on dividend yields, earnings yields, and interest rates, and find that only the latter has reliable explanatory power. The closest paper to our own in pointing out poor out-of-sample power may be Bossaerts and Hillion (1999), which investigates more stringent model-selection criteria for data from a number of countries. Still, they find no out-of-sample predictability in a 6/90 to 5/95 hold-out sample, using $D(t)/P(t-1)$ as their forecaster. The closest paper to our own in pointing out the possibility of a changing market is Viceira (1996), who tests whether there is a structural break in the relation between the dividend yield and stock returns (but fails to detect one).

IX Conclusion

Our paper finds that:

1. A figure that graphs comparative sum-squared model residuals out-of-sample (ala Figure 3) can act as a powerful diagnostic for equity premium and stock price prediction.
 We firmly suggest that future papers which investigate variables for their predictive market timing ability diagnose their variables using the equivalent of our Figure 3.

2. For simple dividend yield models predicting equity premia, our diagnostic suggests that good in-sample performance is no guarantee of out-of-sample performance. There has never been convincing evidence that dividend ratios were ever useful in predicting for investment purposes, even prior to the 1990s. Neither the dividend-yield nor the dividend price ratio had both the in-sample and out-of-sample performance that should have lead one to believe that it could
outperform the simple prevailing equity premium average in an economically or statistically significant manner. A naive market-timing trader who just assumed that the equity premium was “like it has been” would typically have outperformed a trader who employed dividend ratio forecasting regressions. Incidentally, as of 2002 (and including 2002, a good year for the dividend ratios!), even the in-sample performance of the dividend ratios (over the entire sample period) has entirely vanished.

3. Our diagnostic further suggests that any remaining explanatory predictive ability of the dividend ratios in the post-war period prior to the 1990s was due to two years only, 1973 and 1974.

4. Our findings are not just a matter of quibbling over proper methods to compute statistical standard errors of a test statistic. They are much more basic. When the plain dividend yield model underperforms the unconditional mean model out-of-sample—the null hypothesis—it becomes moot. (The plain dividend price ratio model at least outperformed the mean, but by so little that it had no economic significance.)

Our paper also offered some observations as to the underlying causes of poor prediction.

1. The primary source of poor predictive ability is parameter instability. The estimated dividend price ratio autoregression coefficient has increased from about 0.4 in 1945 to about 0.9 in 2000.

2. The dividend yield has failed to forecast one-year ahead returns or dividend growth rates, because it has primarily forecast its own change. Cochrane’s accounting identity—that dividend yields must in the long run predict either stock returns or dividend growth—only finds traction on horizons of 5–10 years or more.

3. Instrumenting the model to account for the time-varying properties of the dividend yield and dividend growth processes does not aid the dividend ratio in predicting stock market levels.
References

A Earnings Price Ratios

In this section, we use the earnings-price ratio to forecast returns. Since the earnings price ratio is more readily available for the S&P500 index, we use data on S&P500 for this exercise. Specifically, stock returns are defined to be returns on the S&P500 index. The equity premium calculation again subtracts the equivalent 3-month risk-free treasury bill from Ibbotson. The forecasting variable $EP(t)$ is the log earnings price ratio of the S&P500 index. The results of in-sample and out-of-sample forecasting are given in Table 7. In brief, we do not find that earnings ratios perform any better than dividend ratios.

[Insert Table 7: Earnings Price Ratio]
Table 1. Descriptive Statistics

Explanation: All series are described in Section I. \(Rm(t) \) is the log of the total return on the value-weighted stock market from year \(t - 1 \) to \(t \). \(EQP(t) \) subtracts the equivalent log return on a 3-month treasury bill. \(DP(t) \) is the dividend-price ratio, i.e., the log of aggregate dividends \(D(t) \) divided by the aggregate stock market value \(P(t) \). \(DY(t) \), the dividend-yield ratio, divides by \(P(t-1) \) instead. \(\Delta D(t) \) is the change in log dividends from year \(t - 1 \) to \(t \). All variables are in percent.

\(JqBr \) is the Jarque-Bera (Jarque and Bera (1980)) test for normality. The critical level to reject normality is 5.99 at the 95% level, 9.21 at the 99% level. ADF is the Augmented Dickey-Fuller (Dickey and Fuller (1979)) test for the absence of a unit root. An ADF value of \(-3.5\) rejects the presence of a unit root at the 1% level (\(-2.9\) at the 5% level; \(-2.6\) at the 10% level). Every mean and median is significantly different from zero at the 1% level.

Panel A: Sample 1926–2000

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Sdev.</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
<th>Skew</th>
<th>Kurt</th>
<th>JqBr</th>
<th>ADF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Rm(t))</td>
<td>10.02</td>
<td>19.50</td>
<td>14.50</td>
<td>-58.74</td>
<td>45.71</td>
<td>-0.98</td>
<td>4.30</td>
<td>17.42</td>
<td>-6.73</td>
</tr>
<tr>
<td>(EQP(t))</td>
<td>6.28</td>
<td>19.76</td>
<td>9.59</td>
<td>-59.82</td>
<td>45.41</td>
<td>-0.83</td>
<td>3.95</td>
<td>11.43</td>
<td>-6.77</td>
</tr>
<tr>
<td>(DP(t))</td>
<td>-3.28</td>
<td>0.40</td>
<td>-3.27</td>
<td>-4.48</td>
<td>-2.36</td>
<td>-0.70</td>
<td>4.16</td>
<td>10.22</td>
<td>-1.42</td>
</tr>
<tr>
<td>(DY(t))</td>
<td>-3.22</td>
<td>0.36</td>
<td>-3.13</td>
<td>-4.53</td>
<td>-2.56</td>
<td>-1.11</td>
<td>4.88</td>
<td>26.50</td>
<td>-0.18</td>
</tr>
<tr>
<td>(\Delta D(t))</td>
<td>4.06</td>
<td>12.35</td>
<td>4.78</td>
<td>-50.74</td>
<td>42.79</td>
<td>-1.86</td>
<td>11.00</td>
<td>243.51</td>
<td>-6.03</td>
</tr>
</tbody>
</table>

Panel B: Sample 1946–2000

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Sdev.</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
<th>Skew</th>
<th>Kurt</th>
<th>JqBr</th>
<th>ADF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Rm(t))</td>
<td>11.38</td>
<td>15.25</td>
<td>14.50</td>
<td>-32.76</td>
<td>40.72</td>
<td>-0.55</td>
<td>2.96</td>
<td>2.78</td>
<td>-6.99</td>
</tr>
<tr>
<td>(EQP(t))</td>
<td>6.66</td>
<td>15.79</td>
<td>9.59</td>
<td>-40.46</td>
<td>39.86</td>
<td>-0.59</td>
<td>3.31</td>
<td>3.42</td>
<td>-6.65</td>
</tr>
<tr>
<td>(DP(t))</td>
<td>-3.38</td>
<td>0.39</td>
<td>-3.36</td>
<td>-4.48</td>
<td>-2.73</td>
<td>-0.89</td>
<td>3.94</td>
<td>9.27</td>
<td>-0.27</td>
</tr>
<tr>
<td>(DY(t))</td>
<td>-3.30</td>
<td>0.38</td>
<td>-3.31</td>
<td>-4.53</td>
<td>-2.56</td>
<td>-0.82</td>
<td>4.22</td>
<td>9.55</td>
<td>0.21</td>
</tr>
<tr>
<td>(\Delta D(t))</td>
<td>5.66</td>
<td>5.37</td>
<td>4.78</td>
<td>-5.79</td>
<td>20.85</td>
<td>0.49</td>
<td>3.53</td>
<td>2.83</td>
<td>-3.72</td>
</tr>
</tbody>
</table>

Interpretation: The equity premium displays its well-known high performance of above 6% per year (in log-terms). The dividend ratios have similar characteristics as those reported in Campbell and Viceira (1999).
Explanation: This graph plots the time series of the log equity premium, the log dividend yield, and the log dividend-price ratio. The variables are described in Table 1.

Interpretation: Annual equity premia are i.i.d., while dividend ratios seem stationary and show a long standing decline. Their concluding level is the lowest in our sample period.
Table 2. In Sample Univariate Regressions

Explanation: All series are described in Section I and Table 1. This table presents the results of the following univariate regression:

\[EQP(t) = \alpha + \beta \cdot x(t - 1) + \epsilon(t) \]

The first row of each regression is the coefficient, the second line its OLS \(t \)-statistic, and the third line its Newey-West adjusted \(t \)-statistic. Data frequency is annual. s.e. is the standard error of the regression residuals and \(N \) is the number of observations. The Sample Period refers to the dependent variable, \(EQP(t) \).

<table>
<thead>
<tr>
<th>(x(t - 1))</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(R^2)</th>
<th>(\overline{R^2})</th>
<th>s.e.</th>
<th>(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP(t-1)</td>
<td>0.612</td>
<td>0.176</td>
<td>5.83%</td>
<td>4.31%</td>
<td>20.26%</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>(2.15)</td>
<td>(1.96)</td>
<td>(1.83)</td>
<td>(1.75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DY(t-1)</td>
<td>0.898</td>
<td>0.270</td>
<td>10.40%</td>
<td>8.96%</td>
<td>19.76%</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>(2.85)</td>
<td>(2.68)</td>
<td>(3.73)</td>
<td>(3.40)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample Period 1926–1990

DP(t-1)	0.291	0.070	1.79%	0.43%	19.86%	74
	(1.45)	(1.15)	(1.25)	(1.01)		
DY(t-1)	0.413	0.109	3.30%	1.96%	19.70%	74
	(1.84)	(1.57)	(1.87)	(1.54)		

Sample Period 1926–2000

Interpretation: The in-sample predictive ability of dividend ratios has disappeared as of 2000. Before 1990, the dividend yield seemed to have statistically significant predictive ability; the dividend price ratio seemed to have had marginal predictive ability.
Figure 2. Updating Coefficients

![Graph showing the recursive coefficient estimates](image)

Explaination: These figures plot the recursive coefficient estimates (i.e. using only historically available data at each point) in a regression predicting the (log) equity premium with the (log) dividend price ratio and (log) dividend yield, respectively. The top graph plots the DP(t) coefficient, the bottom graph plots the DY(t) coefficients, both obtained from univariate regressions. The bars denote plus and minus one standard deviation.

Interpretation: Dividend Ratio coefficients (predicting equity premia) show remarkably different patterns, depending on their numerator. The beta using dividend-price ratios has high standard errors, but low variability (scale!). It crosses zero in our sample. The beta using dividend-yields is always positive, economically larger, but also continuously declining.
Table 3. Sub-Samples

Explanation: All series are described in Section I and Table 1. This table presents the results of the following univariate regression for different sample periods:

\[\text{EQP}(t) = \alpha + \beta \cdot x(t - 1) + \epsilon(t) \]

The Newey-West adjusted \(t \)-statistics are given in parenthesis below the coefficients. Data frequency is annual. s.e. is the standard error of the regression residuals and \(N \) is the number of observations.

<table>
<thead>
<tr>
<th>Sample</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(R^2)</th>
<th>(\bar{R}^2)</th>
<th>s.e.</th>
<th>(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dividend Price Ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1926–1945</td>
<td>0.143</td>
<td>0.030</td>
<td>0.09%</td>
<td>−5.78%</td>
<td>30.09%</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>(0.28)</td>
<td>(0.19)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1946–1970</td>
<td>0.920</td>
<td>0.258</td>
<td>24.22%</td>
<td>20.77%</td>
<td>13.66%</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>(3.99)</td>
<td>(3.73)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971–2000</td>
<td>0.188</td>
<td>0.039</td>
<td>0.87%</td>
<td>−2.81%</td>
<td>16.84%</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>(0.83)</td>
<td>(0.54)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dividend Yield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1926–1945</td>
<td>2.532</td>
<td>0.829</td>
<td>18.70%</td>
<td>13.92%</td>
<td>27.15%</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>(1.84)</td>
<td>(1.75)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1946–1970</td>
<td>0.699</td>
<td>0.194</td>
<td>14.62%</td>
<td>10.74%</td>
<td>14.50%</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>(3.57)</td>
<td>(3.07)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1971–2000</td>
<td>0.171</td>
<td>0.035</td>
<td>0.57%</td>
<td>−3.11%</td>
<td>16.87%</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>(0.64)</td>
<td>(0.40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interpretation: Estimated coefficients vary widely across subperiods, casting some doubt on the stability of the specified model.
Table 4. Out-of-Sample Performance: Forecast Errors

Explanation: All series are described in Section I and Table 1. This table describes the properties of equity premium prediction errors from a model that uses only the prevailing historical average equity premium as a forecast and another model that uses the dividend yield or dividend price ratio. Both models use all prevailing data beginning in 1926. The best performers are boldfaced. The Diebold and Mariano (1995) statistics (ranging from -1.2 to $+1.0$) indicate that none of the reported out-of-sample RMSE performances are statistically significantly different from one another, except the DP(t) model for the period 1946–1990, when it significantly outperforms the prevailing mean model.

<table>
<thead>
<tr>
<th></th>
<th>Prevailing Mean</th>
<th>Dividend Price Ratio Model DP(t)</th>
<th>Dividend Yield Model DY(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Sample 1946–2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>0.32%</td>
<td>3.08%</td>
<td>4.78%</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>16.00%</td>
<td>15.68%</td>
<td>17.03%</td>
</tr>
<tr>
<td>Root Mean Square Error</td>
<td>15.86%</td>
<td>15.84%</td>
<td>17.54%</td>
</tr>
<tr>
<td>Mean Absolute Error</td>
<td>12.67%</td>
<td>13.24%</td>
<td>14.34%</td>
</tr>
<tr>
<td>First Subsample 1946–1970</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1.15%</td>
<td>3.20%</td>
<td>5.53%</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>15.65%</td>
<td>14.76%</td>
<td>17.14%</td>
</tr>
<tr>
<td>Root Mean Square Error</td>
<td>15.37%</td>
<td>14.81%</td>
<td>17.68%</td>
</tr>
<tr>
<td>Mean Absolute Error</td>
<td>12.39%</td>
<td>12.39%</td>
<td>14.09%</td>
</tr>
<tr>
<td>Second Subsample 1971–2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>−0.37%</td>
<td>2.98%</td>
<td>4.16%</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>16.53%</td>
<td>16.65%</td>
<td>17.20%</td>
</tr>
<tr>
<td>Root Mean Square Error</td>
<td>16.25%</td>
<td>16.64%</td>
<td>17.41%</td>
</tr>
<tr>
<td>Mean Absolute Error</td>
<td>12.91%</td>
<td>13.96%</td>
<td>14.54%</td>
</tr>
<tr>
<td>Pre-1990 Sample 1946–1990</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>−0.69%</td>
<td>1.03%</td>
<td>2.50%</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>16.45%</td>
<td>15.47%</td>
<td>16.88%</td>
</tr>
<tr>
<td>Root Mean Square Error</td>
<td>16.28%</td>
<td>15.33% *</td>
<td>16.88%</td>
</tr>
<tr>
<td>Mean Absolute Error</td>
<td>12.85%</td>
<td>12.56%</td>
<td>13.54%</td>
</tr>
</tbody>
</table>

Interpretation: The dividend-price ratio often outperforms the unconditional prevailing mean *out-of-sample*, but the difference is not only statistically, but also economically insignificant. Its superior performance is not stable, i.e., present in each subsample. Only the dividend-price ratio’s 1946–1990 out-of-sample performance is statistically significantly better (at the 4.6% level) than the unconditional prevailing mean. The dividend-yield reliably underperforms the prevailing mean.
Figure 3. Cumulative Relative Out-of-Sample Sum-Squared Error Performance

![Cumulative Relative Out-of-Sample Sum-Squared Error Performance](image)

Explanation: This figure plots

\[
\text{Net-SSE}(T) = \sum_{t=1946}^{T} \left(\text{SE}(t)^{\text{prevailing mean}} - \text{SE}(t)^{\text{dividend model}} \right)
\]

where \(\text{SE}(t) \) is the squared out-of-sample prediction error in year \(t \). The “uncond” \(\text{SE} \) is obtained when the prevailing up-to-date equity premium average is used to forecast the following year’s equity premium. The “dividend model” \(\text{SE} \)’s are obtained from rolling regressions with either \(\text{DY}(t-1) \) or \(\text{DP}(t-1) \) as the (sole) predictor of the following year’s equity premium. For a year in which the slope is positive, the dividend ratio regression model predicted better than the unconditional average out-of-sample. This was particularly the case in 1973 and 1974, and post-2000. This figure is the only place where we hand-updated to include the 2001 and (partial) 2002 stock return information.

Interpretation: Relative to the simple prevailing equity premium mean, the dividend yield shows poor predictive performance in the 1960’s. Both the dividend yield and the dividend ratio show poor performance in the 1990’s. Both dividend ratios had only two very good years prior to the 1990s, 1973 and 1974.
Figure 4. Estimating Changing Regression Coefficients

Explanation: All series are described in Section I and Table 1. This figure plots the regressive coefficients for the stock return ($R_m(t)$), the dividend price ratio ($D(t)$), and the dividend growth rate ($\Delta D(t)$). The regressor in each case is the lagged dividend price ratio. The estimation uses all the data up-to-date.

Interpretation: Annual stock market returns ($R_m(t)$) have had low correlation (and have recently outright shown almost no correlation with $D(t-1)$). However, the other two series have changed their process parameters. The dividend growth rate ($\Delta D(t)$) used to be strongly negatively correlated with $D(t-1)$, but it is i.i.d. today. The dividend price ratio ($D(t)$) had only mild auto-correlation in post-WW2 period, but it is practically a random walk today: this is because prices continue to be roughly a random walk with relatively high variance, while dividends have remained not only stationary but also low variance.
Figure 5. Campbell-Shiller Betas

Explanation: This figure plots recursive beta coefficients of forecasts using dividend price ratio as a regressor. Direct forecasts are constructed using the equation

\[R_{m(t+1)} = \beta_0 + \beta_1 \cdot DP(t) \]

Campbell-Shiller forecasts are constructed using:

\[DP(t+1) = \alpha_0 + \alpha_1 \cdot DP(t) \]
\[\Delta D(t+1) = \gamma_0 + \gamma_1 \cdot DP(t) \]
\[\beta_1 = 1 - 0.96 \cdot \alpha_1 + \gamma_1 \]
\[R_{m(t+1)} = \beta_0 + \beta_1 \cdot DP(t) \]

The recursive betas are calculated using the entire history of data available. The figure plots these betas only for the period of 1946 to 2000.
Table 5. Instrumented Dividend Ratio Forecasts for Equity Premia

Explanation: All series are described in Section I and Table 1. This table describes the properties of stock return prediction from a model that uses only the prevailing average stock return as a forecast \((U)\) and two other models. Direct forecasts are constructed using the equation

\[
Rm(t+1) = \beta_0 + \beta_1 \cdot DP(t)
\]

Direct forecasts are comparable to those in Table 4, with the only difference that this table forecasts the stock returns themselves while Table 4 is constructing forecasts of excess stock returns. Campbell-Shiller forecasts are constructed using:

\[
\begin{align*}
DP(t+1) &= \alpha_0 + \alpha_1 \cdot DP(t) \\
\Delta D(t+1) &= \gamma_0 + \gamma_1 \cdot DP(t) \\
\beta_1 &= 1 - 0.96 \cdot \alpha_1 + \gamma_1 \\
Rm(t+1) &= \beta_0 + \beta_1 \cdot DP(t)
\end{align*}
\]

The recursive betas are calculated using the entire history of data available. The table reports only the descriptives of forecast errors over the period of 1946–2000. The Diebold and Mariano (1995) statistic measures the statistical difference between RMSE’s from two models and is asymptotically normally distributed.

<table>
<thead>
<tr>
<th>Forecast Error Statistic</th>
<th>Prevailing Mean</th>
<th>Straight Dividend Model</th>
<th>Instrumented Dividend Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>2.84%</td>
<td>4.88%</td>
<td>4.70%</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>15.41%</td>
<td>15.03%</td>
<td>15.07%</td>
</tr>
<tr>
<td>Root Mean Square Error</td>
<td>15.53%</td>
<td>15.67%</td>
<td>15.66%</td>
</tr>
<tr>
<td>Mean Absolute Error</td>
<td>12.98%</td>
<td>13.45%</td>
<td>13.42%</td>
</tr>
</tbody>
</table>

Interpretation: The forecasting ability does not improve using Campbell-Shiller identities. Diebold and Mariano (1995) statistics (which measure the statistical difference between RMSE’s from two models and are asymptotically normally distributed) for the two models are \(-0.341\), and \(-0.345\).
Table 6. Decomposition of Dividend Yield Components Over Different Horizons

<table>
<thead>
<tr>
<th>Explain: DP(t)</th>
<th>Full Identity</th>
<th>Cochrane Identity Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon</td>
<td>Rm(t,t+h)</td>
<td>∆D(t,t+h)</td>
</tr>
<tr>
<td>1 Year</td>
<td>0.985</td>
<td>-0.994</td>
</tr>
<tr>
<td>2 Years</td>
<td>0.969</td>
<td>-0.971</td>
</tr>
<tr>
<td>5 Years</td>
<td>0.927</td>
<td>-0.921</td>
</tr>
<tr>
<td>7 Years</td>
<td>0.906</td>
<td>-0.906</td>
</tr>
<tr>
<td>10 Years</td>
<td>0.866</td>
<td>-0.912</td>
</tr>
<tr>
<td>20 Years</td>
<td>0.742</td>
<td>-0.841</td>
</tr>
</tbody>
</table>

Explain: DP(t)

Cochrane Long-Run Identity

Self-Forecast

Cochrane Identity Components

<table>
<thead>
<tr>
<th>Explain: DP(t)</th>
<th>Cochrane Long-Run Identity</th>
<th>Self-Forecast</th>
<th>Cochrane Identity Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizon</td>
<td>Rm(t,t+h)</td>
<td>∆D(t,t+h)</td>
<td>R²</td>
</tr>
<tr>
<td>1 Year</td>
<td>0.242</td>
<td>-0.977</td>
<td>8.1%</td>
</tr>
<tr>
<td>2 Years</td>
<td>0.308</td>
<td>-0.624</td>
<td>10.7%</td>
</tr>
<tr>
<td>5 Years</td>
<td>0.322</td>
<td>-0.338</td>
<td>10.1%</td>
</tr>
<tr>
<td>7 Years</td>
<td>0.401</td>
<td>-0.384</td>
<td>20.0%</td>
</tr>
<tr>
<td>10 Years</td>
<td>0.400</td>
<td>-0.460</td>
<td>28.9%</td>
</tr>
<tr>
<td>20 Years</td>
<td>0.453</td>
<td>-0.790</td>
<td>66.8%</td>
</tr>
</tbody>
</table>

Significant: 2,10,20 1,2,20 1-10 20 1,2,20

Explanation: All series are described in Section I and Table 1. This table plots estimates of equation 8 over various horizons. The dependent variable is DP(t). Being an identity, all variables in the top panel are statistically significant. In the bottom panel, estimation horizons for which the Hansen-Hodrick overlapping year T-statistics are greater than 2 are indicated in the final row for appropriate horizons. The typical standard error on the univariate DP(t+1) ranges from 0.07 on the 1-year horizon to about 0.11 on the 20-year horizon. Univariate standard errors on Rm(t+1) and ∆D(t+1) are about twice that.

Interpretation: DP(t) is primarily forecasting itself over horizons up to about 5 years. It is a partial forecaster of itself over five to ten-year horizons, and does not forecast itself over twenty-year horizons. DP(t) is primarily forecasting future market returns (and some dividend growth) over horizons greater than 10 years. It does not forecast market returns or dividend growths over horizons less than 5 years.
Figure 6. The Perfect Dividend Ratio coefficients To Maximize Relative Out-Of-Sample Performance

Explanation: In each year, this figure solves the observed relationship \(EQP(t) = \text{Avg}(EQP(j), j = 1926...t - 1) + \beta(t) \cdot DP(t-1) \) for \(\beta(t) \). The graph plots the beta coefficient for both \(DP(t) \) and \(DY(t) \), but the two lines are visually indistinguishable. The graph also plots a 5-year moving average.

Interpretation: \(\beta(t) \) is the ultimate data-snooped coefficient. Judging by the 5-year moving averages, if the sample period contained two regimes, the first would likely have to be the post-WW2 era, the second the post oil-shock period. Still, a negative coefficient is unlikely to appeal to an investor attracted by theoretical rationales for forecasting with the dividend-ratios.
Table 7. Earnings Price Ratio

Explanation: This table presents the results of the following univariate regression:

$$EQP(t) = \alpha + \beta \cdot EP(t-1) + \epsilon(t)$$

where EQP(t) is the excess return on the S&P500 index, and EP is the log earnings price ratio of the S&P500 index. Panel A gives the results for in-sample regression. The first row of each regression is the coefficient, and the second line its Newey-West adjusted t-statistic. Data frequency is annual. s.e. is the standard error of the regression residuals and N is the number of observations. The Sample Period refers to the dependent variable, EQP(t). Panel B describes the properties of EQP(t) prediction errors from a model that uses only the prevailing historical average EQP(t) as a forecast and another model that uses the earnings price ratio. Both models use all prevailing data beginning in 1926. The best performers are boldfaced. The Diebold and Mariano (1995) statistics indicate that none of the reported out-of-sample RMSE performances are statistically significantly different from one another.

Panel A: In Sample

<table>
<thead>
<tr>
<th>Sample Period</th>
<th>α</th>
<th>β</th>
<th>R^2</th>
<th>\bar{R}^2</th>
<th>s.e.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1926–2000</td>
<td>0.296</td>
<td>0.085</td>
<td>4.56%</td>
<td>2.69%</td>
<td>15.25%</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>(2.49)</td>
<td>(1.90)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1926–1990</td>
<td>0.438</td>
<td>0.148</td>
<td>9.77%</td>
<td>7.57%</td>
<td>15.33%</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>(3.38)</td>
<td>(3.04)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Out of Sample

<table>
<thead>
<tr>
<th></th>
<th>Prevailing Mean</th>
<th>Earnings Price Ratio Model</th>
<th>Prevailing Mean</th>
<th>Earnings Price Ratio Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.46%</td>
<td>-0.24%</td>
<td>-0.81%</td>
<td></td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>15.54%</td>
<td>15.31%</td>
<td>15.96%</td>
<td>15.32%</td>
</tr>
<tr>
<td>Root Mean Square Error</td>
<td>15.40%</td>
<td>15.20%</td>
<td>15.79%</td>
<td>15.17%</td>
</tr>
<tr>
<td>Mean Absolute Error</td>
<td>12.24%</td>
<td>12.26%</td>
<td>12.44%</td>
<td>11.91%</td>
</tr>
</tbody>
</table>
Notes

1 This conclusion holds when we include the 2001 returns up to November. Assuming an equity premium of -18%, the DP(t) t-statistics are 1.51 (1.31), for DY(t) the t-statistics are 1.54 (1.35).

2 For modification of this statistic for overlapping observations, see Harvey, Leybourne, and Newbold (1997, 1998). For modification of this statistic for nested models, see Clark and McCracken (2000).

3 Bossaerts and Hillion (1999) focus on $D(t)/P(t-1)$ and find failure to predict out-of-sample in the last 5 years. Our own paper shows that failure of $D(t)/P(t-1)$ to predict out-of-sample is more systematic, going back to (at least) 1946. Further, if Bossaerts and Hillion (1999) had entertained $D(t)/P(t)$, the out-of-sample performance of the dividend yield model would have been better.

4 Fama and French (1988, 1989) use estimation periods of 30-years to obtain an out-of-sample estimation period from 1967 to 1986 and 1967 to 1987, respectively, which avoids some high-variance returns in the 1930’s. As FF point out, an investor may have recognized that the post-war period was different enough from the pre-war period to avoid using an estimated dividend regression to predict equity premia prior to 1967. Similarly, the 1990’s poor out-of-sample performance occurred after the Fama and French (1988) paper was written - and we know that the in-sample relationship has recently declined.

5 An alternative exercise would be to subtract from the dividend yield its own prevailing average. Unfortunately, the denominator often is close to zero, which explodes the coefficients.

6 This is similar to the conclusion reached in Pesaran and Timmerman (1995).

7 Please note that the ex-post beta here is about predicting equity premia, whereas the ex-ante beta is about predicting stock market returns.

8 We must apologize to all authors whose paper we have omitted for lack of space. However, see Shanken and Lewellen (2000) for a novel interpretation of predictability arising from estimation risk.