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Abstract:

This paper proposes a new approach of valuing portfolios that contain illiquid assets. The
approach has three major advantages. First, the estimators are arithmetic averages of
individual asset returns or their proxies, so they strictly correspond to actual portfolio returns.
Second, the approach is able to value portfolios in which assets are arbitrarily weighted,
including equal-weighted, price-weighted, and value-weighted portfolios. Third, the model is
easy to extend to incorporate asset characteristic data to improve the accuracy. Smulations
with actual data of Dow Jones Industrials show that this new approach provides superior

estimator s than some currently available alternatives.



A New Approach of Valuing Illiquid Asset Portfolios

Many important assets transact infrequently. For example, the real estate, art, and bond markets
are generaly considered illiquid. In rea estate and art markets, assets tend to be held for years
or even decades between sales. In United States bond markets, less than 10% of bonds transact
daily. At the same time, while more high-frequency data of stock trades and quotes are
available, researchers encounter infrequent trading problem more often, for example when
calculating high frequency stock price index. The global equity market, if considered as an
integrated market, is also illiquid: while the globa equity market is considered open, regional
exchanges may be closed thus their listed equities may not be tradable. Not only many existing
asset markets are illiquid; many to-be-established markets might be so. For example, for the
new macro markets originally proposed by Shiller (1993a), such as national income and |abor
income markets, the underlying cash market prices may be observable only infrequently.
Clearly illiquid assets are widely spread within the economy, which therefore raises the question
how to value portfolios that contain illiquid assets, in spite of a potential paucity of transaction
data.

One well-known method for estimating the returns of illiquid asset portfolios is Repeat
sales regression (RSR).  This technique estimates the time series returns using the observed
transaction prices for a subset of assets. First suggested by Bailey, Muth, and Nourse (1963),
the RSR has been the subject of a great deal of discussion sincethen.* The original RSR model

has two serious limitations.  First, its estimators are geometric averages of cross-section

! For example, Case and Shiller (1987, 1989), Clapp and Giaccotto (1992, 1999), Geltner (1997), Goetzmann (1989,
1992), Goetzmann and Peng (2000), Goetzmann and Spiegel (1995, 1997), Shiller (1991, 1993b). All suggest

various ways to modify and improve the technique.
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individual asset returns, while the true returns for a portfolio, no matter an equal-weighted or a
value-weighted one, are always arithmetic averages of individual asset returns.  Jensen's
inequality implies that the geometric average of any set of positive numbers not all equal is less
than the arithmetic average of them. Thus the RSR estimators tend to be biased away from
actua portfolio returns. Even when all transactions are observed and the actual portfolio returns
are aready known, the RSR estimators still don't equal the actual returns. Goetzmann (1992)
proposes a correction method that approximates the arithmetic averages given the geometric
averages, under the assumption that the asset returns in each period are identically lognormally
distributed. This method works well in smulations. However, it needs to estimate unobserved
cross-sectional variances, which may not be easy in some scenarios such as when time series
data are heteroskedastic. As an aternative, Goetzmann and Peng (2000) propose a method that
directly provides arithmetic average estimators of the equal-weighted portfolio returns. The
second limitation of the original RSR method is that it actually provides estimators for equal-

weighted portfolio returns only, while one may be more interested in price-weighted, value-

weighted, or other special-weighted portfolios. Shiller (1991) proposes estimators, either price-

weighted or equal-weighted, that are analogous to the original RSR estimators but are arithmetic
averages, which is called arithmetic repeat sales estimator (ARS). However, more flexible
approaches that are able to value arbitrary-weighted portfolios would be desirable.

Researchers have proposed methods using both transaction data and data of asset
characteristic to estimate returns of infrequent-traded asset portfolios. For example, Case and
Quigley (1991), Case et al (1991), Clapp and Giaccotto (1992), “hedonic repeated measures’
method (HRM) by Shiller (1993b), and “distance-weighted repeat-sales’ procedure (DWRS) by

Goetzmann and Spiegel (1997). The primary methodologica advantage of using both
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transaction and characteristic data lies in its ability to exploit the relation between asset returns
with its characteristics.  Limitations of these methods are that they may not provide return
estimators for arbitrarily weighted portfolios, and their estimators may not have natural
interpretations, such as being arithmetic means of individual asset returns.

This paper proposes a new approach of valuing portfolios that contain illiquid assets
based on the method of moment, which is called the GMM approach throughout. The GMM
approach has three mgjor advantages.  First, it is capable of valuing arbitrarily weighted
portfolios as long as asset weights are known or derivable. Few previous methods claim to be
able to do so. Second, all GMM estimators of portfolio returns are cross-sectiona arithmetic
averages of individual asset returns (or proxies of them), so the estimators strictly correspond to
actual portfolio and no correction is needed, which is an important improvement over the
currently broadly used RSR method. Third, the GMM approach is potentially extendable to
incorporate asset characteristic data to improve the accuracy. On one hand, the characteristic
data help to differentiate one asset from another, which facilitate the correction for the biased
sample problem that transactions more likely take place upon a subset of assets in the portfolio
(this will be shown in section four). On the other hand, since assets with different
characteristics may have different return processes, characteristic data would help to proxy
individual asset's returns more accurately. Therefore the GMM estimators of portfolio returns
would be more accurate since they are averages of proxies of individual asset returns.

This paper notices a finite sample problem of the new approach that infrequently traded
assets tend to be over-weighted in the estimation. A correction method is proposed to provide
the finite sample version of the GMM approach. To compare its performance with that of the

RSR and the ARS and a simple method that estimates a portfolio's return for a period by
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averaging all available individua returns for that period, actual financial data are used to do
simulations.  Each simulation firstly constructs infrequently transaction data set by drawing
some of actual daily prices for the Dow Jones Industrials Index (DJIl) stocks over September to
December 1999, then estimates the actual DJII daily returns with the limited data set. The
accuracy of each method is measured with four different statistics. They are the squared error of
the geometric mean of return estimators, the standard deviation of the return estimators, the R?
resulting from regression of the actual DJII daily returns upon the estimated time series returns,
and the mean squared differences between the actual and the estimated returns. The simulations
show that the GMM approach is superior to other methods on measuring the overall performance
of portfolios and on capturing period to period return evolution as well.  The superiority of the
GMM is more obvious on valuing portfolios containing both liquid and illiquid assets.

The paper is organized as follows. Section 1 presents the mathematical model of return
process.  Section 2 discusses the basic model estimation and illustrates the estimators by
estimating an extremely small data set. It also discusses the finite sample problem and proposes
acorrection method. Section 3 describes the procedure of the simulation test and reports results.
Section 4 discusses potential extensions of the model, including incorporating characteristic data
into estimation and using them to correct the biased sample problem. Section 5 concludes. An
appendix presents details of estimation algorithms for the equal-weighted and the price-weighted

portfolios.



. Mathematical Modédl of Return Process

|.1. Asset returns

Define capital appreciation of asset a intimeperiod t, r_ ., asthe ratio of the price of the

at’?
asset at the end of time period t over its price at the end of period t - 1.

ra,t ° Pa,t / Pa,t-l'
Assume that the r,, is determined as following:

ra,t = E( ra t

m,C. )€, - D)
Theterm m, is a set of portfolio-wide common factors that affect al assets returns in time
period t. Theterm c,, isaset of characteristics of asset a intime t. The error term g,
captures asset-specific events that are responsible for unexpected change of price.  Assume

E(e,

m,c,,)=1and e, isindependent.

Based on these assumptions, common factors and asset characteristics jointly determine
an asset’s expected return in a time period. The common factors could be macroeconomic
variables like the risk-free interest rate, inflation rate, unemployment rate, and so on.  For
houses, asset characteristics could be hedonic variables such as location or square-feet of floor
gpace. For equities, they could be P/E ratio, B/M ratio, capitalization and so on. For bonds,
they could be bond maturity, rating, coupon rate or other characteristics. The assumptions about
the asset return process are consistent with that assets with different characteristics may have

different return processes.



|.2. Portfolio returns

A portfolio consists of units of value, say dollars, that are invested in different assets.
The return of a portfolio in time period t, r,, equals the ratio of the portfolio value at the end of
time period t over its value at the end of time period t- 1. Suppose a portfolio consistsof N

dollarsinvested in A different assets at the end of time period t- 1, and adollar d becomes r,

at theend of time t. Then the return of this portfolio in time period t is

Qo=

rd,t

r,° 1N : (2

Q
1

Since the return of a dollar equals the return of the asset in which this dollar is invested, all
dollars invested in the same asset have same value at the end of period t. Thus the portfolio

return in time t can be expressed as average of asset returns.

ro=a (w,r,). @3

A
o
=1

a

Theterm w,, isthe weight of asset a in this portfolio. It equals the proportion of the dollar

value of the portfolio invested in asset a at theend of t- 1.

|.3. Return of a random dollar in a portfolio

Dollarsin a portfolio are distinguished from each other by the characteristics of assets in
which they are invested.  The probability for a randomly selected dollar to have specific
characteristics equals the weight of the asset having these characteristics in the portfolio.
Obvioudly differently weighted portfolios have different probability distributions of dollar

characteristics. For example, consider portfolios of two assets. one risky bond and one risk-free



bond. For the equal-weighted portfolio, the probability of a random dollar being risk-free is 0.5.
For a price-weighted portfolio, if the risk-free bond has higher price, the probability of a random

dollar being risk-freeis larger than 0.5.
Let f,(c) denote the probability of a randomly selected dollar in time period t having
characteristic set c.  Denote by g, the expected return of the random dollar in period t

conditional upon the set of common factors, then

Efumocove.. @

0, £l Im) = (el m <) =& (el m o)1 6) -4

1
which equals the expected portfolio return. The second equality holds because of the law of
iterated expectation. The last equality holds since the probability for the random dollar to have
specific characteristics equals the weight of the asset in the portfolio that has these
characteristics. Using equation (1) and (4) and the fact that a dollar's return equals the return of
the asset in which this dollar is invested, one can aways write the return of a randomly selected

dollar d inthe portfolio as

re =aghy.€y, (5
with h,  ° E(rdyt|m[,cd OTE(rg, |m) , which is a function of the dollar’s characteristics.  Since
the dollar is randomly selected, it has random characteristics and the term h,, is a random scalar

with E(h,,|g) =1 by the law of iterated expectation.

Equation (5) connects the return of a randomly selected dollar with the expected return of
the portfolio. It has an intuitive interpretation. The return of a randomly selected dollar in a

portfolio consists of three parts. The first part is the expected return of the portfolio. The



second part is the expected deviation from the portfolio’s expected return due to the asset's

characteristics. Thethird part is arandom shock.

1. Modd Estimation

[1.1. GMM estimators

Now assume asset characteristics are not observable and the data consist of transaction
prices and time. Assume that a transaction always take place at the end of atime period. A

repeat-sale observation consists of the first transaction price, the time of the first transaction, the

second transaction price, and the time of second transaction. For observation n, denote by B,
the first transaction price (the purchase or buy price), by S, the second transaction price (the sale
price), by b, the time of first transaction, by s, that of the second transaction. The holding
interval of observation n, denoted by H, , consists of al time periods later than b, and not later
than s,,i.e, H,°{tb, +1£t£s}. Thelength of H, is denoted by T,,s0 T,° s, - b,.
Assume there are N repeat-sale observations and T +1 time periods in the sample, numbered
fromOto T. For time period t, denoteby O, ° {n|tT H .} the set of al observations that have
this time period in their holding intervals. Definethesize of O, i.e. the number of observations
that belongto O,, by N,.
Let y, equal the compound return from the observed buy to sell,
y,°S,/B,.

Then,



y,=0r, =090, e,)

i H, tiH, fH,

v./Og=0h,e,).

thH, i H,

e~ u ~
Since E&Q (h,.e,,)4=1, the moment conditions E(y,/(Qg,-1) =0 for n=1..,N, yield a
&l Hy a tl Hy

parameter-defining mapping under suitable regularity conditions, which are assumed to hold.
Sampl e counterparts to the moment conditions define the estimator of g:
o x I~ O
aw.cy,/Qg9.-1z=0,for t=1..T. (6)
nl O sl H, ﬂ

Theterm w,, indicates how many dollar samples the repeat-sale observation n provides, so it

eguals the weight of the asset that corresponds to the repeat-sale observation n.  An observation
provides more dollar samples of the portfolio if its asset has heavier weight in the portfalio.

Thus by choosing different w._., one could use the same data set to estimate returns of different

nt?

portfolios. For example, each observation provides the same amount of dollar sample for the
equal-weighted portfolio, so w,, should equal to each other to estimate the returns of the equal-
weighted portfolio. At the same time, an observation provides the amount of dollar sample
proportiond to its asset price for the price-weighted portfolio, so w;, should be proportional to
its asset price to estimate the price-weighted portfolio returns.

Rearranging equation (6), the estimator of portfolio returnin time period t is

) 2 ~ 0
gséwn,tgyn/ O6. % 7)

nl O {s/d H,,s't} @



Sincethe y, term is a compound return, the 'y, / OQS term is the compound return from

{s/d H,,s't}
which all expected returns for time periods within holding interval except t are subtracted. Thus
this term is a proxy of an asset’s return in time period t. Then obvioudly the estimator g, is an

arithmetic average of returns (or proxies of returns) of individual assets in time period t. It
includes the returns (or proxies of returns) of all assets in the portfolio, as long as the assets are
traded at least once before and once after current time period. Also, the return of each asset, no
matter the asset is traded frequently or infrequently, is directly included in the estimator only
once. Thus, this estimator doesn't directly over count frequently traded or infrequently traded
assets.

A very nice property of the estimators is that: when all assets are frequently traded, the
estimators are averages of individual asset returns, which exactly equal the actual portfolio

returns.

gt = é Wn,tyn :é Wn,t (Sn/Bn)

nl O nl O,

I1.2. Returns of Equal-weighted and Price-weighted Portfolios

From equation (6), this approach is capable of valuing arbitrarily weighted portfolios, as
long as asset weights are known or derivable. The equal-weighted and the price-weighted
portfolios may be the most widely used portfolios in research. (Here the value-weighted
portfolio is considered as a specia case of price-weighted portfolio, in the sense that the asset
price in a value-weighted portfolio is price for the whole asset instead of for just one share of the

asset.) Herethe details of valuing these two kinds of portfolios are presented.
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The estimators of the equal-weighted portfolio returns can be easily obtained by letting

=1/N, ,where N, isdefined earlier, as the number of observations that includes time period

t in their holding intervals. Denoteby g; the return of equal-weighted portfolio in time period t.

The estimator-defining equations are

- ~ .0
G :—é. Y.l Q6 T fort=1..T. )
t o {s/slH,s't} @

For the price-weighted portfolio, an asset’s weight in time period t is proportiona to its
price at the end of time period t-1. Denote by g the return of price-weighted portfolio in
time period t.  For illiquid assets, prices are not observable for all time periods, nor are

corresponding weights. However, the model itself provides estimators for all unobserved prices.

For the asset corresponding to the repest-sale observation n, an estimator for its price at the end

. 1l
of time period t-1is P,,, =B, (O @f . Then an estimator of the weight of asset n in time period

s=bp+1
tis
L-\'l ~
2 Bn O ¢

~ _ Pn,t.l _ s=hb,+1
Yo = 3P, o W0
it-1 Q ~p 2
il Ot a Bn Ogs =
nl Oy s=b,tl @

With the estimated weights, the return estimators of the price-weighted portfolio are defined as
& w0 o
ag, 0§’ := ags /Og":,for t=1..T. )
e} sbytl @ o 7]

Rearrange equation (9), the estimator of the price-weighted portfolio return in time period t is

11



(10)

[1.3. A lllustration of Estimators

For an example of the estimators of equal-weighted and price-weighted portfolios,
consider avery small data set consisting of two assets and three time periods numbered from 0 to

2. Thefirst asset was sold at the end of each time period, while the second one was sold only at

the end of the time period O and time period 2. Denoteby P ,,P,P,, the prices of the first
asset,by P,,,P,, the prices of the second asset.  Thus there are three repeat-sale observations,

the first two are for the first asset and the last one is for the second asset.

€R /P, U
é a
Y=gP./P, g
8P2,2 / PZ,OH
In this example, the estimators of equal-weighted portfolio returnsin time period 1 and 2
are
g 18 P A_leg oN 18, B ieg (11)
2 Pl,O Pz,o 9, g 2 P1,1 Pz,o O g
The estimators of price-weighted portfolio returns are
gAlp - I:?I.,ZI. + P2,2 /QZp AP — I:?I_,Z + P2,2 (12)

B
Bo*+Po ’ P.+ Pz,oglp

Obvioudly the return estimators of both the equal-weighted and the price-weighted portfolio have

natural interpretations.  The return estimators of equal-weighted portfolio are averages of

12



individual asset returns or proxies of them; the estimators of price-weighted portfolio equal the
ratios of portfolio values or proxies of them. At the same time, calculating the estimators is easy

because there are two equations for two return estimators of each portfolio.

I1.4. A Finite Sample Problem and its Correction

Equation (6) shows that an observation with holding interval H, directly appears in the
estimator-defining equations for all time periods that belong to H, . For example, an
observation whose holding interval consisting of period 1 and 2 would be used to estimate g,
and g, , and therefore appears in the defining equations for both two periods. At the same time,
from equation (6), the g, appears in the defining equation of g, and vice versa.  Thus this
observation is actually used twice in the etimation of §,: one time it directly appears in the
defining equation of ¢, and another time it is included in §, and g, appears in the defining

equationof g,. A finite sample problem would rise when the portfolio consists of small amount

of assets and the length of the repeat sale observation holding interval varies a lot.  The
observations that have long holding intervals may dominate those with short holding intervals
when estimating the portfolio returns because they are used for much more times.

Using the small data set from last subsection as example, one can easily show that the

compounded estimated return of the price-weighted portfolio for period 1 and 2 is
0°'6, =(P, +2P,,)/(R, +2P,,). The actua compound return is aready known from the
data, whichis (P, + P,,)/(P, +P,,). Clearly the second asset are over-weighted in the GMM

estimators, smply because it is less frequently traded and the corresponding repeat sale

observation has longer holding interval.
13



Down-weighting repeat sale observations with longer holding intervals can solve the
finite sample problem. Dividing each repeat sale observation with its length of holding interval,

eguation (6) changes to

%yn/Ogs 1—:0fort—l T (13)

nlq sTHj,

Using equation (13) to estimate the same data set used earlier, the compounded estimated return
of the two-asset price-weighted portfolio for two periodsis g9, = (P, + P,,) (P, + P,y),
which exactly equals the actual one. After the correction, the equal-weighted GMM estimator is

actually equivalent to the arithmetic-average equal-weighted estimator by Goetzmann and Peng

(2000).

[11. Smulation Test

[11.1. Alternative Methods and Accuracy Measurements

The simulations test the performance of four aternative methods in the estimating of time
series returns of the price-weighted index, i.e. the actual DJIl. The first one is the finite sample
version of the GMM method proposed in this paper (GMM). The second one is the version of
the repeat sales regression (RSR) that can be justified as maximum likelihood estimators
according to Goetzmann (1992). The third one is the instrumental variable version of the
arithmetic repeat sales regression (ARS) proposed by Shiller (1991). The fourth oneis a simple
method that estimates a daily DJII return by averaging al available individual daily returns for
that day (weighted by prices).  Though the repeat sales regression essentialy provides

estimators of equal-weighted portfolio returns, | still use it as a benchmark because it is well

14



known and widely used. The ARS is a natural benchmark since it provides estimators of price-
weighted portfolio returns. The ssimple method would be a handy choice when the problem of
data paucity is not serious, thus it is interesting to put the method in the smulation and test its
usefulness.

It is important to make sure it is fair to put these four methods together in the smulations
since each of them could have many variants. For example, the RSR has its variants like three-
stage RSR and Bayes RSR; the ARS has its interval-weighted versions and hedonic versions.
The GMM is also extendable to have smilar variants. | consider it is fair to put these four
methods together in a horse race first because they are al one-step methods while their variants
typically involve more than one steps and extra regressions, and also because they provide
estimators with obvious economic meanings while their variants generally don't.

Table 1 provides a simple comparison of the properties of these four methods. Among
them, the GMM method, the ARS method, and the simple method provide estimators that are
arithmetic means of individual asset returns, while the RSR provide geometric mean estimators.
The GMM, the ARS, and the RSR estimate portfolio returns with regression, while the simple
method doesn't use regression.  All methods except the RSR use the natural prices instead of the
logarithmic ones. The RSR is able to estimate returns for equal-weighted portfolios only and
the ARS is able to value both equal-weighted and price-weighted portfolios, while the GMM and
the smple methods are able to value equal-weighted, price-weighted, and other weighted
portfolios.  The RSR and the GMM methods both down-weight observations with longer

holding intervals, while the ARS doesn't.?

2 Shiller (1991) propose other variants that taking account of error
het er oskedasticity for different observations but require extra regressions
15



There are four different measurements for the accuracy of a method. Specificaly, the
first measurement evaluates the overall accuracy of a method. It isthe squared difference of the

geometric mean of the estimated returns and that of the actual returns, which is calculated by

ggt_ - %gt
a1 @

e

—||r—\

OO Oy C

The smaller is the squared difference, the more accurate is the method on valuing the portfolio's
long term performance. The second measurement is the standard deviation of the estimated
returns because a good method is expected to provide estimators whose standard deviation is
closer to the actual one. The third measurement is the R* resulting from regression of actual
return series upon estimated one, which captures the correlation between the actual and estimated
returns. A good method is expected to have a higher R?>.  The fourth measurement is the mean
of squared errors (MSE) of estimated returns for al periods. It also helps to capture a method's
period to period performance, and is calculated as

13 (.

ra6-al.
Among the four measurements, the first one, which evaluates a method's ability to measure a

portfolio's overall performance, is considered the most important.

[11.2. Simulation Procedure

The data are actual daily prices of 30 Dow Jones Industrial Index stocks from September

to December 1999. There are 85 trading days (so 84 daily returns for DJII since the first day is

and the estimators may no |longer be arithmetic averages of individual asset
returns.
16



the base period) and totally 2,550 daily prices for the 30 stocks. The basic approach of a
simulation is to randomly select some prices from all 2,550 daily prices to construct an
infrequent-transaction data set, then estimate the time series of DJIl daily returns over the three
months with different methods. Based on estimators, one is able to calculate the four different
accuracy measurements for each method.

The accuracy of different methods may depend on the frequency of trading (the length of
holding intervals) and maybe the percentage of liquid assets in the portfolio as well. Therefore
the test procedure carefully controls the number of prices drawn from the actual data and the
percentage of liquid assets in the portfolio.  Specifically, there are two groups of simulations.
In the first group, there is no liquid asset, and al "observed prices’ are randomly drawn from
actual prices. This group contains twelve scenarios in which the number of "observed prices' is
200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, and 2400 respectively,
representing scenarios in which illiquid assets trade with different frequency. Smaller number
of observed prices corresponds to scenario in which assets trade less frequently and vice versa.
In the second group of simulations, firstly randomly select some stocks as "liquid assets', whose
prices are observed over all sample periods. There are 4 scenarios in which the portfolio has
different percentage of "liquid assets': 10%, 20%, 30%, and 40%. In each scenario, the
numbers of prices drawn for other stocks, the "illiquid assets', are also controlled, being 10%,
20%, and 30% respectively. Consequently, there are total 12 different scenarios in the second
group of simulations: percentage of "liquid assets' ranges over 10%, 20%, 30%, and 40%; and in
each case, the number of observed prices for "illiquid assets’, ranges over 10%, 20%, and 30%.
The second group of simulations test performance of different methods in valuing portfolio

consisting of both liquid and illiquid assets. For each scenario in the first and the second group,
17



simulation is repeated for 100 times. Thus the reported statistics of accuracy measurement are

averages over 100 simulations.

[11.3. Simulation Results

Table 2 reports the simulation results for the four methods on valuing portfolios sorely
consisting of "illiquid asset” portfolios. From the squared error of the geometric mean of return
estimators, the GMM method persistently provides the most accurate measurement of portfolios
overal performance. For al twelve scenarios, the squared error of its geometric mean is always
smaller than that of other methods. The running up is the ARS, followed by the RSR and then
the smple method. The ssimple method perform poorly when assets trade not very frequently,
and finally over-performs the RSR when the data missing is less than 7%. The standard
deviations of estimators for al four methods generally decrease and converge to the actual
standard deviation when more and more prices are observed. However, no method is obviously

superior in the sense that having standard deviation much closer to the actual one.

Not a surprise, for al four methods the average R® increases with the number of
"observed prices’, and the average M SE decreases with it, which confirms that all methods better
capture actual return's evolution when more prices are observed. At the same time, the GMM

method persistently and obviously performs better than the ARS and dlightly better than the RSR

in terms of higher R*>. The simple method has high R* when assets trade very infrequently,
which is actually mideading because there may be many periods for which the simple method is
simply not able to provide estimators. The RSR is actually doing well when assets trade very
infrequently.  Its average MSE is smaller than that of GMM and ARS when the number of

observed prices is less than 1200. As a conclusion, the GMM works well in capturing the

18



evolution of daily returns for price-weighted portfolios consisting of illiquid assets only, at least
when assets trade reasonably frequently.

Table 2 reports the simulation results on vauing portfolios consisting of both "liquid
assets' and “illiquid assets’.  All methods seem more accurate than when estimating portfolios
sorely consisting of illiquid assets, after the number of observed prices is controlled.  For
example, the average R* for the GMM to value portfolios containing 10% liquid assets and with
10% of illiquid assets' prices observed (corresponding to about 500 observed prices) is 49.85%,
while the average R? for it to value portfolios sorely containing illiquid assets that have 600
observed pricesis 37.46%. In conclusion, al methods are more accurate if some of assets in the
portfolio trade very frequently, even though the total number of observed pricesis low.

The GMM method is clearly superior to al other methods on measuring the overall

performance of portfolios. Its squared error of geometric mean of returns is obviously smaller

than that of other methods in all scenarios. At the same time, the GMM always has higher R?

than other three methods, and it has smaller MSE than other methods except in severa scenarios
such as valuing portfolios consisting of 10% liquid assets and with 20% or 30% prices observed
for illiquid assets.

In conclusion, the ssimulations confirm that the GMM method is clearly superior to other
three methods. the ARS, the RSR, and the simple method, on measuring portfolios overall
performance and period to period evolution as well. It superior is more obvious when valuing
price-weighted portfolios containing both liquid and illiquid assets. When valuing the portfolios
sorely consisting of illiquid assets, the GMM method is obviously more accurate than the other

methods at least when assets trade reasonably frequently.
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V. Possble Extensons

When asset characteristics are observable, the accuracy of portfolio return estimators may
be improved.  First, since asset characteristics are assumed to help to determine returns,
knowing characteristics helps to obtain better proxies for each assets single period returns, thus
helps to obtain more accurate portfolio return estimators, say, hedonic GMM estimators.
Second, knowing characteristics helps to differentiate assets from each other, which make it
possible to correct the biased sample problem. The first subsection discusses the hedonic GMM

estimators, and the second one discusses the correction of biased sample.

IV.1. Hedonic GMM estimators

Equation (7), (11), and (12) show that the estimator of g, is an arithmetic average of
individual single-period returns or proxies of them. If all proxies exactly equal actual individual
single-period returns, the estimator would exactly equal the actual portfolio return. Clearly the
accuracy of the portfolio return estimator depends on the accuracy of the proxies of individual
single-period returns.  When asset characteristics are not observable, assets are not differentiated
from each other, in which case the best proxy of an asset's return is the expected portfolio return.
However, when asset characteristics are observable, it is possible to get better proxies because
the characteristics may systematically affect an asset’s expected return.

The model assumes that expected deviation of an asset's return from the expected
portfolio return is a function of the asset's characteristics. A three-stage procedure may be used
to estimate the functional form and then provide more accurate estimators of the portfolio

returns. In the first stage, estimating the model as if characteristics were not observable, which
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provides consistent estimators of the expected portfolio returns, denoted by @' since this

estimation is the first stage. The difference of an observed asset return (or compound return)

from the estimated portfolio returnsis.

yn/CN)gl = yn/CN)gét = CN)(hn,ten,tét)' (14)

thH, thH, i H,

Theterm € isestimation error in the first stage.

For the purpose of simplicity, assume asset characteristics remain the same within each

holding interval.  Then for repeat-sale observation n, the deviations of its returns from the
expected portfolio returns, i.e. h,, for tT T,, are constant over the whole holding interval,

1

® o~ . 0h
Then simplify the notation to h,. Clearly theterm R © éyn/ Og.z isameasurement of h,
iH, @

with error contained.

Given the R, and observable characteristics, the second stage estimates the functional

form how the expected deviation of an asset's return depends on its characteristics.
A, =g(c,)e, ,with E[e/[g(c,)] =1. (15)

Here both parametric and non-parametric approaches may be used to estimate the functional

formof g(). Denoteby K, theestimator of h_ ,i.e. A =g(c,).
T-1

The third stage defines y¢$=y, /h """, and estimates the portfolio returns with y¢

instead of vy, .

21



3 wn,tgey@/(c") &)-13=0,for t=1..T.

nl O siH, 1]

The estimator of portfolio return is

T ye ° ¢ 2
o O y¢ = y,

g3 - a. Wn C—=—=7 : a n, g_'_n,\_,\_ (16)
t o tg Ogs + Ho tg Ogshn+
e{s/d H, st} & e{s/dH,st} @

Clearly h g2

S

is more accurate than §. as the proxy for the asset's return in period s because it
exploits the fact that asset characteristics help to determine an asset's return.  Consequently the

Yy
Oah,

{s/d H,,st}

term is a better proxy for the asset's return in time period t, and the g7, as average of

individual single-period returns or their proxies, is therefore more accurate.

This procedure also provides estimators of expected returns for a sub-set of assets with
specific characteristics.  For example, in real estate research, this procedure is able to estimate
housing index for not only a broad metropolitan but also a specific neighborhood within.
Suppose an indicator variable equals to 1 if a house is in the neighborhood and O otherwise. The
value of this indicator variable can be treat as a characteristic for a house.  The three stage
procedure proposed here is able to estimate the metropolitan index and the impact of the
indicator variable on a house's return as well, which is the expected return deviation from the
metropolitan index for houses in the neighborhood. Then the estimators of housing index for
the neighborhood equal to the metropolitan index adjusted by the expected deviations from it for

houses in the neighborhood.
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IV.2. Correction for biased sample

The biased sample problem exists if the probability for transactions to take place is higher
for one subset of assets in the portfolio than others. This problem may be corrected if the asset
characteristics that help to differentiate the subset of assets from others are observable.

For example, suppose one is interested in a portfolio consisting of al houses in town A
and town B. During the sample periods, a new company headquarters itself in town A but
nothing similar happens in town B, which may causes much more house transactions in town A
than town B. Therefore while most houses in town A are included in the repest sales data, only
some houses in town B are included because of much less transactions taking place there within
the sample periods. Thus the transaction data are biased.

If house location is unobservable, houses in town A and town B can't be differentiated
from each other. Then there may not be any way to correct for the biased sample. The
estimated portfolio returns are actualy for a portfolio that consists of more houses in town A
than what is desired. However, if house location is observable, one can tell how many houses in
each town are included in the repeat sales data.  Suppose the actual numbers of houses in each
town are roughly the same, but there are two times of houses in town A included in the repeat
sales data than houses in town B. Based on the belief that houses in the same town follow the
same return process, one can double the weights of the houses in town B that are included in the
data during estimation, which makes the data provide equal numbers of samples for houses in
each town. Therefore the estimated portfolio returns are for the portfolio that consists of same

proportion of houses in both towns.
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V. Conclusions

This paper proposes a new approach to value portfolios containing illiquid assets based
on method of moment. The model of return process is meaningful and the GMM estimators
have natural interpretations. All the estimators are arithmetic averages of individual asset
returns (or their proxies) and strictly correspond to portfolio returns, which is an important
improvement over the currently broadly used RSR method.  This new approach provides
estimators for returns of any arbitrary-weighted portfolio, including equal-weighted, price-
weighted, and value-weighted portfolio, which few models claim to be able to do. This model
accommodates the arithmetic-RSR proposed by Goetzmann and Peng (2000). Also, this model
is flexible and very easy to extend. For example, it is able to estimate the portfolio returns with
or without asset characteristic data, while the estimators could be more efficient if both price data
and characterigtic data are available. At the same time, the model may be able to provide more
accurate estimators by correcting the sample bias problem that transactions may take place more
likely on over-valued assets.

Simulations are used to test the accuracy of the GMM estimators proposed in this paper.
The data are actual financial data: 2,550 daily prices of Dow Jones Industrial Index stocks over
September 1999 to December 1999. The basic approach of a simulation is to randomly select
some prices from all daily prices to construct an infrequent-transaction data set, then estimate the
actual DJII daily returns with different methods. The accuracy of a method is measured with
four statistics. They are the squared error of the geometric mean of return estimators, the
standard deviation of the return estimators, the R* resulting from regression of the actual DJII

daily returns upon the estimated time series returns, and the mean squared differences between

24



the actual and the estimated returns. The simulations confirm that the GMM method is clearly
superior to the RSR, the ARS, and the smple method that estimates a daily return by averaging
al avallable individual daily returns for that day. The superiority of the GMM is more obvious

on valuing price-weighted portfolios containing both liquid and illiquid assets.
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Appendix: Estimation Algorithms

To estimate the returns of equal-weighted portfolios, define matrix X, Y, Wand | as
following. The X isa N by T dummy matrix. Its rows correspond to repeat-sale observations,

and columns correspond to time periods. For row n, the first nonzero dummy appears in the

position that corresponds to the time period b, +1, the time period immediately after the first

sdleof nth observation, and the last nonzero dummy appears in the position corresponding to s, ,

the time period of the second sale. All elements between these two nonzero dummies also equal
one, while other elements in thisrow are zero. As an example, if an asset was purchased at the
end of time period 2 and sold at the end of time period 4, and T=5, its corresponding row in X is

(0,0110). The Yisdefined asaN by 1 vector whose nth element is y,. The Wisan Nby N
diagonal matrix whose nth element is 1/T,. Thel isaN by 1 vector of 1.

Now, the estimator-defining equations for the equal-weighted portfolio can be written in
matrix form as
XW =X W expllog(v)- X log(g]].
or X@{expllog(Y)- Xlog(g)]- 1}=0.
It is clear that there are T equations for T estimators. Though these equations are not linear,
solving them with searching techniques may not be very difficult.
The price-weighted portfolio returns are even easier to estimate. Definea T by 1 vector

b whose tth element is areciproca price index for timet,
4
b °1Q4g..
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It is obvious that knowing b isequivalent to knowing §. Defineby Z a N by T +1 matrix
whose rows correspond to repeat-sale observations, and columns correspond to time periods but
start with time period 0. The b, th element in row nequas - B, and s,th element equals S, ,
al other elements are 0. For example, for the data set used in earlier section to illustrate the

estimators, theZ is

&P, R, OU
_€ u
Z= é 0 - P1,1 Pl,zlj-
8’ Pz,o 0 Pz,zH

With matrix X, Z, and vector b, the estimator-defining equations for price-weighted portfolio
returns can be written in matrix form as

élu
XWZa =

1=0.
ety

They are linear equations and it istrivial to solveout b. Once b isknown, § isknown. For

example, g, =1b,, g, = b ,/b, for t>1.
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Table 1. Property Comparison of Alternative M ethods
This table compares the properties of four aternative methods. The first property is if the
estimators are arithmetic averages of individual asset returns. The second one is if the method
runs regression. The third one is if the method uses natural prices instead of logarithmic prices.
The fourth to the sixth are if the method is able to value equal-weighted, price-weighted, or
other-weighted portfolios respectively. The seventh property is if the method down weights the
observations with long holding intervals. The"Y" represents "yes', and the "N" represents "no".

Arithmetic Regression  Natural Equal- Price- Other- Time Down

average Price weighted weighted weighted weight
GMM Y Y Y Y Y Y Y
ARS Y Y Y Y Y N N
RSR N Y N Y N N Y
Simple Y N Y Y Y Y NA
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Table 2. Simulation Results: Valuing Portfolios Sorely Consisting of 11liquid Assets

This table reports simulation results for four estimation methods: the GMM, the ARS, the RSR,
and the smple method. The basic procedure of a simulation is to randomly select N prices from
2550 daily prices for al 30 stocks in DJII over September to December 1999 to construct an
infrequent-transaction data set, then estimate the time series of DJII daily returns with different
methods. The simulation is run for 100 times for N equals to 200, 400, 600, 800, 1000, 1200,
1400, 1600, 1800, 2000, 2200, and 2400 respectively. All accuracy measurement numbers are

averages for 100 simulations. The R? results from regression of actua daily returns upon

estimated series of estimators.
between actual and estimated returns.

The MSE of return series is the average squared difference

N 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
Squared Error of the Geometric Mean of Estimated Return Series (in 0.00001%)
GMM 11.3 199 170 1.05 0.61 0.44 0.35 0.26 0.18 0.13 0.10 0.05
ARS 194 351 2.36 149 124 0.98 1.02 0.85 0.67 0.51 0.45 0.23
RSR 86.6 10.59 431 2.68 1.38 0.89 0.78 0.68 0.65 0.62 0.59 0.55
Simple 1948 9275 51.09 2461 1271 9.25 4.92 3.60 2.24 133 0.69 0.28
Standard Deviation of Return Series (in 0.01%)
Actual 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06
GMM 581 242 173 144 1.29 121 117 113 111 1.09 1.07 1.06
ARS 7.00 1.96 151 131 1.20 115 111 1.09 1.07 1.06 1.05 104
RSR 4.97 3.00 2.00 1.60 137 1.26 1.20 115 112 1.10 1.08 1.07
Simple 1.96 219 2.01 176 150 133 1.23 1.16 112 1.08 1.06 104
R? (in percentage)
GMM 410 1842 3736 5358 6587 7472 8176 86.69 9092 94.01 96.67 98.76
ARS 260 1158 2758 4340 5747 6870 7699 8325 8831 9209 9544 98.16
RSR 163 1988 3779 5282 6435 73.06 79.71 8478 89.15 9218 9475 96.81
Simple  20.37 1990 2589 3457 4715 5868 69.03 7675 8349 8830 9232 9587
M SE of Return Series (in 0.001%)
GMM 336.0 50.08 19.40 9.94 5.70 3.70 247 1.69 111 0.70 0.45 0.17
ARS 4849 8108 29.19 1444 8.00 4.96 3.30 221 1.46 0.94 0.63 0.25
RSR 2531 3131 1463 8.29 522 357 2.53 181 126 0.81 0.69 0.42
Simple 315 3990 3229 2138 1210 7.50 4.68 315 2.08 1.38 0.87 0.47

31



Table 3. Simulation Results. Valuing Portfolios Consisting of Liquid and Illiquid Assets
This table reports simulation results for four estimation methods: the GMM, the ARS, the RSR, and the simple method. A simulation
consists of two steps.  First, construct an infrequent-transaction data set by randomly selecting x% stocks as "liquid assets’, which
means all their prices are observable, and y% daily prices of the rest of stocks.  Then estimate the actual DJII daily returns. The x
equals 10, 20, 30, and 40, and y equals 10, 20, and 30 respectively. All accuracy measurement numbers are average for 100
smulations. The R? results from regression of actual daily returns upon estimated series of estimators. The MSE of return series is
the average squared difference between actual and estimated returns.

(x,y) _ (10,10) (10,20) (10,30) (20,10) (20,20) (20,30) (30,10) (30,20) (30,30) (40,10) (40,20) (40,30)

Squared Error of the Geometric Mean of Estimated Return Series (in 0.00001%)

GMM 234 0.97 0.81 1.32 104 0.60 0.96 0.59 051 0.83 0.44 0.38
ARS 5.13 2.29 174 3.28 242 1.69 246 201 218 3.88 2.02 2.24
RSR 5.57 249 120 4,03 175 134 1.96 174 132 182 1.26 0.81
Simple 13.02 9.18 6.16 5.84 4.46 431 3.06 271 291 2.20 218 162
Standard Deviation of Estimated Return Series (in 0.01%)
GMM 148 1.38 129 1.30 125 121 122 1.18 117 1.16 115 114
ARS 193 1.60 138 155 137 1.28 137 1.27 122 1.26 121 118
RSR 145 133 123 128 121 117 119 115 113 113 112 111
Simple 153 148 141 1.30 128 124 121 117 117 114 113 113
R? (in percentage)
GMM 49.75 57.18 67.75 65.44 70.03 76.80 74.87 77.70 82.53 82.01 84.10 87.00
ARS 31.09 43.76 58.51 47.42 57.20 68.58 59.72 67.45 75.11 69.22 75.65 80.92
RSR 46.38 54.47 65.13 62.43 67.18 73.46 71.93 75.22 80.08 79.74 82.03 84.88
Simple 42.14 46.58 54.42 60.82 63.13 67.14 71.20 12.72 76.26 79.43 80.33 81.93
M SE of Return Series (in 0.001%)
GMM 11.19 831 5.40 5.92 4.70 3.38 3.75 3.09 2.36 242 2.08 167
ARS 26.00 14.41 7.88 12.75 8.05 511 7.53 5.27 3.69 4.90 354 2.64
RSR 11.53 8.15 534 6.18 484 3.64 4,03 3.29 254 2.62 224 185
Simple 13.84 11.93 9.14 6.73 6.02 5.07 423 3.78 3.26 2.69 253 2.32
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