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A DISCRETIONARY WEALTH APPROACH TO INVESTMENT POLICY

Despite portfolio construction based on expected utility theory and Markowitz mean-variance
optimization having been the foundation of financial economic theory for more than 50 years, its
practical application by financial advisors has been limited. Particularly troubling are the lack of
a normative risk-aversion parameter customized to individual investor circumstances and the
need for extensive constraints to produce practically acceptable results. We propose a
comprehensive conceptual framework for better investment policy. To begin, we develop
investor circumstance-contingent risk aversion for use in portfolio construction, taking into
account higher moments of return only as needed. We recursively maximize expected
logarithmic return on what we define as “discretionary wealth” to generate many-period
maximization of median wealth without violating interim shortfall points. Then we extend this
basic framework based on point estimates to fully Bayesian logic. This offers not only improved
decision inputs but the advantage of deriving the probability distribution of the objective as a
function of portfolio weights before selecting the best portfolio. Implications are discussed for a
wide array of practical issues: investor leverage, longevity risk, higher return moments, dynamic
hedging, life-cycle investing, performance measures, and robust portfolio construction.
Hypotheses for implied market structure and pricing are also generated.
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A DISCRETIONARY WEALTH APPROACH TO INVESTMENT POLICY

1. INTRODUCTION

New ideas are more readily accepted if they are incremental to well-established
paradigms. And yet, as John Maynard Keynes wrote in the preface to The General Theory of
Employment, Interest and Money, “The difficulty lies, not in the new ideas, but in escaping
from the old ones....” It has been more than a half century since the publication of von
Neumann and Morgenstern’s Game Theory and Economic Behavior introducing risk into utility
curves and of Harry Markowitz’s 1952 article on an improved approach to optimizing portfolio
construction using estimates of risk aversion together with return means, variances, and
covariances. The von Neumann-Morgenstern expected utility theory has been taken as based
on the subjective preference of the individual, with little guidance on what makes a good risk
and return tradeoff. Markowitz mean-variance optimization limits itself to variance as a
measure of risk, and again omits guidance as to the tradeoff one should make between expected
return and risk. Both these paradigms counterfactually assume we know their input parameters
with certainty.

Continuing research on normative models is needed. Possibly no one is better aware of
this than Markowitz, as seen not only in his early pondering of long-run growth criteria
(Markowitz, 1976), but also in later work exploring the use of the semi-variance, as well as in
testing improvements through resampling and Bayesian methods (Markowitz and Usmen, 2003).
However, it is the simplicity of his original version that still has pervasive influence. Its
reduction of risk to a linear function of variance in investment returns is not well-suited to an
investor confronting increased use of leverage and derivative securities with option-like
characteristics. Even for plain vanilla securities, the non-linear structure of the portfolio
optimization problem conflicts with the assumption of the adequacy of point estimates as
decision inputs, requiring the application of ad hoc constraints to produce usable results in many
practical cases, particularly in long-short portfolios. Finally, a subjectively chosen risk-aversion
coefficient is ill-suited to the household investor. This lack of specification for appropriate risk
aversion is especially troubling. As Campbell (2006) noted in his Presidential address to the
American Finance Association, “A fundamental issue that confronts the normative literature is
how to specify the household utility function.... Until some consensus is reached, normative
household finance should emphasize results that are robust to alternative specifications of
household utility.” We take Campbell’s statement as an appropriate challenge and a stimulus to
innovation. Utility, which has trouble gracefully representing problems with path dependency,
bears too heavy a burden as the primary tool for dealing with multiple periods, especially if
appropriate risk aversion is contingent on prior outcomes.

We are far from alone in recognizing the need for change, and others have made
important advances. However, research results beyond the more established paradigms of
finance have had surprisingly little success in diffusing better investing into general practice.

For example, stochastic differential equations (Merton, 1990) have yielded important insights,
but the resulting support for models integrating consumption and spending decisions, as in the
model of Dybvig (1995), has not discernibly influenced financial planners. The recognition of
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the need for a more informed input than subjective estimates of risk aversion and for a better
connection with interim shortfall avoidance have contributed to applications of the “safety-first”
concept early illustrated by Roy (1952). Stutzer (2000, 2003) has explored a more graceful form
of safety-first by characterizing portfolios with the fastest rate of decline in probability that a
time-averaged return falls below a threshold rate.! But this has not, despite its clear practical
relevance, been generally accepted for practical use. However, a recent paper by Das and
Statman (2009) illustrates an application of the method to optimization of portfolios
incorporating structured products with high moment characteristics. Their optimizations are
essentially Markowitzian with the addition of a constraint that returns will not be less than some
threshold with a probability greater than another threshold. The application of stochastic
dynamic programming, surveyed early by Ziemba and Vickson (1975), has shown success in
particular applications, and is being used today for some financial planning. But its complexity
has proved difficult to scale both in terms of problem size and usage.

Descriptive research in behavioral finance has documented consistent biases away from
what is regarded as “rational” processing of information as investment decisions are made.
Subsequently more normative models that incorporate some of these investor biases as
constraints, such as the use of separate mental accounts rather than integrated optimization, have
been suggested, as in Brunel (2006) and Das et al (2009). Such models show promise for
practical use because they can improve decision-making while conforming to user intuition. We
believe, however, that this concession of the necessity of investor biases within normative
models is premature, and that even if it should prove desirable, better results can be achieved
with a stronger normative foundation.

In this paper, we propose and motivate with indications for applications a normative
paradigm for better investment policy. This is not an empirical paper, but it does have empirical
as well as normative implications, in that investors who follow our suggested investment policy
are hypothesized to actually acquire more wealth and have a measurable impact on pricing and
clientele structures. This is not a paper focused on tests, but we do provide in Section 3.4 some
comparisons of the performance of Markowitz mean-variance optimization with fully Bayesian
discretionary wealth methods. Despite implications for practice that could have been used to
good advantage in surviving recent unpleasant market surprises and a minimum of mathematical
formulae, it is intended as a theoretical contribution.

Our paper illustrates this paradigm within two models. The first model assumes discrete
period point estimates for return characteristics arising from outcomes independent through time.
Both arithmetic and logarithmic returns are assumed bounded, supporting the application of the
Lindeberg central limit theorem (CLT) and mathematical conveniences such as the existence of

1 Stutzer’s work is similar in spirit to that of our point-estimate-based model in Section 2, in that he is concerned
with the ability to take into account higher return moments and has sought to eliminate the necessity of a purely
subjective specification of risk aversion. However, there are many differences. For example, working from a
normative premise that the best portfolio is one which has the fastest rate of decay in the probability that time-
averaged return will fall below a threshold, he finds that for a normal return distribution, the optimal portfolio is
Sharpe ratio maximizing, an assertion which we find true only as a very special case.



Taylor series approximations. Each period, the investor maximizes the expected logarithmic
return of discretionary wealth, a right-hand balance sheet concept akin to asset-liability surplus.
It is calculated as the residual of an augmented balance sheet that includes present values of
predicted cash flows to and from the investment portfolio. This process produces normative risk
aversion. The investor applies this model recursively so as to approximate maximizing median
wealth after many periods. The second model extends the logic of the first so that each quantity,
including risk aversion, is treated as a Bayesian probability distribution. This fully Bayesian
model greatly improves the robustness of investment policy in cases where conventional
Markowitz mean-variance optimization would require additional ad hoc modifications to
produce acceptable practical results.

We review material on the point-estimate model based on growing discretionary wealth
along the lines of Wilcox (2003). This foundation is still largely unfamiliar to academic readers
and is necessary to set the stage for the more recent work using a Bayesian approach. In
addition, its links with prior literature and the applications of this model have been amplified.
The second model based on Bayesian logic is new, although its application to longevity risk is
foreshadowed in Wilcox (2008).

The main contributions of this paper are twofold. The first is to improve the application
of Markowitz mean-variance optimization, both by providing its missing normative view as to
appropriate single-period risk aversion and by restricting its domain to contexts in which it may
be most effectively employed — long-only portfolios without excessive investment volatility,
with moderate to ample discretionary wealth, and absent strong skewness or kurtosis. The
second main contribution is the development of a more comprehensive and robust Bayesian
model for investment policy that can work well outside these contexts, as well as accommodate
risk in the investor’s future consumption plans. To help motivate the adoption of these ideas,
numerous applications are briefly introduced, contributing to the effective conceptual integration
of a wide span of investment issues.

The reader should note particularly that uncertainty in saving and spending plans is in
parallel to uncertainty in the investment returns and is fully comprehended by our Bayesian
approach. The implications of the fully Bayesian approach confined to the investment portion
are more subtle and do not produce big effects for very simple cases, but are important for cases
with long-short positions, high leverage, option positions, or nearly singular covariance
matrices. There are also two other innovative sallies in the paper — the implications for market
structure and pricing, and the observation that in seeking optimum leverage for a given set of
available investment characteristics, we have a powerful way of influencing, though not fully
determining, the larger financial planning problem that decides how much to plan on saving and
spending.

1.1. Building Blocks of the Paradigm

The first building block for our investment policy paradigm is a better method for the
investor to measure his or her current position. This is the discretionary wealth concept. We
believe this is a more natural way to represent multi-period path dependency than either “safety-
first” rules or constraints on probability of loss. It is similar to asset-liability management in



general, for example by Ibbotson et al (2007), with some important differences. Because human
capital supports both consumption and investment, we do not treat it. Similarly we do not
explicitly treat insurance issues. We treat as implied assets only time-discounted values of
predicted future cash flows to the investment portfolio. Implied liabilities apply to foreseeable
cash withdrawals from the investment portfolio. Discretionary wealth is the surplus of assets
over liabilities including these implied augmentations.

The second building block in the paradigm is a more reliable guide to the investor’s
efforts to improve his or her position. We take as our objective the maximization of median
discretionary wealth after many periods. By many periods, we do not necessarily mean long
time horizons, but rather that the time horizon may be usefully subdivided into sufficiently
many separate points of decision such that policies suitable for an infinite number of periods
will be nearly optimal. To achieve the simplicity required to enable broad diffusion among
investors, we do not embed transaction costs in our model, except as they may affect expected
returns. This omission is no different from that in Markowitz mean-variance optimization. The
underlying assumption of this building block is that it is in the investor’s best interest to grow
discretionary wealth away from the shortfall point of future financial commitments as fast as
possible so that he or she will have future choices with regard to increasing consumption-like
expenditures. In focusing attention on next-period discretionary wealth rather than on the
investment portfolio, our compass tells the investor both optimal investment risk-aversion and
whether there is a need to go beyond variance to higher statistical moments of return in
representing risk. Also, since this immediate objective involves feedback through changing
risk-aversion after unexpected discretionary wealth disturbances, it has important self-
correcting properties.

It is possible to understand and implement our models without referring to the utility
concept. However, those readers who find utility theory indispensable to their thinking may
note that our approach is similar to that of Rubinstein (1976) in his description of “generalized
logarithmic utility,” the generalization being the inclusion of an offsetting quantity to the
investor’s wealth.

Our pursuit of the multi-period long-run objective of maximizing median wealth after
many periods simplifies to engineering maximum expected logarithmic return on discretionary
wealth in the current period.> Though this linkage from current period objective to multi-period
result can be improved if the number of periods is too short to make full use of the CLT, that
improvement in precision would be at a cost of model complexity that we defer for more
specialized research. Note also that our approach surmounts obstacles raised by Merton and
Samuelson (1974) in response to Hakansson’s advocacy of growth optimality (1971, 1974), and
later by Samuelson (1990). Interpreting their objections to mean that all forms of growth
optimality are misguided is too sweeping a conclusion. Growth optimality for discretionary

2 Later in the paper we introduce the single period objective of maximizing expected logarithmic return of the
product of the implied leverage ratio (investments to discretionary wealth) and the portfolio return. In the same
manner as Markowitz’s return objective is tied to a utility objective, our single-period return on discretionary wealth
is tied to generalized log optimality as in Rubinstein’s paper. Unfortunately, mainstream utility functions such as
power utility are subsumed in this formulation only as special cases.



wealth, provided that one has enough periods ahead and that periods are short enough so that
self-adaptive risk-aversion prevents intermediate shortfalls, satisfies the requirement for the
degree of conservatism needed to protect plans for future withdrawals to support consumption
spending. We do not argue that the criterion of maximizing expected log return on
discretionary wealth is invariably sufficient. However, we do maintain that it is a considerable
improvement on conventional single-period metrics.

The third building block for better investment policy is the recognition by investors that
their knowledge is in the form of probability distributions rather than point estimates. The
investor should have available the advantage of Bayesian logic when its use makes a material
difference. The financial literature, summarized in Fabozzi et al (2007), has noted the
advantage of Bayesian priors and estimation methods in making the inputs to investment
decisions more robust. Going further, however, pioneers in the use of Bayesian methods for
utility-based optimization, as in Harvey et al (2008), reduce the distortions induced by
subjecting point estimates of input probability distribution parameters to non-affine (nonlinear)
calculations. These methods and insights need to be widely shared and their consequences
appreciated.

Our fourth building block is the incorporation of probability distributions for future cash
contributions to, and withdrawals from, the investment portfolio. For example, a household
investor desiring to provide for retirement consumption spending does not know how long he or
she will live. Ignoring this longevity risk will lead to inaccurate results because information
will be lost as to the joint probability of unusually long life and unusually poor investment
results. Probability distributions may be assigned to any of the important factors determining
discretionary wealth — for example, taxes, changes in employment and family needs, etc. — and
consequently assigned to optimal risk aversion parameters. Investment portfolio “optimization”
calculated without incorporating these contextual uncertainties that affect appropriate risk
aversion can lead to poor investment policy.

1.2 Scope of Paper

There is a strong history of research addressing the more global problem of integrating
saving, consumption and investment issues. Early and influential examples include Samuelson
(1937), Merton (1990), Grossman and Laroque (1990) and Dybvig (1995). This more global
problem seems a critical one for many households and businesses. However, in this paper, we
primarily provide tools with which to explore optimal investment policies given saving and
spending plans. That is, the investment planning process may be a single step in a more
comprehensive iterative process needed to bring consumption plans into effective coordination
with investment decisions. Accordingly, we will assume that any revisions of spending or
savings plans have already taken place before we address investment questions, understanding
that the investment solutions will often be provisional because they may be suboptimal in this
larger context.

We can illustrate the difficulty that led us to restrict the scope of the paper in this way
with an example based on two assets, a riskless asset with zero returns and a conventional risk-
bearing diversified portfolio. Following the analysis to be described later in the paper, we can
approximate the optimal ratio of the risk-bearing asset’s allocation to discretionary wealth by



setting it equal to the ratio of the risk-bearing asset’s expected return to its variance. However,
the investor has a choice between adjusting planned consumption so as to affect discretionary
wealth and adjusting the risky asset’s allocation. A normative model should reflect the costs to
that particular investor of a changed consumption plan as compared to a changed investment
allocation. To do so in a more objectively determined and comprehensive manner than simply
postulating a time-preference parameter — which we find problematic — seems to be a
formidable requirement.

Note again that we are not trying to describe investors as they are, as we would from a
behavioral finance viewpoint, but as they ought to be to achieve a specified objective. Though
we recognize the applicability of behavioral finance in practice, we do not address the
compromises a well-informed investment manager may find advantageous in providing services
to a naive investor, as in Brunel (2006). We also do not confront agency problems. Finally, we
apply in our ending examples simple Monte Carlo simulation rather than more advanced Markov
chain Monte Carlo methods. This will restrict us to demonstrating Bayesian logic for broad asset
allocation rather than providing tools for detailed portfolio management.

1.3 Organization of Paper

We have organized the paper as follows. In Section 2, we construct a framework based
on point estimates of discretionary wealth and return parameters to show how to arrive at a
contingent risk aversion for use in portfolio construction, period by period, taking into account
higher moments of return only as needed. In Section 3, we allow the return decision inputs to be
Bayesian probability distributions rather than losing information by compressing them to point
estimates. This allows us to use Bayesian logic to construct a probability distribution of
logarithmic return on discretionary wealth as a function of portfolio weights before selecting the
best portfolio. Having mastered that practice, we can easily extend it by allowing appropriate
risk aversion to also be represented as a probability distribution. This takes into account
imprecise estimates of future sources and uses of investment funds such as derive from longevity
risk.

The evolution in investment policy paradigm we seek will not be undertaken lightly
either by researchers or by investors. We have chosen to motivate the approach with short
introductions to a multiplicity of practical applications and implications for further research.
Consequently no reader interested in a particular application is likely to be satisfied with the
depth pursued. The purpose of this paper, however, is to convey the organizing power of a
single paradigm for wide use.

Accordingly, Section 2 follows this roadmap: determining appropriate single-period risk
aversion, mapping that problem into growing discretionary wealth, and then showing how to
provide appropriate risk aversion for Markowitz mean-variance optimization in common
circumstances. We then discuss point-estimate methods for investment when skew and kurtosis
are important. This is followed by a number of brief indications for application, including the
appropriate risk aversions for each higher return moment, managing higher moments through
shortening discrete periods between re-allocation, the impact of taxes, integration with
consumption decisions, dynamic hedging pitfalls, improved life-cycle investing, and customized
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performance measures. We end Section 2 with a discussion of implications for research in
pricing and clientele anomalies.

Section 3 brings Bayesian logic to the model of Section 2, extending it to include
probability distributions rather than point estimates for both return parameters and discretionary
wealth. After briefly describing what we see as the still underutilized potential for Bayesian
analysis in improving decision inputs, we investigate the potential improvements from using
fully Bayesian logic in translating decision inputs to probability distributions of our objective
function. This potential is fundamental to the often quite nonlinear nature of portfolio
optimization. We extend the scope of factors to be considered by including a probability
distribution for discretionary wealth based on longevity risk. Finally, we test Markowitz mean-
variance optimization relative to a fully Bayesian approach for a limited but instructive set of
examples. Robustness is tested using partial knowledge. Algorithm accuracy is tested using
fully accurate knowledge of the probability distributions for the inputs. In benign contexts, there
is only very slight disadvantage to using the Markowitz algorithm, provided that the risk
aversion parameter has been set with cognizance of discretionary wealth. However, the fully
Bayesian approach is shown to be meaningfully superior in cases where nonlinearities are
important.

Section 4 summarizes our interpretation of the implications of the paper for research and
practice.

2. BETTER POINT ESTIMATE INVESTING

It is common in finance to use point estimates as a substitute for probability distributions
for representing knowledge to be used in decision-making. For example, one usually calculates
the present value of an annuity with a single interest rate. Even though Bayesian methods offer
significant advantages under some circumstances, the convenient practicality of point estimate-
based calculations for many ordinary investment decisions cannot be ignored. Consequently, we
begin our discussion of investing decisions by asking how they might be improved while still
using point estimates.

We are far from the first to compare portfolio optimization using Markowitz’s approach
with some form of utility maximization.> With the well-behaved test cases usually employed,
and without explicitly allowing for the stronger risk aversion appropriate when discretionary
wealth is small compared to the investment portfolio, only small differences are found. This
section shows how Markowitz mean-variance optimization can be made into a more normative
generalized utility maximizer, but then indicates circumstances when it is likely to need
modification to contend with higher return moments.

Those familiar with the historical development of today’s modern finance may be aware
of the controversy in the early 1970s over whether so-called growth optimal models could be
assimilated into utility theory.” Mainstream academic finance work thereafter rejected this idea.

3 See, for example, Levy and Markowitz (1979).

4 See Breiman (1961), Thorp (1971), Hakansson (1971 and 1974), and Merton and Samuelson (1974).



However, a maverick wing of financial researchers has steadfastly taught the value of growth
maximization. For examples, particularly the references to “fractional” Kelly strategies (see
MacLean and Ziemba, 2006 and Thorp,2006).

The “discretionary wealth” approach put forward here reframes the investment problem
to one of growing residual wealth above a shortfall point, as mathematically foreshadowed in
Rubinstein (1976), thereby skirting old controversies. Though related to the fractional Kelly
approach, we believe it provides an improved mechanism for changing relative risk aversion as
total wealth changes its relationship to a shortfall point. Its use of variable risk aversion is also
related to the Black and Perold (1992) and Perold and Sharpe (1995) formulation of “constant
proportion portfolio insurance” (CPPI). However, unlike CPPI, it takes into account the need to
maximize expected growth rate above a shortfall point given investment return characteristics.
Finally, as noted earlier, there are “safety-first” cousins to our approach that seek to avoid the
subjective assessment of investor risk aversion, for example by focusing on minimizing the
probability of shortfall, as in Stutzer (2003).

2.1 Optimal Growth

Begin with a simple example. Consider a game of indefinitely repeated coin flips, with
equal probability of “heads” or “tails.” The payoff for each outcome is a return of +100% for a
head, and —50% for a tail. The expected return each turn is +25% of what we bet, but this does
not tell us very much about what we are likely to gain through compounding. Suppose that our
objective is to obtain the probability distribution of wealth with the highest median after an
infinitely large number of turns.

By symmetry across turns, the investment policy decision is to decide what constant
fraction of one’s wealth to wager at each flip of the coin. If we bet nothing each turn, our
median outcome is to end where we began, with an average return per turn of 0%. If we bet our
entire wealth each turn, our median outcome is also a 0% return, resulting from an equal number
of heads and tails. But if we bet exactly half our wealth each turn, our median outcome will be
maximized. The resulting best median outcome implies an average growth rate of only about 6%
per turn, illustrating that risk interferes with compounding. We arrive at this best policy by
maximizing the expected log return at each turn.

Note particularly that this solution is myopic. That is, to achieve the best solution in the
long run we can optimize even though knowing only the conditions prevailing in a single turn —
an enormous simplification of a multi-period problem.

2.1.1 Scope

To what kind of situations might we generalize this reduction in problem complexity?
For the purposes of this paper, we confine our attention to return probability distributions each
period that are independent of one another, with bounded log returns each period. Then by the
Lindeberg CLT (as in Feller, 1968), the probability distribution for the multi-period sum of
successive log returns will approach a normal distribution — with its median equal to its mean.
Consequently, if we maximize expected log return each period, we maximize the median log
return compounded over many periods. Finally, since rank order statistics such as the median
are preserved by taking the antilog, we know that we have maximized the median wealth after
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many periods. Note that in this chain of reasoning the there is no real need for a log-normal
distribution; the benefit of the CLT here is the attainment of a symmetric distribution with
median equal to mean. Further, there is no need for the single-period return to be either normal
or log-normal.

We can afford to limit our assumptions in this way because if, contrary to our
assumption, there is a periodic finite probability of a total loss, we know the median long-run
wealth is total ruin, and can avoid such a policy in any case. However, in adopting our criterion,
we need to keep in mind that it requires modification for dealing with problems where the
number of periods contemplated is too small to produce a practically symmetric distribution for
the sum of log returns. Then a more accurate procedure would be to consider detailed period-by-
period modeling, as with dynamic programming. Recall, though, that the periods can be as short
as we are willing to make investment decisions on independently distributed returns given
transaction costs, so that an investor in liquid securities facing a deadline a year away might
contemplate 12-monthly decisions. (As noted later, this higher frequency of decisions is also an
important way to diminish the impact of skew and kurtosis in probability distributions.)

2.1.2 Taylor Series Representation

To clarify the determinants of expected log return, we can express log return as a Taylor
series expanded around an expected mean arithmetic return as in Booth and Fama (1992), and
then take the expectation of each term in the series. This gives a relationship between mean log
return and the central moments of the distribution of the ordinary arithmetic return r, as shown in
equation (1).

3
V SV 2 KV 2
E ted In(1+r) = In(1+E) — + - + ... 1
xpected In(1+1) = In(1+E) 20+E)  301+E) 4(1+E) O

where In is the natural log function, r is the arithmetic return (the conventional, not logarithmic,
return measure), E is the mean of r, V is the variance of r, S is the skewness of r, and K is the
kurtosis of r (for a normal distribution K=3).

Although approximating functions of a random variable as a Taylor series is not
uncommon in the scientific literature, one may in general question when it is permissible to
express mean log return in this way, since the series still might not converge, or be said to
“exist.” Generally it seems a satisfactory response to note that practical cases where the Taylor
series does not exist or converge are those we would regard as inferior investment strategies.
However, for the purpose of simplifying this paper, we assume that both log returns and
arithmetic returns are bounded, even when leveraged, and that equation (1) is a valid
approximation of expected log return.

Note that if E and V are small, equation (1) will be well approximated by the following
equation, often used as a growth rate approximation.

Expected In(1+r) ~ E—V/2 (2)
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In Section 2.2, we will fundamentally modity these equations to apply to discretionary
wealth. But they already provide a window into multi-period investing.

2.1.3 Taylor Series Implications for the Management of Return Higher Moments

The difference between equations (1) and (2) gives us insight into the effect of changing
the periodicity of investment decisions. For independent, regularly sampled discrete returns of
similar distribution, E and V are approximately linearly related to the length of the time period.
This linearity of expected log return with period length dominates when periods are short.
However, as periods between decisions lengthen, V increases. Then equation (1) shows us that
the relative effects of the third, fourth, and higher moments, which depend on powers of V
greater than one, will become increasingly important and the relationship will become materially
nonlinear. For example, illiquid investments that force longer time periods between reallocations
may make negative skew and fat-tailed return distributions more costly to compounded returns.
Moving in the other direction, the ability to shorten the length of individual periods, controlling
higher moment effects at a cost of additional transactions, is an important feature of investment
policy choice.

A strongly held, but mistaken, assertion found in the finance literature is that the
adequacy of Markowitz mean-variance optimization is assured when asset returns follow a
normal distribution.” Although it is true that a normal distribution is completely determined by
its mean and variance, the relationship of variance to logarithmic utility as implied by equation
(1) 1s not the linear one represented by Markowitz’s objective function. For example, note from
equation (1) that the impact of the fourth return moment is relevant to our objective even for a
normal return distribution; it involves a non-zero kurtosis (K = 3) times the square of the
variance. The universal adequacy of Markowitz optimization using a linear function of variance
is precise only in the continuous-time case when return moments higher than the variance vanish.
Consequently, for some investor circumstances, higher return moments may need managing in
any return environment.

2.2 Discretionary Wealth Model and Applications

We reframe growth optimality to apply not to total wealth, nor even to investments, but
to a kind of implied balance sheet surplus we will term discretionary wealth. In doing so, we
answer earlier objections to growth-optimal normative models. For some readers, the change in
frame of reference may initially be disorienting. In the practice of astronomy, the relative
motions of the planets could be far more simply explained after Copernicus and Kepler reframed

> This seems to be a misunderstanding based on some ambiguous remarks in footnote 5 of Fama (1968): “Tobin
claims (and properly so) that the mean-standard deviation framework is appropriate whenever distributions of
returns on all assets and portfolios are of the same type and can be fully described by two parameters.” This is in
turn seems to be based on a clearer and less sweeping observation by Tobin (1958): “Whatever a two parameter
family is assumed —uniform, normal or some other — the whole probability distribution is determined as soon as
the mean and standard deviation are specified. Hence the investor’s choice among probability distributions can be
analyzed by pg-og indifference curves.”
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them from epicycles around circles around the earth to ellipses around the sun. In similar,
though perhaps less cosmic, fashion we reframe risk aversion. The convention has been to plot
“utility” against wealth, representing different degrees of risk aversion with different degrees of
curvature. Instead, if we were to express our normative approach in utility terms, we would
employ only a single logarithmic curve. Since the full range of curvatures is monotonically
distributed along the logarithmic curve, we can represent any degree of risk aversion through
changing the curve’s scaling. For example, if the value of investments is three times that of
discretionary wealth, then a 10% loss in the investment portfolio is a 30% loss in discretionary
wealth, placing the interval of change in a region of greater curvature, giving rise to an amplified
aversion to risk. Consequently, our model objective for discretionary wealth is to maximize the
expected In(1+Lr) each period, where L is the ratio of investable assets to discretionary wealth.

Who determines discretionary wealth? The investor determines it directly, and if one
wants to think in terms of utility, it is discretionary wealth plus its expected growth criterion, or
the implied goal of long term best median wealth without intermediate shortfall, that determines
utility, rather than the other way round.

We define discretionary wealth in terms of an accounting balance sheet, as in Table 1.
On the left side are our investment assets, plus the time-discounted value of foreseen financial
contributions to the portfolio. This present value is an implied asset. On the right side are our
current debts, plus the present values of our foreseen financial commitments that must be
satisfied by withdrawals. These latter make up an implied liability. The residual or surplus on
the right side we term discretionary wealth. In practice, there will be a fuzzy boundary between
implied liabilities that are truly committed and what remains as surplus. Here in Section 2, the
example amounts are sharply defined. In Section 3, we will allow balance sheet quantities to
have probability distributions. We also assume that we have captured all the foreseeable cash
flow, and that future cash flow surprises will be independent and bounded, in parallel to our
assumptions for investment returns. This assumption preserves the approximately recursive
nature of the investment policy to be derived.®

<INSERT TABLE 1 ABOUT HERE>

In the context of the iterative process for coordinating consumption and investment
policy noted earlier, we further assume that forecast spending and saving have already been
adjusted so that discretionary wealth is positive, and we need only consider how to make it grow.
An emphasis on growing something on the right-hand side of the balance sheet may require
further mental accommodation; discretionary wealth in accounting terms is not an asset but
rather more akin to book equity. It may be distinctly suboptimal to allocate an amount to risky
investments precisely equal to our discretionary wealth.

2.2.1 Application to quantifying the impact of higher moments

6 There is a second-order effect spoiling complete independence of portfolio level returns that prevents perfect
recursion. Future appropriate risk aversion is contingent on current changes in discretionary wealth, thereby
affecting future return volatility at the portfolio level. While valuable in reducing the probability of shortfalls, this
effect leaves open the theoretical possibility of still better multi-period strategies.
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In Table 1, the ratio of the value of the investment portfolio to that of the surplus or
discretionary wealth is 2.5. We refer to this as implied leverage, or L, though no borrowing is
involved, only scaling of return. That is, in this example if we have a 10% loss in the investment
portfolio, it results in a 25% loss in our discretionary wealth. Both the mean and the standard
deviation of arithmetic return are multiplied by the implied leverage L when we remap them
from the investment portfolio to discretionary wealth. This means that variance is multiplied by
L squared; the third moment, involving skewness, is multiplied by L cubed; the fourth moment,
involving kurtosis, is multiplied by L raised to the fourth power. The Taylor series for mean log
return has been mapped from the investment portfolio to discretionary wealth; it is shown as
equation (3).

3
LV SLV 2 KLV 2

Expected In(1+Lr) = In(1+LE) — + -
P ( ) ( ) 2(1+LE)> 3(1+LE)’ 4(1+LE)*

€)

Equation (3) makes very clear the functional relationship of expected compound growth
as it depends on leverage. Begin with variance V considerably smaller than expected return E.
As implied leverage L is increased, the initial impact is to improve compound return, but with
further leverage increases this relationship eventually peaks and turns downward. With still
further increases in leverage, expected log return for discretionary wealth becomes negative and
ensures eventual shortfall.

It should be clear that even if the investor has correctly specified expected log return on
discretionary wealth to the best of his or her knowledge, it is always possible, though unlikely,
for actual returns to produce negative discretionary wealth. In the context of recent market
disruptions, perhaps the more relevant question for many is how one avoids a situation where a
market crash makes it impossible to finance obligations. The discretionary wealth approach
itself provides a mild form of dynamic hedging that reduces this probability. The fuller Bayesian
model in Section 3 reduces it further because a wider spectrum of possible disturbances in a
posterior distribution for mean and covariances is taken into account. For example, if the
posterior distribution for the mean is a Student’s t distribution and that for covariances is an
inverse Wishart distribution, the resulting prediction distribution for returns will have fatter tails
than the data that informed the posterior distributions. In addition, one can introduce reserves for
unknown contingencies as an additional implied liability. This allows us to get the benefits of
dynamic adjustment of risk aversion as we reach lower levels of discretionary wealth. The
conventional practice of dedicating risk-free assets sufficient to cover all liabilities, as in some
pension asset-liability management and insurance accounts, is demonstrably suboptimal unless
transaction costs are very high. However, if discretionary wealth nevertheless becomes negative,
one can adjust only by increasing saving and decreasing spending plans. Ideally, as in Section
2.2.3, this will have been done earlier as implied leverage increases to concerning levels as part
of solving the more global financing problem, but again there is no foolproof answer.

Others have investigated portfolio optimization using the first three or four return
moments of a Taylor series approximation.” However, our focus on expected growth of log

7 See Harvey et al (2002), for example.
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return on discretionary wealth goes further. It better identifies the investor contexts where this
might be worthwhile and supplies through equation (3) an appropriate risk aversion for each
return moment. That is, dividing through by L to put ourselves in the Markowitz context, the
appropriate risk aversion for the second return moment is approximately L/2, the appropriate risk
aversion for the third moment is approximately L*/3, and the appropriate risk aversion for the
fourth, or kurtosis, moment is L3/4.

Equation (3) also highlights the combination of high leverage, high variance, skewness,
and kurtosis as joint determinants of the relative strength of higher moments. This expands the
usual research interest in return skewness and kurtosis to a broader list of interacting factors,
making clear the relevance of higher moments to households with marginally adequate
investment assets to support their future spending commitments. Return higher moment terms
can become material relative to the variance term in a rather nonlinear and explosive fashion as
discretionary wealth is shrunk, even for a portfolio that appears conventional. Though the
investor can frequently limit the relative impact of higher return moments by shortening the
length of periods between investment decisions, this ability may not always be practical,
especially for the household investor.

Finally, if one can estimate skewness and kurtosis, equation (3) provides an excellent
way to measure the impact of downside risk not captured by variance, reducing the need for
measurement of semi-variances and assorted ad hoc ratios.

2.2.2 Application to Markowitz optimization

The exploration of appropriate risk aversion noted above can be translated directly to the
Markowitz framework with minor approximation. Suppose that LE and L?V are small. Then an
approximation of equation (3) implies that:

Expected In(1+Lr) ~ LE — L?V/2 4)

In cases where L is fixed, whatever investment portfolio optimizes the value on the right-hand
side of equation (4) will also maximize the value on the right-hand side of equation (5).

(1/L) [Expected In(1+Lr)] ~ E — LV/2 (5)

This brings us back to the objective function of Markowitz mean-variance optimization,
with L/2 providing the risk-aversion coefficient. In that context, we have specified optimal risk-
aversion, or where the investor should be on Markowitz’s efficient frontier of best return for a
given degree of risk. This result, providing Markowitz’s missing normative risk aversion, is of
great practical significance.

2.2.3 Application to planning consumption

Suppose in contrast that the investment characteristics of the portfolio are fixed. What
can we say about desirable changes in the implied leverage? Solving for the optimal L in
equation (4), we arrive at L* = E/V. This should be sought through adjusting consumption plans.

However, if the allocations to investment assets are not fixed, we can determine only the
best products of implied leverage and asset weights. We cannot say without further information
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in the individual case whether it is L, or instead E/V, that should be altered. However, for each
combination, we can estimate the projected mean growth rate obtained by substitution into
equation (4) as (E*/V)/2. The optimal growth rate thus estimated, combined with the implied
coordinating consumption plan, should be useful information to the investor in choosing among
the available scenarios.

2.2.4 Application to taking taxation into account

Because the political process produces complicated tax rules, a detailed treatment of the
application of the discretionary wealth paradigm to taxable investors is too extensive to attempt
in this paper. However, broad guidelines can be noted.

First, portfolio optimization should always be done in after-tax terms. It should be noted
that this is not yet generally done in practice. Equation (3) makes clear that different effective
tax rates fundamentally change investment characteristics. Assuming gains and losses can be
offset, taxation of returns — whether interest, dividends or capital gains — affects both mean and
standard deviation of returns by multiplying them by (1 — T), where T is the effective tax rate.
Then taxes affect variance by (1 — T) squared, and affect the higher return moments by greater
powers of (1 — T). The difference influences appropriate allocation. High-tax-bracket investors,
other things equal, should appear less risk averse than low-tax-bracket or tax-exempt investors,
and especially less averse to higher moment risk.

Second, because some taxes, at least in the US, are levied at a point in time much later
than the event that triggers the liability, there is additional capital available for compounding
until tax payment. This can make the effective tax rate for long-held assets that increase in value
considerably lower than the nominal long-term capital gains tax rate. Also, because of the
possibility for what is known as tax loss harvesting, the tax-timing option values created for
volatile securities can further increase the additional capital available for compounding. One
way to approximate this effect for such assets is to further reduce the effective tax rate applied to
equation (3).

Third, taxes already owed may be assigned present values as implied liabilities. For
example, one may partition capital gain taxes on unrealized gains into the part corresponding to
current prices, represented as an implied liability, and that which may be incurred from future
gains, represented through adjustments to return parameters in equation (3). Similarly, an
unrealized loss may create an implied tax-benefit asset. For those wealthy enough to incur them
and who care about the after-tax size of their estate, in principle estate taxes may be treated
similarly by partitioning their representation between implied liabilities and impact on future
return parameters.

2.2.5 Application to dynamic hedging and bubbles

The simplest form of dynamic hedging is CPPI as described in Black and Perold (1992).
Too often the CPPI “multiplier”, which here plays the role of leverage as it relates to the
“cushion” above a “floor,” has been set by commercial vendors rather high so as to produce a
more appealing positively skewed return. But if the multiplier is set too far above E/V, and if the
first few periods are unlucky so that constraints on risky positions do not soon restrict the
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effective multiplier to a value closer to optimum, the expected log return on the cushion may
start negative and remain negative, and consequently the investor may become stuck at the floor.

Recursively maximizing the expected log return on discretionary wealth can result in a
mild form of dynamic hedging. It should be recognized that so long as the causes of changes in
discretionary wealth are common across investors, and investors with low leverage and with high
leverage do not act to offset one another, this household optimizing behavior will lead to
increased market volatility. This is a “tragedy of the commons” problem relevant to those
concerned with regulating markets.® While maximizing expected log return on fluctuating
discretionary wealth can be very beneficial for risk control for the individual household, when
undertaken collectively in the same direction, it will tend to reinforce bubbles and panics.

2.2.6 Application to life-cycle investing

If we think of risk aversion as rooted in personality characteristics, the profile
questionnaires often used by financial advisors in establishing customer accounts do not
encourage adjustments based on life contingencies. In contrast, the discretionary wealth
approach recognizes differences both in current implied leverage, including factors that affect the
present value of future retirement spending. This not only helps customize an investment
strategy to investors, but it provides for path-dependent adjustments in asset allocation
throughout a life-cycle. The appropriate asset-allocation path from youth through old age may
be quite different for investors with different wealth endowments and participation in different
investment environments, calling into question currently popular life-cycle mutual funds whose
asset allocation trajectory or “glide path” is based on years to a fixed date and that are marketed
to investors depending on age of retirement.’

In the discretionary wealth approach, the typical changes in implied assets and implied
liability as the investor approaches retirement and then approaches the end of life provide a
natural evolution in asset allocation. However, the factors of initial wealth endowment,
investment results and life events such as marriage, children, and health will also be reflected, so
that investments can be far better customized to the household’s needs.

As noted earlier, at some point close to the end of life, the shorter number of periods
ahead imply that the maximization of mean log return on discretionary wealth may be noticeably
improved upon as a means of maximizing the median ending result. One can imagine dynamic
programming solutions. However, the discretionary wealth model can be applied in truncated
two-moment form at that point, so that it will always be as good as Markowitz mean-variance
optimization enhanced by an appropriate risk aversion.

¥ Hardin's "The Tragedy of the Commons" describes a dilemma in which multiple individuals acting independently
in their own self-interest can eventually destroy a shared resource despite the fact that it is not in anyone's long-term
interest for this to occur (Hardin, 1968). This highly influential writing has been applied to a wide range of fields
that deal with resource allocation problems such as ecology, overfishing, and economics. In economics it is used to
describe the failure of incentives in the private sector to provide satisfactory maintenance of public resources.

9 We apologize to the reader who would like to see more detail on this important practical topic, and hope in the
future to provide examples space does not permit here.

17



2.2.7 Application to performance measures

Performance measures used by institutional investors to monitor investment managers are
typically focused on detecting the skill (or its lack) of professional investment managers, as in
Sharpe (1966, 1994). Equations (3), (4), and (5) make clear that comparisons of good and bad
performance can be better customized to the risk aversion needs of the particular household.
Such a customized performance indicator, aside from any adjustment for sensitivity to higher
return moments, is a comparison of E — LV/2 for the investor against E* — LV’/2 for the
benchmark. The implied leverage L, customized to the investor, is held the same for both the
benchmark and the portfolio. This is clearly superior to the “information ratio”, which
discriminates against risk-reducing strategies. In many cases it will also be more useful than the
Sharpe ratio. Only when implied leverage itself is near optimal, that is L ~ L* ~ E/V, will a ratio
of E to V!, such as implicit in the Sharpe ratio (ignoring the usual netting of the risk-free rate),
judge portfolio performance in a manner nearly optimal for household use. '

If higher moments are important, a more comprehensive performance measure can be
easily derived as a comparison of average logarithmic leveraged returns, using the investor’s
implied leverage. That is, we compare average In(1 + Lr) to average In(1 + Lr’).

2.3 Hypotheses for Descriptive Research

Consider that the maximization of long-term median wealth implies that investors
following a policy of maximizing expected log return on discretionary wealth will tend in
aggregate to accumulate disproportionate wealth. It is a short step to hypothesize that the overall
market structure is influenced by the preferences implicit in equation (3). This would help
explain phenomena that might appear mysterious within a narrower model. These come in three
categories — pricing phenomena explained by normative risk aversion to variance, pricing
phenomena explained by aversion to higher return moments, and clientele effects explained by
differences in implied leverage.

2.3.1 Application to variance risk aversion

It is not entirely clear whether it is a bond risk premium or a stock risk premium that
constitutes a puzzle for market models of pricing, (Mehra, 2007). However, according to the
discretionary wealth model, the long-term risk premium associated with the additional return of
stocks and bonds over that of nearly riskless investments ought to be influenced by a weighted
average of implied leverage across market participants, in turn associated with balance sheets
augmented by implied assets and liabilities. Empirical estimation of investor augmented balance
sheets (along with other model factors such as negative skewness in returns) might help explicate
what have sometimes been regarded as puzzles at the apparent size of such premia.

Also, over time, aggregate adjusting of allocations to reflect changing risk aversion
resulting from changes in household balance sheets would tend to result in the kind of price

' To see this, substitute L* into equation (4). If the risk-free rate were zero, half the squared Sharpe ratio would
give the optimum growth rate of discretionary wealth.
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volatility viewed as anomalous by Shiller (2000). This phenomenon should contribute to
widespread asset price bubble formation, with or without speculation as to future prices.

2.3.2 Application to aversion to higher moments

Many additional stylized facts often viewed as anomalies ought to follow from equation
(3)’s inclusion of higher-order return moments involving skewness and kurtosis. As earlier
noted, equation (3) reduces to a relationship involving only mean and variance when independent
returns are combined with continuous decision-making. However, when realistic trading and
decision-making costs are added, lengthening time periods between reallocations, as well as
implied leverages in many cases considerably greater than unity, make higher-order return
moments increasingly important. Securities and trading activity that provide additional positive
skew or reduce kurtosis become more valuable. Here are some of the more salient implications
if this value is priced.

Active investors following a “value-oriented” policy and active investors following a
“momentum” policy take opposite sides of a trade in high-order return moments. A momentum
policy buys positive skewness through dynamic hedging and a value policy sells positive
skewness, as described by Leland (1999). Consequently, value investors should earn higher
returns as compensation. It is unclear whether this is in addition to, or subsumed by, a premium
equivalent to the cost of options offering similar protection, but in any case higher expected
value-oriented returns should exist, as reported by Fama and French (1992).

Small capitalization stocks may be small because of low market to book ratios and
consequently earn a value premium. But in addition, most very small capitalization stocks tend
to be less liquid. Higher transaction costs effectively lengthen the time between investment
decisions and increase the relative importance of higher return moments. This increases the
relative importance of return kurtosis and provides a basis for an illiquidity premium consistent
with the small-stock premium documented by Fama and French (1992).

Investor lock-ups, such as those for venture capital partnerships with 10-year restrictions
on withdrawals, more generally may be supposed to earn an illiquidity premium reflecting
exposure to return kurtosis.

There is already considerable evidence for pricing of skewness in portfolios, as in Harvey
and Siddique (2000). But the most persuasive evidence may be in option pricing. By definition,
out-of-the-money options relate to the underlying security’s higher return moments more than do
at-the-money options. Out-of-the-money puts and calls provide purer protection against negative
skew and should therefore be valued more highly than implied by the Black-Scholes continuous
trading arbitrage pricing model. This standard model is based on an assumption of option value
as protection solely against variance. Its application to a spectrum of option prices should give
rise to the so-called volatility “smile.”

Similarly, the simultaneous sale of an out-of-the money call and purchase of an out-of-
the-money put protects against kurtosis in the return of the underlying security. Since this is
valuable, the put should be priced at a higher implied volatility than the call, giving rise to the
volatility “smirk™ when option pricing is interpreted as implied variance within the Black-

19



Scholes model. Note that this result may be non-intuitive: the probability distribution symmetry
implicit in kurtosis gives rise not to the symmetric “smile” but rather to the lopsided “smirk.”

2.3.3 Application to clienteles

There are sound reasons for investor clientele niches unexplained within the standard
Capital Asset Pricing Model (CAPM). We refer to niches above and beyond those engendered
by the existence of tax-exempt municipal bonds or differences in information availability.
Clientele niches can also arise from differences in appropriate response to higher-order return
moments. Consider, in the context of equation (3), the effective shrinkage of return standard
deviation both from higher tax rates and separately from lower household balance sheet implied
leverage. Because third and fourth moments involve increasing powers of standard deviation,
investors with higher after-tax implied leverage should be less willing to hold securities or take
actions that involve more negative skew and higher kurtosis.

Because most investors cannot make even approximately continuous decisions, here we
have a definitive break from the foundations of market models based on continuous finance, or
on any model in which only the mean and variance terms are relevant (e.g., CAPM, Sharpe,
1964). If surviving and dominant investors tend to act as suggested, then a two-fund separation
theorem, as in Tobin (1958), will be a poor guide to good investment policy. This has broad
implications for the kinds of investment products investors with different implied leverages
should hold. For example, a retiree requiring income to support a minimum lifestyle,
consequently having high implied leverage L, should not write call options, adding negative
skew to his or her portfolio. It is the wealthy investor with low implied leverage who can best
afford to write options resulting in negative skew, or is qualified to take on a 10-year lockup
(with kurtosis effects) for a venture capital fund. Neither should invest their risk-bearing assets
exclusively in a conventional one-size-fits all index fund. It will neither fully protect the
marginal retiree against higher return moments nor extract a full risk premium from them for the
wealthy investor with ample discretionary wealth.

2.4 Simple Example Using Point Estimates

A 55 year-old woman with a cash inheritance, after-tax, of $10 million desires a
$300,000 income after-tax for her remaining lifetime, in constant dollars after inflation."' An
after-tax, after-inflation interest rate is estimated at 2.5%. Her actuarial life expectancy is 27.7
years. A present value calculation of this implied liability as an ordinary annuity is about $5.95
million. Her discretionary wealth calculated on the basis of mean lifetime would be $4.05
million, and her implied leverage would be 2.47. A more relevant point estimate, however, is
that for the mean implied leverage, not the implied leverage calculated from mean lifetime.
Taking into account the probabilities for each possible lifetime from the actuarial tables, and
using those to calculate a probability distribution for implied leverage, the leverage distribution
is skewed with a long tail toward higher leverage as discretionary wealth is reduced. The mean
implied leverage is a somewhat larger ratio of 2.72.

11 This case is adapted from Wilcox (2008).
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We consider a case where the investment decision is not affected by transaction costs,
and the decision is what weight to give to four assets, a cash equivalent, a bond, and two stocks.
No short positions are allowed. The expected after-tax returns are, respectively, 2%, 3%, 6% and
6%. The after-tax standard deviations are 1%, 5%, 20% and 20%. There is no covariance of
cash and bond returns with anything else, and the two stock returns have a 0.9 correlation. Given
a simplified two-moment objective of maximizing expected portfolio return less half the implied
leverage of 2.72 times the portfolio variance, the best asset weights are about 0%, 66.7%, 16.7%,
and 16.7%. We have customized the degree of conservatism to the investor’s needs. In the next
section we will see how to improve this fit and how to accommodate more difficult cases. The
example is extended to take into account imprecision in these decision-input parameters through
the use of Bayesian logic in Section 3.3.

3. BAYESIAN INVESTING

We begin with the universality of imprecise knowledge and adapt our investment policy
to that assumption. Consequently we embrace Bayesian logic.

The Bayesian revolution in probabilistic reasoning seems to be gradually diffusing into
financial research.'® This is not limited to methods for more robust derivation of point estimate
return parameters for use in conventional Markowitz mean-variance optimization. With the
retention of full probability distributions for intermediate calculations, the subsequent asset
allocation process itself can be upgraded.”> One benefit is greater robustness to errors in sample
estimates. A second benefit is greater appropriateness of choices to available information
through taking into account nonlinear transformations of probability distributions. Further, once
Bayesian methods are mastered, it is easy to include uncertainty as to the appropriate risk-
aversion parameter, for example that resulting from longevity risk, as a factor influencing the
optimal portfolio allocation.

3.1 Better Point Estimates for Markowitz Inputs

We can improve conventional Markowitz mean-variance optimization by using Bayesian
methods even if they are employed merely to derive better point estimates for input parameters.
The well-known shrinkage models for expected return and covariance are, in spirit, highly
specialized Bayesian models adapted to derive better point estimates for input parameters.'*

2 For a review of basic Bayesian concepts and methodologies, see Gelman et al (2004) and Rachev et al (2008). Tt
and similar texts describe Bayes’ Law, conjugate prior and posterior distributions for representing knowledge about
likelihood distributions, and Markov chain Monte Carlo methods such as Gibbs sampling for more efficiently
producing posterior distributions in complex situations. For texts on MCMC, see Roberts and Casella (2005) or Liu
(2008). This is still a fast-moving field in terms of techniques for efficient handling of larger and more complex
problems; an Internet search using terms like “reversible jump MCMC”, Green (1995), “particle filters”, Liu (2008)
and “quasi-Monte Carlo”, Tribble and Owen (2008), will assist the reader in keeping up with recent progress.

13 The literature here has become too large to do justice to all the relevant research. Meucci (2005) and Fabozzi et
al (2007) review a wide span of applications. Recent contributions incorporating a Bayesian decision include
Greyserman et al (2006), Kan and Zhou (2007), and Harvey et al (2008).

' This thread includes, for example, Jorion (1996), Black and Litterman (1992), and Ledoit and Wolf (2004).

21



Here we instead briefly review several more general Bayesian techniques for better point
estimates of return distribution parameters, each having the useful, but too little used, by-product
of making available posterior probability distributions. Since these techniques are reported
elsewhere in the statistical literature, we will save our examples for the more subtle
improvements in subsequent decision-making to be described after introducing our second
model.

3.1.1 Application to risk estimation for portfolio construction

Prior to the development of more capable Markov chain Monte Carlo (MCMC) methods
in the 1980s, Bayesian estimation was typically done within conjugate probability distributions.
That is, we represent our knowledge with prior and posterior distributions, where both are
assumed to be from the same function family, differing only in parameters that increment by
specific formulae as more data are added. Commonly used likelihood distributions are each
associated with their own conjugate prior-posterior distribution family. The Bayesian
distinguishes between, first, the data-generating process as likelihood distribution and, second,
our knowledge of it as prior and posterior distributions. This distinction has important
implications for portfolio construction.

For example, suppose that a return-generating process is believed to be normal, but with
unknown mean and unknown variance. The relevant data are limited. Regrettably, the normal
distribution as prior and posterior is not conjugate to a normal likelihood distribution. A
different distribution — a normal mean conditional on a scaled gamma distribution for the
inverse of the variance — is conjugate.”” It leads to a Student’s t distribution for the marginal
distribution of the mean — which can produce fat tails. Also, the marginal distribution for
variance will be skewed, with a fat tail extending to higher values. That is, no matter what
variance we have observed, there is always a possibility that these observations were drawn from
a likelihood process with much larger variance, whereas it is impossible for the likelihood
variance to go as low as zero if we have observed variation. Ignoring these two facts by focusing
just on observed sample variance, along with the usual omission of the variance of the mean,
leads to both variance and kurtosis underestimation. In contrast, following Bayesian logic by
first generating a prediction distribution for returns based on random draws from posterior
distributions for mean and variance, and only then measuring the parameters of that distribution,
avoids these sources of bias.

3.1.2 Application to hierarchical models for return estimation

Consider a household investor attempting to discern investment skill among many
investment managers or advisors with similar described approaches but different adjusted
performance records. Absent more detailed knowledge, we can improve our assessment of each
manager’s skill by modeling this situation with a hierarchical likelihood. For example, we
might assume the likelihood of each individual manager’s mean return is normally distributed
around a global mean with a global variance. For each of the managers, that manager’s observed

' See Gelman et al (1995).
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return is normally distributed around that manager’s mean return, according to his or her
individual return variance.

The Bayesian estimation of the implied parameters shrinks the otherwise widely
dispersed estimates of each manager’s mean return toward the group average. The greater the
number of potential managers, other things equal, the greater will be the shrinkage. The
application of this principle, which underlies the appreciation of survival bias, would seem to us
to have societal benefits.

Consider further the problem of the quantitatively-oriented active investor seeking to
develop return forecasts for stocks in many industry sectors. For example, one might seek return
forecasts contingent on advantages in forecasting the price of oil. We are given a time-series of
past changes in forecasts of oil prices, together with monthly return data on a thousand common
stocks for a 10-year history. We could pool these data and estimate a single ordinary least
squares regression relationship, but we suspect that the slope of the relationship may differ by
industry sector. We proceed to estimate a hierarchical regression model. That is, individual true
sector regression coefficients are drawn from a global distribution, and the observed coefficients
for each sector are drawn from the individual sector distributions of observed regression
coefficients around their true individual sector regression coefficients. MCMC methods are
particularly useful for such estimations. '

3.1.3 Application to forecast model averaging

Consider the following likelihood linking two separate models, in this case incorporating either
X1 or X,, along with uncorrelated noise terms ¢, as predictors of Y.

Ylt ~a;t+ b1X1 + & (6)
Y2t ~ay + bzXz +& (7)
Y, ~ Binomial(0, Y1, Y2;) (8)

Equations (6) and (7) are alternative linear relationships. Equation (8) expresses the idea that for
any given observation, there is a probability 6 that Y1 rather than Y2; is the true underlying
model. Given posterior distributions for 6 as well as for both the individual model components,
we can construct a prediction distribution for Y.

The Bayesian statistics literature notes the increase in prediction accuracy possible
through this kind of model averaging rather than through a focus on the single best model.'” For
investment purposes, there is particular benefit through incorporating additional information in
cases where correlated predictors pose significant statistical problems for classical econometric
methods.

16 An easy introductory tool is WinBUGS, Lunn et al (2000).

"7 See George and McCulloch (1993) and Carlin and Chib (1995). An alternative approach that is popular is
reversible jump MCMC (also called the dimensional MCMC), see Green (1995).
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To provide a concrete example, suppose one is forecasting currency returns based on
interest rate differentials across countries (ignoring autocorrelation issues). The cross-country
differences in yields in one-month maturities and one-year maturities each appear to be a
significant positive predictor of subsequent weekly currency returns. However, these two
predictors are themselves very positively correlated (0.98). If we put them both in a
conventional ordinary least squares regression, we will arrive at a strong positive coefficient for
one predictor and a strong negative coefficient for the other. However, such models do not
generalize well to future data. Model averaging in this case produces a prediction distribution
reflecting positive coefficients for both predictors, greatly reducing sensitivity to small-sample
error.

Model averaging is potentially of very wide applicability. Unlike hierarchical models,
which capture nested relationships, model averaging is a general approach for combining non-
nested relationships. This concept extends not just to alternative predictive variables, but to
entire systems of modeling, such as one faces in combining industry sector, country and style
factors in forecasting international stock returns.

3.2 A Fully Bayesian Model

We can extend Bayesian logic beyond initial input estimation to subsequent decisions.
Our second model looks the same as before: maximize each period expected In(1 + Lr), the
expected logarithmic return on discretionary wealth. The novelty of this model, however, is that
a joint prediction distribution for the components of In(1 + Lr) is created before making a
decision as to best portfolio allocation to investments. The hallmark of a fully Bayesian decision
is the preservation of all relevant information until the final ranking of decision alternatives.

Our approach should not be confused with a “resampling” method that deals with
uncertainty by building a portfolio based on an average of security weights derived through
repeated conventional mean-variance optimizations given perturbed input parameter point-

. 18
estimates.

3.2.1 Why preserve input and intermediate probability distributions?

Point estimates are so much easier to use, and consequently used so frequently in
everyday financial calculations, that we may forget they are mere abbreviations of our
knowledge. Our discussion in Section 3.1 of fully Bayesian decision-making implies that it is a
mapping from input probability distributions and decision alternatives to output probability
distributions, the latter further mapped by a functional into single-dimension preferences. In
contrast, conventional practice with Markowitz mean-variance optimization collapses
information to point estimates at the beginning. That is, a functional transformation of
information from higher dimension to lower dimension takes place before calculations of the

'8 Michaud (2001) has shown that averaging classically optimized portfolios indicated by perturbed input point
estimates can improve results. This appeared to Markowitz and Usmen (2003) to be better than a Bayesian
approach, though with a rejoinder by Harvey et al (2008). Although a fully Bayesian decision model can involve
considerably more computation than the resampling approach, it avoids being misled by problem features involving
nonlinear calculations.
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optimal security weights. Whether the discarded information is relevant or irrelevant to this
evaluation is greatly influenced by the degree of linearity of the mappings in the process.

Consider the following examples of potential mappings involving nonlinearities. The
mean of the product of two normal distributions is not the product of the component means. The
mean of the distribution for 1/X is not the reciprocal of the mean for X. The means of the
distributions for each of the elements of a covariance matrix’s inverse cannot be determined from
the means of the distributions for each element of the original matrix. The mean of a constrained
variable’s distribution cannot be obtained by constraining the mean of its original distribution.

In all these non-affine (nonlinear) cases, an inference as to the mean of the function’s results is
biased by attempting to infer it by applying the same function to the mean of the input
distribution.

The presence of mapping nonlinearities before the final preference functional calls into
question any decision based on point estimates of inputs with dispersed probability distributions.

3.2.2 More comprehensive picture of optimization nonlinearities

Suppose the returns of two financial assets differ in their means and variances by only
infinitesimal amounts, and that the correlation of their returns is 0.99. If we optimize using full
probability distributions with realistic predictive dispersion, their appropriate weights will be
close to equal. In contrast, if we use conventional point estimates to make the calculation, we
approach a singular matrix. We will then choose to take a very large long position in one
security and a very large short position in the other. This is an invalid conclusion to a simple
situation.

Two sequences of mappings are involved in comparing conventional Markowitz
optimization to Bayesian optimization of mean log return on discretionary wealth; they are each
highly nonlinear.

Consider first the conventional use of Markowitz mean-variance optimization. The
mapping of investor factors required to arrive at a fixed risk-aversion parameter is unknown and
we will put it aside. The remaining portions of the mapping sequence runs from input
distributions for return characteristics to input point estimates, and thence to a proposed optimal
set of weights, omitting consideration of a probability distribution for the objective function.

In contrast, the Bayesian mapping sequence runs step by step from funding input
distributions through present value and leverage ratio distributions and step by step from
posterior distributions for return characteristics to predictive distributions for return, often with
significant higher moments. We derive a probability distribution of the objective function,
including all constraints, as a function of weights and thence arrive at an optimal set of weights.

Because of nonlinear mappings within both sequences, the results will usually diverge,
sometimes very little, but sometimes disastrously. Let us consider in more detail the original
problem of Markowitz as expanded to show its relationship to expected log return. It maximizes:

Objective = max[LW’E — (L*/2)w’Vw], subject to constraints. 9)
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Equation (9) can be regarded either as a relationship of point estimates or of probability
distributions. Conventional practice takes it as relating point estimates. In equation (9), w (the
vector of security weights), is subject to at least a budget constraint, and possibly to other
constraints, W’ is its transpose, E is the vector of point estimate mean security returns, and V is
the matrix of point estimates of return covariances. L is a risk-aversion parameter, which, since
it is conventionally viewed as a point estimate, can be divided through to produce the familiar
form of Markowitz’s objective function.

Suppose the only constraint was the budget constraint; the sum of the weights, positive or
negative, must be unity. We can solve for optimal weights using a Lagrangean multiplier for this
constraint. Augmenting V to V’ and E to E” to take into account the multiplier, we produce the
optimal weights to the point estimate version of equation (9), augmented by a value for the
multiplier, to form W” as in equation (10).

W’ = V”—l(E”/L) (10)

We see that the determination of weights in equation (10), whether explicitly accomplished as
here or implicitly arrived at through the use of penalty functions or some other method, involves
the inverse of the augmented covariance matrix, a highly nonlinear operation. This is multiplied,
another nonlinear operation, by mean returns, and divided, another nonlinear operation, by the
implied leverage determining appropriate risk aversion.

Consider now the Bayesian sequence of mappings of probability distributions from inputs
to the probability distribution of the objective function as a function of security weights,
beginning with equation (9) as relating probability distributions rather than point estimates. The
initial calculation of the probability distribution for L involves nonlinearity in both (1) present
values to determine assets and liabilities and (2) a leverage ratio whose denominator
discretionary wealth is a difference. The squared value of the distribution for L induces another
important nonlinearity, especially if the distribution for L has a long upward tail, as would be the
case for a moderate income retiree who might live longer than expected. Since neither E nor V is
known in reality with much precision, and since the appropriate posterior distribution for V is
skewed with a long upper tail, the effective scope for departures from the point-estimate-based
method is increased further by multiplication to produce distributions for LE and L?V,
respectively.

Comparing the two mapping sequences, a conventional point-estimate-based sequence of
nonlinear calculations cannot be expected to closely track the result of compounding probability
distributions through the intervening nonlinear mappings. Those who use such conventional
optimizations must employ a variety of ad hoc strategies to produce acceptable practical results.

Adding position constraints, such as the requirement that no securities take negative
weights, and that no security can take more than a modest maximum weight, can reduce the
biases introduced by the point estimate approximation. Markowitz (1983) did something similar
when he advocated allowing only constrained short positions. However, at best, constraints
reduce errors in suboptimal fashion. Additional strategies, such as (1) reducing the number of
securities considered or (2) assuming a simpler factor structure for V (as in Jacobs et al, 2005), or
(3) Bayesian shrinkage of the input V toward a simpler structure (as in Wolf and Ledoit, 2004),
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can all reduce the scope for distortion by reducing the nonlinearities produced by matrix
inversion. However, though these strategies reduce the symptoms, they do not truly cure the
disease of relying on point estimates for a problem that includes non-affine mappings of
probability distributions. In any case, the disease reappears as soon as we include uncertain risk
aversion in our problem.

3.2.3 Application to integrating appropriate risk aversion uncertainty

Since Markowitz’s 1952 contribution, financial research has paid a great deal of attention
to risk regarding investment returns. In contrast, far less attention has been given to the
inevitable, and often quite large, risk concerning the household investor’s future sources and uses
of investment funds. The present values of these future cash flows are important determinants of
current discretionary wealth, and in turn determine the appropriate level of single-period risk
aversion. Consequently, appropriate risk aversion should not be considered as a point estimate,
but as a probability distribution. If this is not done, optimization will not know enough to avoid
unfortunate Lr combinations: for example, longer-than expected life, resulting in high implied
leverage, combined with worse than expected returns. When we consider appropriate risk
aversion as a probability distribution, we further discover that the shortcut Markowitz objective
function obtained by dividing equation (4) by L, the implicit leverage, is often inadequate for
household investment. Whenever, for example, the mean of L-squared is not very close to the
square of the mean of L, the Markowitz objective will tend to produce additional distortions
away from our objective. This effect tends to be exaggerated for those whose discretionary
wealth is slim. Fully Bayesian decision-making applied to the discretionary wealth approach
gives us a conceptually simple way of bringing these additional considerations into the
household investment decision.

Uncertainties with regard to future cash contributions and withdrawals include not only
longevity risk but many other sources and uses of investment funds. Additionally, future cash
flows must be time discounted to create implied balance sheet items. The associate risks can of
course be addressed by adding hedges to the portfolio problem, as when a pension fund considers
Treasury inflation protection securities (TIPS) rather than Treasury bills. However, this
consideration of hedges is more accurately done in the context of a more complete representation
of the problem. Uncertainty as to the time discount rates to be applied to both real plans, such as
maintaining a standard of living in retirement, and nominal plans, such as paying a capital gains
tax on today’s value of stock holdings, can be a major cause of uncertainty in implied assets and
liabilities.

All this complexity can be summarized in a single distribution for discretionary wealth.
Even so, the subsequent mapping of uncertainties in future funding flows into discretionary
wealth and thence into the distribution for implied leverage L is highly nonlinear, making it
especially important that we address it. Imprecision in appropriate risk aversion does not prevent
us from portfolio optimization. However it is a further reason for households facing uncertain
needs not to place reliance on conventional mean-variance optimized portfolios. Anecdotally,
many financial advisors do use these models.
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3.2.4 Application to fully Bayesian optimized portfolios

Conceptually, the fully Bayesian portfolio construction decision process is simple, though
it may involve a large number of calculations. We need to begin with likelihood process for a
distribution of returns.” Suppose we have already available joint posterior probability
distributions for return mean vector E and covariance matrix V.**  We then randomly draw from
it a large sample of E,V pairs. These pairs are then substituted into our likelihood model to
produce a very large predictive sample for returns. We have already noted that this process will
add additional kurtosis to the predicted return distribution. We do the same for implied leverages
given discretionary wealth uncertainty, so as to produce an independent prediction distribution
for the risk-aversion coefficient. These return and appropriate risk-aversion scenarios are
combined to form a more comprehensive joint probability distribution, which in general will tend
to increase the importance of higher moments for consequent log returns on discretionary wealth.
Finally, we optimize security weights over this very large sample according to our objective
function, in this case expected log return on discretionary wealth, taking into account any
constraints. These may include not only a budget constraint but a prohibition against short
positions, as well as many other constraints imposed by the investor’s or the investment
manager’s situation. Dimensionality of input information is thus preserved until the final
ranking.

Within this general framework, one may choose from a variety of likelihood models, of
greater or lesser complexity, for returns and implied leverage. Derivative securities may be
included. With the advent of stronger optimizing algorithms, we can also cope with more
complex solution constraints than were addressable when Markowitz first formulated the
portfolio optimization problem.

In essence, we are employing a form of the old technique of scenario analysis, as in
Markowitz and Perold (1981), but using the calculation speed of the computer to range over
many thousands of scenarios.

3.3 Test Examples

Much of the advantage of Bayesian investing can come from more accurate derivation of
point estimates for means and covariances assembled through the methods noted in Section 3.1.
However, since these effects are already relatively well known, we focus here on an illustration
of the remaining improvements that can be obtained through preserving full probability

19 Though log-normal or Student’s t distributions are common in the literature, neither these nor a normal return
process is a precise model for realistic security return generation. But a multivariate normal likelihood distribution,
Winsorized so that returns cannot be worse than —99%, will be used in Section 3.3 in our test examples because we
want a best case for Markowitz mean-variance optimization before comparing it with our fully Bayesian model.

20 We omit estimation of the input parameter posterior distributions because this topic is already well covered in the
investment literature. If this estimation is done for each parameter through formal Bayesian methods, a posterior
probability distribution will have been created, even if the original purpose was to obtain a point estimate from it.
We take a two parameter case as typical, although one can include higher moments at the cost of increased
complexity, as along the lines of Harvey et al (2002).
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distributions in our calculations of best mean log return on discretionary wealth. The examples,
which extend the example of Section 2.4, are contrived so that they are small enough to be easily
simulated without MCMC, but contain the principles that lead to distortion and inaccuracy when
attempting to maximize expected log return on discretionary wealth using a conventional
Markowitz mean-variance optimization.

We observe two distinct benefits. First, we find that the asset weights learned from
limited samples using log returns on discretionary wealth are more robust than mean-variance
optimizations when they are tested out of sample with additional observations from the same
likelihood process. A second benefit in accuracy occurs even when our input distributions are
fully informed with respect to the likelihood process.

3.3.1 Test structure

There is an overwhelmingly rich potential for exploration of examples. We confine
ourselves to two test sets. One explores robustness with respect to small-sample error (Table 2)
and the other explores accuracy given full information (Table 3). Within each set, we have sub-
tests — one constrained to only long positions, and the other permitting short positions as well.
Each test compares conventional Markowitz mean-variance optimization to a fully Bayesian
discretionary wealth model. The returns used in the tests are structured so as to not to unduly tax
Markowitz mean-variance optimization with return higher moments. We include only four
assets: cash, bond, and two stocks.

Scenario returns are constructed as follows. For each scenario, asset return means are
drawn from a posterior Student’s t distribution with 5 degrees of freedom, and means of 2%, 3%,
6.5% and 6%. These means are known with standard deviations calibrated at 0.1%, 0.5%, 1.5%
and 1.5%. Asset return covariances are drawn from an inverse Wishart distribution with 8
degrees of freedom, centered around covariances based on standard deviations of 1%, 5%, 20%
and 20%, and with zero intercorrelations, except that the two stocks have return correlations of
0.99. Finally, for each scenario, the means and covariances drawn are used to generate a set of
four normally distributed returns, Winsorized so as to prevent are returns of less than —99%.

A probability distribution for remaining lifetime for our 55-year old woman appears in
Figure 1. Note the transformation the shape of the probability distribution takes when mapped
into leverage L, as in Figure 2. The skew has been reversed as longer lifetimes translate to
increasingly larger leverages and consequently greater appropriate risk aversion.

<INSERT FIGURES 1 AND 2 AROUND HERE>
3.3.2 Procedure and results

We begin by illustrating Markowitz mean-variance optimization’s potential for
sensitivity to estimation error; then we demonstrate the impact on Markowitz mean-variance
optimization of non-affine transformations and loss of the higher moments of the downstream
distributions.

For our robustness test, we first construct 1,000 samples; each contains 100 joint
observations of implied leverages and asset returns. For mean-variance optimization, optimal
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weights are based on mean sample leverage together with sample return means and covariances
formed within each sample. For optimization of log return on discretionary wealth, optimal
weights are formed based on maximizing the mean of the logarithmic leveraged returns within
each sample.

Each sample’s resulting set of weights forms a “rule.” The rules are tested on a much
larger sample of 900,000 observations. The mean of log leveraged portfolio return is collected
for each rule, as well as the variance; the latter may help assess speed of convergence toward
best median long-term return. A single-period median is also recorded. The out-of-sample
results are shown in Table 2. Note that the log returns shown are for discretionary wealth. They
must be converted to arithmetic returns and divided by leverage to measure returns on the
investment portfolio.’

<INSERT TABLE 2 ABOUT HERE>

In the long-only case, the mean deficit experienced by the Markowitz approach as
compared to the fully Bayesian discretionary wealth approach was 110 basis points. Although
the median deficit was only 20 basis points, that measure overlooks some of the quite poor
results at the bottom of the distribution. One explanation is that the Markowitz models did not
learn to sufficiently avoid instances in which the combination of longer lifetime and poor
investment results was present.

When short positions were allowed, the results were a greatly increased degradation of
relative performance for Markowitz mean-variance optimization. The median deficit was 147
basis points and the mean deficit was 334 basis points. This is consistent with Markowitz’s
Presidential address to the American Finance Association (Markowitz, 1983) warning against
excessive short positions in the portfolio. To the extent that reliability is an issue because, after
all, we do not face an infinite number of periods, standard deviations are shown as well, and
there is greater variation in mean log returns on discretionary wealth among rules learned by
conventional Markowitz methods.

Our accuracy test is based on a single, larger learning sample of one million observations,
essentially full information. In it, we see that the Markowitz-optimized mean log return on
discretionary wealth in the long-only case was only 27 basis points worse than that of the fully-
Bayesian discretionary wealth approach. However, when short sales were allowed, even though
the Markowitz approach had essentially full information as to the distribution of both returns and
leverages, it fared 129 basis points worse.

Table 3 also gives the asset allocation selected by the two approaches. In the long only
case, the Bayesian discretionary wealth approach was to take less risk, consistent with the
nonlinear effects stemming from products of the long tail on lifespan and thus on leverage. In
the case allowing short positions, the Bayesian discretionary wealth approach made less use of
short positions. Finally, as in Table 2, it exhibited less variation in log returns.

21 Although a basis point (one hundredth of a percent) does not strictly apply to logarithms, it is convenient
terminology in the absence of better.
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<INSERT TABLE 3 ABOUT HERE>

3.3.3 Further discussion

By varying the conditions of the comparisons between the two approaches, it would be possible
to analyze in greater detail the factors contributing to degradation of mean-variance optimized
performance when compared against the standard of optimal mean log return on discretionary
wealth achieved through a Bayesian approach. Space does not permit an extensive exploration
here. However, it is generally apparent that household investors with ample, relatively saving
and spending plans, and seeking only broad asset allocation guidance with no consideration of
taking on short positions, will not gain much from the Bayesian model.

On the other hand, the benefits of the full Bayesian analysis can be material, with even
very small numbers of assets, for two quite different investors. One is the household investor of
proportionately lower discretionary wealth and consequently high implied leverage. For such
investors, uncertainty with regard to future cash flows, especially because of longevity risk, is
likely to create a strongly skewed distribution of possible implied leverages, as well as making
higher return moments of greater relative interest because of greater volatility of investment
returns on discretionary wealth. Another investor who may benefit from a full analysis is the
professional investment manager who may have high leverage, both implicit and explicit, who
may take on short positions, and who may use derivatives with strong high moment effects.

4. CONCLUSIONS

Taking advantage of the pioneering efforts of others, we have sought to distill and frame
the investment policy problem as simply as possible while retaining sufficient content for a rich
variety of applications. The theorist may ask “Why didn’t you use utility models more clearly,
and where are the stochastic differential equations?” We do not think these are necessary to
achieving substantial improvement in understanding investment policy. The practitioner may
more justly complain that by trying to do too much, we have provided only a small taste of each
suggested application, and that there should be more examples and tests for each. We hope that
others will help us fill these gaps.

We should not burden the reader with a recapitulation of the models or all their
applications, but we can highlight some of the main points. The models flow naturally from a
paradigm shift built on four ideas. First, an augmented balance sheet encompassing the present
values of future savings and spending plans to quantify discretionary wealth provides a superior
description of position. Second, long-run maximization of median wealth without interim
shortfalls is a worthy goal, and it can best be attained in the current period by maximizing
expected growth of discretionary wealth so as to provide the normative risk aversion missing
from Markowitz mean-variance optimization, so as to allow consideration of higher return
moments, and so as to increase opportunities for improving saving and spending plans. Third,
adoption of Bayesian logic using full probability distributions to preserve all relevant
information overcomes the fragility of point-estimate-based optimizing methods and reduces the
need for ad hoc constraints to produce usable results. Fourth, effectively integrating uncertainty
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in saving and spending plans is comparable in importance to dealing with return risks in setting
investment policy, and this may be done straightforwardly through a fully Bayesian approach.

We find that conventional Markowitz mean-variance optimization, provided it uses
appropriate risk aversion as outlined here, does a good job in many circumstances. We have
outlined the scenarios under which this will not be true. In Section 2, we saw that this was when
higher return moments were important, most clearly when derivative products are involved.
However, more subtly, the importance of higher moments is not simply a function of the size of
skewness or kurtosis, and can be dramatic even with relatively conventional securities under
certain conditions. The key index of this is the product of the implied leverage, the standard
deviation of returns, and what is left after taxation. This is because the impact on expected log
return of discretionary wealth from third and fourth moments is roughly proportional to
increasing powers of this index multiplied by skewness and kurtosis. Also, because the first two
moments of security returns are approximately linear with length of period, but higher moments
are nonlinear, an important control over the effect of higher moments is the periodicity with
which investment decisions are made within the investment policy. The longer the period
between decisions, the more important it is to take account of higher moments.

In Section 3, we found also that conventional mean-variance optimization will be
additionally problematic when saving and spending plans are imprecise, and consequently
implied leverages to discretionary wealth are uncertain, especially if skewed with a fat-tail
toward greater values. We also found that conventional optimization is inadequate as compared
to a fully Bayesian approach when the asset allocation contemplated allows short-sales and
involves interrelated returns with covariance matrices approaching singularity. This is revealed
not only in poor robustness to input error but also in less accuracy. The latter is true even in
benign return environments with full information as to the probability distributions from which
returns and implied leverages are drawn.

There are two by-products to this investigation we believe are worthy of additional note.
First, if we assume that investors implicitly following our suggested normative model actually do
amass greater median wealth, they should have a disproportionate impact on pricing. This
observation generates a number of descriptive hypotheses predicting and explaining what have
been regarded as anomalies. Additional market volatility and pricing of higher moments are
included, bearing not only on value and small stock premia, but also on the pricing of out-of the
money options and of lock-in provisions. This model also predicts investor clienteles for buying
and selling higher moments based on differences among investors in their implied leverages and
tax rates.

Second, this work clarified, at least for us, the power of the model to help determine
through optimal leverage calculations not only investment decisions but decisions as to saving
and spending. Since we have eschewed devices such as time preference parameters to link
consumption and investment returns, we cannot say in general whether it is consumption plans or
investment plans that should be adjusted. However, it is clear that in any particular instance the
costs of each adjustment can be assessed, the resulting expected growth rate can be calculated,
and we have at least specified what the product of the two adjustments should look like.
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Finally, we recognize that effective investment policy is a solution to a dynamic control
problem that we have only approximated. We have seen enough, however, of the contingent
nature of the solution to observe that the probability of shortfalls such as experienced recently by
many investors in the 2007-2009 period can be substantially reduced. We also conclude that the
age-based life-cycle products now being marketed are far from sufficiently customized and
flexible to make them good solutions for many investors.
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TABLE 1. EXAMPLE OF AN EXTENDED BALANCE SHEET
(Millions of dollars)

Investment Portfolio 10.0  Investment Debt 2.2
Implied Assets 1.5 Implied Liabilities 53

Discretionary Wealth 4.0
TOTAL 115 TOTAL 11.5
Implied Leverage 2.50
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TAELE 2. ROBUSTNESS OUT OF SAMPLE

(For 1000 Learning Samples of 100 Observations)
TESTED MEAN LOG RETURN ON D.W.
Cross-Learning Sample Statistics

Example Treatment Mean Median  Std. Deviation
1 Markowitz mean-variance 0.0573 0.0751 0.4313
Bayesian mean log on DW 0.0684 0.0772 0.3542

2 Markowitz mean-;ra riance 0.0053 0.0418 0.8434
Bayesian mean Ing on DW 0.0387 0.0565 0.6761

KEY:

Example 1-- Short positions not allowed.
Example 2 -- Short positions allowed.
Mote: The test sample was 900,000 observations.
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TABLE 3. ACCURACY GIVEN FULL INFORMATION
(For a Sample of 1,000,000 Observations)

FITTED LOG RETURN

WEIGHTS ON D.W.
Example Treatment Cash Bond Stockl Stock2 Mean 5td. Dev.
1 Markowitz mean-variance 1] 0.633 0.367 0] 0.08106 0.3199
Bayesian mean Ing on DW 0 0.729 0.274 0] 0.08377 0.2391
2 Markowitz mean-variance -0.827 1.430 1.931 -1.534] 0.07769 0.5726
Bayesian mean IDE on DW -0.213 0.962 1.322 -1.069] 0.09058 0.32084

KEY:
Example 1 -- Short positions not allowed.
Example 2 -- Short positions allowed.
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