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Abstract

Economists have suggested a whole range of variables that predict the equity
premium: dividend price ratios, dividend yields, earnings-price ratios, dividend
payout ratios, corporate or net issuing ratios, book-market ratios, beta premia,
interest rates (in various guises), and consumption-based macroeconomic ra-
tios (cay). Our paper comprehensively reexamines the performance of these
variables, both in-sample and out-of-sample, as of 2005. We find that [a] over
the last 30 years, the prediction models have failed both in-sample and out-
of-sample; [b] the models are unstable, in that their out-of-sample predictions
have performed unexpectedly poorly; [c] the models would not have helped
an investor with access only to information available at the time to time the
market.
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1 Introduction

Attempts to predict stock market returns or the equity premium have a long tradition
in finance. For example, as early as 1920, Dow (1920) explored the role of dividend
ratios. Nowadays, a typical specification regresses an independent lagged predictor
on the stock market rate of return or, as we shall do, on the equity premium,

Equity Premium(t) = γ0 + γ1 · x(t − 1)+ ε(t) . (1)

γ1 is interpreted as a measure of how significant x is in predicting the equity
premium. The most prominent x variables explored in the literature are

Dividend-price ratio and dividend yield: Ball (1978), Rozeff (1984), Shiller (1984),
Campbell (1987), Campbell and Shiller (1988a), Campbell and Shiller (1988b),
Fama and French (1988), Hodrick (1992), Campbell and Viceira (2002), Campbell
and Yogo (2003), Lewellen (2004), and Menzly, Santos, and Veronesi (2004).
Cochrane (1997) surveys the dividend ratio prediction literature.

Earnings price ratio and dividend-earnings (payout) ratio: Campbell and Shiller (1988a),
Campbell and Shiller (1998), and Lamont (1998), originally motivated by Graham
and Dodd.

Interest and inflation rates: The short term interest rate: Campbell (1987) and
Hodrick (1992). The term spread and the default spread: Avramov (2002),
Campbell (1987), Fama and French (1989), and Keim and Stambaugh (1986).
The inflation rate: Campbell and Vuolteenaho (2004), Fama (1981), Fama and
Schwert (1977), and Lintner (1975). Some papers explore multiple interest rate
related variables, as well as dividend related variables (e.g., Ang and Bekaert
(2003)).

Book-to-market ratio: Kothari and Shanken (1997) and Pontiff and Schall (1998).

Consumption, wealth, and income ratio (CAY): Lettau and Ludvigson (2001).

Aggregate net issuing activity: Baker and Wurgler (2000) and Boudoukh, Michaely,
Richardson, and Roberts (2005).

The literature is difficult to absorb. Different papers use different techniques,
variables, and time periods. Many papers were written years ago, and thus could not
have had access to more recent data. Some papers contradict the findings of others.
Still, most readers are left with the impression that “prediction works”—though it is
less clear what exactly works. The prevailing tone in the literature is perhaps best
summarized by Lettau and Ludvigson (2001, p.842)

It is now widely accepted that excess returns are predictable by variables
such as dividend-price ratios, earnings-price ratios, dividend-earnings
ratios, and an assortment of other financial indicators.
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There are also a healthy number of working papers, forthcoming papers, and recently
published papers, which further cement this perspective; and a large theoretical and
normative literature has developed that stipulates how investors should allocate
their wealth as a function of state variables—and prominently the just-mentioned
variables.

The goal of our own paper is to reexamine comprehensively the empirical evidence
as of 2005, examining each variable using the same methods, time-periods, and
estimation frequencies. Our main findings are:

1. In-Sample, most of these models have not performed well for the most recent
thirty years (1975–2004). (Moreover, even when examined over their most
favorable sub-periods, only a few models reach statistical significance.)

2. The regression models do not seem stable, because even the few models that
are in-sample significant fail regression diagnostics that are based on their
OOS performance. These diagnostics typically fail in a manner consistent with
misspecification (parameter instability) and inconsistent with low power (i.e.,
poor performance early).

3. The OOS performance is not only a useful model diagnostic but also interesting
in itself for an investor who sought to use these models for market-timing. Our
evidence suggests that the models would not have helped such an investor.

Therefore, we interpret our results to suggest broadly that the equity prediction
models are not robust.

Section 2 describes our data. Section 3 describes the tests we are performing.
Section 4 explores our base case—predicting equity premia annually using ols fore-
casts. Section 5 predicts equity premia on five-year horizons. Section 6 predicts
monthly equity premia, with special emphasis on the suggestions in Campbell and
Thompson (2005). Section 7 tries earnings and dividend ratios with longer memory
as independent variables and explores the Stambaugh (1999), Lewellen (2004), and
Campbell and Yogo (2003) corrections. Section 8 puts “encompassing” model fore-
casts to the test. Section 9 reviews earlier literature. Section 10 summarizes, and
speculates why these models performed so poorly.

2 Data Sources and Data Construction

We first describe our data sources and data construction. The dependent variable is
always the equity premium, i.e., the total rate of return on the stock market minus
the prevailing short-term interest rate.
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• Stock Returns: We use S&P 500 index returns from 1926 to 2004 from CRSP’s
month-end values. Stock returns are the continuously compounded returns on
the S&P 500 index, including dividends.

For yearly and longer data frequencies, we can go back as far as 1871, using
data from Robert Shiller’s website. For monthly frequency, we can only begin
in the CRSP period.

• Risk-free Rate: The risk-free rate for the period 1920 to 2004 is the T-bill rate.
Because there was no risk-free short-term debt prior to the 1920’s, we had
to estimate it. We obtained commercial paper rates for New York City from
NBER’s Macrohistory data base. These are available for the period 1871 to
1970. We estimated a regression for the period 1920 to 1971, which yielded

T-bill Rate = −0.004 + 0.886 · Commercial Paper Rate , (2)

with an R2 of 95.7%. Therefore, we instrumented the risk-free rate for the
period 1871 to 1919 with the predicted regression equation. The correlation
for the period 1920 to 1971 between the equity premium computed using the
T-bill rate and that computed using the predicted commercial paper rate is
99.8%.

The equity premium had a mean of 4.77%, median of 6.51%, and standard deviation
of 17.88% over the entire sample period of 1872 to 2004. The equity premium is
5.99% (standard deviation of 19.31%) from 1927–2004, 6.35% (standard deviation of
15.89%) from 1947–2004, and 3.89% (standard deviation of 15.92%) from 1965–2004.

Our first set of independent variables relate primarily to characteristics of stocks:

• Dividends: Dividends are twelve-month moving sums of dividends paid on the
S&P 500 index. They are from Robert Shiller’s website for the period 1871 to
1970. Dividends from 1971 to 2004 are from S&P Corporation. The Dividend
Price Ratio (d/p) is the difference between the log of dividends and the log of
prices. The Dividend Yield (d/y) is the difference between the log of dividends
and the log of lagged prices.

• Earnings: Earnings are twelve-month moving sums of earnings on the S&P 500
index. These are from Robert Shiller’s website for the period 1871 to June 2003.
Earnings from June 2003 to December 2004 are our own estimates based on
interpolation of quarterly earnings provided by S&P Corporation. The Earnings
Price Ratio (e/p) is the difference between the log of earnings and the log of
prices. (An occasional variation is e10/p, which is a moving ten-year average of
earnings divided by price.) The Dividend Payout Ratio (d/e) is the difference
between the log of dividends and the log of earnings.

• Stock Variance (svar): Stock Variance is computed as sum of squared daily
returns on S&P 500. Daily returns for 1871 to 1926 are from Bill Schwert. Daily
returns from 1926 to 2004 are from CRSP.
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• Cross-Sectional Premium (csp): The cross-sectional beta premium measures the
relative valuations of high- and low-beta stocks. This is the variable proposed
in Polk, Thompson, and Vuolteenaho (2006), which we obtained directly from
Sam Thompson. This variable is available from May 1937 to December 2002.

• Book Value: Book values from 1920 to 2004 are from Value Line’s website,
specifically their Long-Term Perspective Chart of the Dow Jones Industrial
Average. The Book to Market Ratio (b/m) is the ratio of book value to market
value for the Dow Jones Industrial Average. For the months of March to
December, this is computed by dividing book value at the end of previous year
by the price at the end of the current month. For the months of January to
February, this is computed by dividing book value at the end of 2 years ago by
the price at the end of the current month.

• Net Issuing Activity: The dollar amount of net issuing activity (IPOs, SEOs,
stock repurchases, less dividends) for NYSE listed stocks is computed from
CRSP data via the following equation:

Net Issuet = Mcapt −Mcapt−1 · (1+ vwretxt), (3)

where Mcap is the total market capitalization, and vwretx is the value weighted
return (excluding dividends) on the NYSE index.1 These data are available
from 1926 to 2004. Net Equity Expansion (ntis): is the ratio of twelve-month
moving sums of net issues by NYSE listed stocks divided by the total market
capitalization of NYSE stocks. Percent Equity Issuing (eqis): is the ratio of
equity issuing activity as a fraction of total issuing activity. This is the variable
proposed in Baker and Wurgler (2000), which we obtained directly from the
authors, except for 2004 which we added ourselves.

Our next set of independent variables are interest-rate related:

• T-bills (tbl): T-bill rates from 1920 to 1933 are the U.S. Yields On Short-Term
United States Securities, Three-Six Month Treasury Notes and Certificates, Three
Month Treasury series from NBER’s Macrohistory data base. T-bill rates from
1934 to 2004 are the 3-Month Treasury Bill: Secondary Market Rate from the
economic research database at Federal Reserve Bank at St. Louis (FRED).

• Long Term Yield (lty): Long-term government bond yields for the period 1919
to 1925 is the U.S. Yield On Long-Term United States Bonds series from NBER’s
Macrohistory database. Yields from 1926 to 2004 are from Ibbotson’s Stocks,
Bonds, Bills and Inflation Yearbook. Long Term Rate of Return (ltr): Long-term
government bond returns for the period 1926 to 2004 are from Ibbotson’s
Stocks, Bonds, Bills and Inflation Yearbook. The Term Spread (tms) is the
difference between the long term yield on government bonds and the T-bill.

1This calculation implicitly assumes that the delisting return is –100 percent. Using the actual
delisting return, where available, or ignoring delistings altogether, has no impact on our results.
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• Corporate Bond Returns: Long-term corporate bond returns for the period
1926 to 2004 are from Ibbotson’s Stocks, Bonds, Bills and Inflation Yearbook.
Corporate Bond Yields: Yields on AAA- and BAA-rated bonds for the period
1919 to 2004 are from FRED. The Default Yield Spread (dfy): is the difference
between BAA- and AAA- rated corporate bond yields. The Default Return
Spread (dfr): is the difference between the return on long-term corporate
bonds and returns on the long-term government bonds.

• Inflation (infl): Inflation is the Consumer Price Index (All Urban Consumers) for
the period 1919 to 2004 from the Bureau of Labor Statistics. Because inflation
information is released only in the following month, in our monthly regressions,
we inserted one month of waiting before use.

The next variable is related to broad macroeconomic activity

• Investment to Capital Ratio (i/k): Investment to Capital Ratio is the ratio of
aggregate (private nonresidential fixed) investment to aggregate capital for the
whole economy. This is the variable proposed in Cochrane (1991), an up-to-date
version of which we obtained directly from the author.

In addition to simple univariate prediction models, we also entertain two methods
that rely on multiple variables (all and ms), and two models that are themselves
rolling in their independent variable construction (cay and ms).

• A “Kitchen Sink” Regression, named “all” includes all the aforementioned
variables. (It does not include cay, described below, partly due to limited data
availability of cay.)

• Consumption, wealth, income ratio (cay) is suggested in Lettau and Ludvigson
(2001). Data for its construction is available from Martin Lettau’s website at
quarterly frequency from the second quarter of 1952 to the fourth quarter of
2004, and for annual frequency from 1948 to 2001. Lettau-Ludvigson estimate
the following equation:

ct = α+βa·at +βy·yt +
k∑

i=−k
ba,i·∆at−i+

k∑
i=−k

by,i·∆yt−i+εt, t = k+1, . . . , T −k,

(4)
where c is the aggregate consumption, a is the aggregate wealth, and y is
the aggregate income. The estimates of the above equation provide cay ≡
ĉayt = ct − β̂a·at − β̂y·yt, t = 1, . . . , T . Eight leads/lags are used in quarterly
estimation (k = 8) while two lags are used in annual estimation (k = 2). (For
further details, see Lettau and Ludvigson (2001).)

Because the Lettau-Ludvigson measure of cay is constructed using look-ahead
(in-sample regression coefficients), we created an equivalent measure that uses
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only prevailing data. In other words, if the current time period is ‘s’, then we
estimated equation (4) using only the data up to ‘s’ through

ct = α+βsa·at+βsy·yt+
k∑

i=−k
bsa,i·∆at−i+

k∑
i=−k

bsy,i·∆yt−i+εt, t = k+1, . . . , s−k,

(5)
where the superscript on betas indicates that these are rolling estimates. This
measure is called caya (“ante”) to distinguish it from the traditional variable
cayp constructed with look-ahead bias (“post”).

• A model selection approach, named “ms.” If there are K variables, we consider
2K models essentially consisting of all possible combinations of variables.
Every period, we select one of these models that gives the minimum cumulative
prediction errors up to time t. This method is based on Rissanen (1986) and is
recommended by Bossaerts and Hillion (1999). Essentially, this method uses
our criterion of minimum OOS prediction errors to choose amongst competing
models in each time period t. This is also similar in spirit to the use of more
conventional criteria (like R2) in Pesaran and Timmerman (1995) (who do
not entertain our NULL hypothesis). This model also shares a certain flavor
with our encompassing tests (Section 8), in which we seek to find an optimal
rolling combination between each model and an unconditional historical equity
premium average.

The latter two models change every period, which renders an in-sample regression
problematic. This is also why we did not include caya in the kitchen sink specification.

3 Empirical Procedure

All regressions are estimated using OLS. The in-sample significance of a regression
is determined using the F -statistic, critical values of which are estimated using the
bootstrap procedure described below. The OOS forecast uses only the data available
up to the time at which the forecast is made. Let eN denote the vector of rolling
OOS errors from the historical mean model and eA denote the vector of rolling OOS
errors from the OLS model. Our OOS statistics are computed as

∆RMSE =
√

MSEN −
√

MSEA ,

MSE-F = (T − h+ 1) ·
(

MSEN −MSEA

MSEA

)
, (6)

where h is the overlap degree (h = 1 for no overlap). MSE-F is the F -statistic by
McCracken (2004). It tests for equal (R)MSE of the unconditional forecast and the
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conditional forecast (i.e., ∆(R)MSE = 0).2 For our encompassing tests in Section 8,
we compute

ENC = T − h+ 1
T

·
∑T
t=1

(
e2

Nt − eNt·eAt

)
MSEA

, (7)

which is the statistic proposed by Clark and McCracken (2001) for an encompassing
forecast test. They also show that these statistics follow non-standard distributions
when testing nested models, because the asymptotic difference in squared forecast
errors is exactly 0 with 0 variance under the NULL, which renders the standard
distributions asymptotically invalid. Because our models are nested, we could use
asymptotic critical values for MSE tests provided by McCracken, and asymptotic
critical values for ENC tests provided by Clark and McCracken. However, because
we use relatively small samples, because our independent variables are often highly
serially correlated, and especially because we need critical values for our five-year
overlapping observations (for which asymptotic critical values are not available), we
obtain critical values from the bootstrap procedure described below (critical values
for caya and all models are not calculated using bootstrap, critical values for ms
model are not calculated at all). The NULL hypothesis is that the unconditional
forecast is not inferior to the conditional forecast, so our critical values for OOS test
are for a one-sided test (critical values of IS tests are, as usual, based on two-sided
tests).3

Our bootstrap follows Mark (1995) and Kilian (1999) and imposes the NULL of no
predictability for calculating the critical values. In other words, the data generating
process is assumed to be

yt+1 = α +u1t+1

xt+1 = µ + ρ · xt +u2t+1 .

The bootstrap for calculating power assumes the data generating process is

yt+1 = α+ β · xt +u1t+1

xt+1 = µ + ρ · xt +u2t+1 ,

where both β and ρ are estimated by OLS using the full sample of observations, with
the residuals stored for sampling. We then generate 10,000 bootstrapped time series

2Our earlier drafts also entertained another performance metric, the mean absolute error
difference ∆MAE. The results were very similar. These drafts also described another standard error,

MSE-T =
√
T + 1− 2·h+ h·(h− 1)/T ·

[
(d)/(ŝe

(
d
)
)
]
, where dt = eNt−eAt , and d = T−1·

∑T
t dt =

MSEN −MSEA over the entire OOS period, and T is the total number of forecast observations. This
is the Diebold and Mariano (1995) T -statistic modified by Harvey, Leybourne, and Newbold (1997).
(We still use the latter as bounds in our plots, because we know the full distribution.) Again, the
results were very similar. We chose to use the MSE-F in this paper because Clark and McCracken
(2001) find that MSE-F has higher power than MSE-T.

3If the regression coefficient β is small (so that explanatory power is low or the in-sample R2 is
low), it may happen that our unconditional model outperforms on OOS because of estimation error
in the rolling estimates of β. In this case, ∆RMSE might be negative but still significant because
these tests are ultimately tests of whether β is equal to zero.
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by drawing with replacement from the residuals. The initial observation—preceding
the sample of data used to estimate the models—is selected by picking one date
from the actual data at random. This bootstrap procedure not only preserves the
autocorrelation structure of the predictor variable, thereby being valid under the
Stambaugh (1999) specification, but also preserves the cross-correlation structure
of the two residuals.

We entertain both IS and OOS tests. Inoue and Kilian (2004) show that many OOS
tests (including the ones used in this paper) are much less powerful than IS tests,
even though their size properties are roughly the same. We, therefore, treat OOS
tests only as regression diagnostics and do not regard OOS evidence to be the main
criterion to evaluate predictive ability. Moreover, we show later that conditional
on in-sample significance, OOS tests are quite powerful, and that the OOS tests do
not seem to fail in the way one would expect if low power was the problem (poor
prediction early, good prediction late).

One issue in OOS tests is choosing the periods over which a regression model is
estimated and subsequently evaluated. While some of these choices will neccessarily
be ad-hoc, it is important to have enough initial data to get a reliable regression
estimate at the start of evaluation period, and it important to have an evaluation
period that is long enough to be representative. We explore three time period
specifications: the first begins OOS forecasts twenty years after data are available; the
second begins OOS forecast in 1965 (or twenty years later, whichever comes later); the
third ignores all data prior to 1927 even in the estimation. If a variable does not have
complete data, some of these time-specifications can overlap. Using three different
periods reflect different tradeoffs between the desire to obtain statistical power,
and the desire to obtain results that remain relevant today. The point estimates
come from simple OLS, although, as noted earlier, their statistical significance
is bootstrapped. In graphical analysis shown later, we also evaluate the rolling
predictive performance of variables. This analysis helps us identify periods of
superior or inferior performance and is not dependent on the start period of OOS
evaluation.

4 Annual Prediction
Table 1:
Annual
Performance

Table 1 explores predictive performance on annual forecasting horizons. Our tables
strive to follow a common format. Panel A shows all models that have no in-sample
significance at the 90% significance level. Lack of IS significance obviates the need
for OOS tests, although we do include the related ∆RMSE OOS information for
comparability. Panel B describes in more detail those models that are statistically
significant IS or for which there is no IS analog (cayp and ms).

8



4.1 Annual Prediction — Models In-Sample Insignificant

Panel A of Table 1 shows that most models in the literature no longer have IS
explanatory power as of the end of 2004, even at 90% significance level. In the full-
data IS regression, even the two highest adjusted R2

models, e/p and ltr, have two-
sided p-values of only 13% and 19%, respectively. If a model has no IS performance,
its OOS performance is of course not too interesting—no investor would rely on
such a model today. Nevertheless, the table shows the OOS performance of these
models, and unsurprisingly none had superior performance.

Figure 1 graphs the IS and OOS performance of our variables in Table 1. For
the IS regressions, the performance is the cumulative squared demeaned equity
premium minus the cumulative squared regression residual. For the OOS regressions,
this is the cumulative squared prediction errors of the prevailing mean minus
the cumulative squared prediction error of the predictive variable from the linear
historical regression. Whenever a line increases, the ALTERNATIVE predicted better;
whenever it decreases, the NULL predicted better. The units in the graphs are not
meaningful but the time-series pattern helps us diagnose the years of good or bad
performance. Indeed, the OOS plots are sign-identical with the ∆RMSE statistic in
our tables. (The rolling ∆RMSE statistic itself is too noisy to plot, especially early on.)
In some of our following discussions related to our plots, we refer to either number
as OOS peformance. Again, the sign of the ∆RMSE reported in the first specification
of Table 1 and the sign of the final observation in the figure are the same.

The standard error of the all observations is based on translating MSE-T statistic
into symmetric 95% confidence intervals based on the McCracken (2004) critical
values. Note that the test (standard errors) themselves are not asymptotically
diminishing.

The reader can easily adjust perspective to see how variations in starting or ending
date would impact the conclusion—by shifting the graph up or down (redrawing
the y=0 zero line). Indeed, a horizontal line and the right-side scale indicates the
equivalent zero-point for the second time period specification, in which we begin
forecasts in 1965. (The plots have also vertically shifted the IS errors, so that the
IS line begins at zero on the date of our first OOS prediction.) The Oil Shock NBER
recession of 1973 to 1975 is marked by a vertical (red) bar in the figures.4 Note
also that the nadir and zenith—the years in which a model would have appeared
worst and best, respectively—are invariant to the starting year (zero level) for OOS
prediction, provided they remain in the sample.

A well-specified signal would inspire confidence in a potential investor if it had

1. both significant IS and OOS performance over the entire sample period;

4The actual recession period was from November 1973 to March 1975. We consider both 1973
and 1975 as years of Oil Shock recession in annual prediction.
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2. plus a generally upward drift (of course, an irregular one);

3. plus an upward drift which occurs not just in one short or unusual sample
period—say just the two years around the Oil Shock;

4. plus an upward drift that remains positive over the most recent several
decades—otherwise, even a reader taking the long view would have to be
concerned with the conjecture that the underlying model has changed.

In addition, OLS models require other well-known assumptions, which often can be
tested for. Our paper however generally does not further explore such.

Price Ratios (d/p, d/y, e/p). Figure 1 shows that the IS regressions for the three
price ratios indicate reasonably steady performance. Table 1 Panel A shows that
all three are not statistically significant IS at our 90% significance level—but the
plots show why. The three ratios were significant in 1990, but are no longer so, not
because the ∆RMSE has not recovered, but because the 1995–2002 period has added
considerable volatility and thereby raised the standard errors. That is, Figure 1
shows that the IS models have recovered almost all of their predictive losses during
the 1998-2000 bubble period when it comes to point estimates.5

However, the OOS regression performance of the price ratios is systematically
worse than their IS performance. Figure 1 lets us diagnose their performances. d/p
started off with bad performance from 1905 to WW-II, then had good performance
beginning around WW-II, which ended in a plateau between 1975 and 1995. The
most recent 30 years are interesting. Contrary to common perception, d/p did not
perform poorly throughout, but only in the bubble period, 1995-2000, where its
OOS performance dropped 0.0796, although it has regained 0.0183 by 2004. An
important caveat must be that d/p’s good overall performance in any paper with a
sample ending before 1995 was driven primarily by d/p’s performance around the
Oil Shock of 1973-1975, when it gained a ∆SSE of 0.0477.

As noted earlier, these plots make it relatively easy to see what kind of sample
periods would indicate in a regression whether a variable works or fails. For d/p’s
OOS performance, 1936 and 1965 were two nadirs; 1984 was its zenith. Therefore,
samples beginning around 1937 (or 1966) and ending in 1984 would suggest high
statistical significance. As it turns out, 1965 was our starting year in the second
specification, which is marked as the “Spec B Zero Val” line in the graph. d/p’s
nadir-to-zenith performance was 0.0845. Comparing this to the aforementioned

5The figures also shows that if we end the predictions in the mid-nineties, d/p would join the
set of significant models. Indeed, an appendix table in our earlier draft showed that only d/p, d/y,
and e/p join the set of variables with statistical significance IS (but not OOS) if we end the data in
1990. We will not dwell on these results and the dividend ratios, because Goyal and Welch (2003)
focused on these. Moreover, earlier versions of our paper found qualitatively similar results for
almost all variables if we end our data sample in 2002 or 2003.
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0.0477 gain in the three consecutive years around the Oil Shock for perspective, it
becomes obvious that more than half of d/p’s best performance was due to the Oil
Shock. Also, the plot nicely shows that the most recent 30 years since the Oil Shock
have not been kind to the d/p model:

We can summarize our observations in the following table which gives the OOS-
statistics on ∆SSE and ∆RMSE. We also report the in-sample R2

for the entire sample
period and for the most recent three decades. The latter is not the R2

for a different
model estimated only over the most recent three decades, but the residual fit of the
overall model during the most recent three periods.

d/p
Recent All Nadir–Zenith 1937–1984

30 Years Years All Years w/o Oil Shock
IS R2

–1.06% 0.47%
OOS ∆RMSE –0.79% –0.11% 0.51% 0.25%
OOS ∆SSE –0.0667 –0.0462 0.0845 0.0368

The last columns show that a full 0.0477 of the best 0.0845 performance was due to
the Oil Shock experience (1973–1975). Without it, even the best ∆RMSE that could
have ever been found in an academic paper would have been only half as high.

Surprisingly, Figure 1 shows that although the IS patterns of d/p and d/y look
alike, d/y’s OOS pattern looks quite different. It is much more cyclical. It performed
poorly until the Great Depression, well during the Great Depression, poorly in the
New Deal, great from WW-II until about 1958, very poorly until the Oil Shock, great
during the Oil Shock, and poorly all the way until the collapse of the bubble. Its
best sample period would have been 1925 to 1957 for an 0.1372 gain. Extending
this to the end of 1975 would leave a healthy 0.0926. For d/y, the Oil Shock was a
good 0.0584, but it was not its only remarkable sample period. And, again, the most
recent 30 years after the Oil Shock have not been kind to this variable:

d/y
Recent All Nadir–Zenith 1925–1957

30 Years Years All Years w/o Oil Shock
IS R2

–1.39% 0.89%
OOS ∆RMSE –1.15% –0.10% 0.90% NA
OOS ∆SSE –0.0989 –0.0410 0.1372 NA
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e/p’s OOS pattern again looks different. It performed poorly until WW-II, and well
from its nadir in 1942 to its zenith in 1976, gaining 0.0696. Extending the “optimal”
sample end from 1976 to 1994 increase the OOS performance to 0.0849, which is
significant. The plot shows that in order to find e/p to perform well, one must begin
one’s sample after the two disastrous forecast years 1917–1918 and prior to its good
forecast period right after WW-II (around 1946). (Indeed, the periods 1942-1976,
1942-1994, and 1942-2004 have all statistically significant OOS performance at the
95% confidence level.) And, again, the most recent 30 years after the Oil Shock have
not been kind to this variable:

e/p
Recent All Nadir–Zenith 1943–1976

30 Years Years All Years w/o Oil Shock
IS R2

–1.22% 1.00%
OOS ∆RMSE –0.20% –0.09% 0.59% 0.52%
OOS ∆SSE –0.0167 –0.0374 0.0696 0.0495

Other Variables The other plots in Figure 1 show that d/e, ntis, dfy, and infl
never had significantly positive OOS periods, and that svar had a huge drop in OOS
performance from 1930 to 1933. The remaining variables from Table 1 had good
sample performance early on, ending somewhere between the Oil Shock and the
mid-1980s, followed by poor performance over the most recent three decades. The
plots also show that it was generally not the 1990s that invalidated most models,
with the exception of the aforementioned price ratio models.

4.2 Annual Prediction — Models In-Sample Significant

Panel B of Table 1 explores the performance of models that were either IS significant
(b/m, eqis, and all), or for which there is no IS analog (caya, ms). This is done in
more detail than in Panel A of the same Table. Specifically, we now add statistics
on the IS ∆RMSE, both for the entire IS period and for the OOS period. Comparing
IS and OOS period performance of the IS regression helps us judge the stability of
the regression—whether poor OOS performance seems driven by less accurately
estimated parameters, or by the fact that the OOS period is already a period in which
the model works less well.

The book-market ratio (b/m) is statistically significant IS at the 6% level, regardless
of whether we begin the regression in 1921 or 1927. (It does have positive IS
performance in the forecast period 1941 to 2004, but not in the forecast period
1965 to 2004.)

Figure 2 shows why this is the case—and why b/m was deemed a successful
predictor in past papers. It performs especially well if we can include the 1921–1941
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period, which is only possible in the IS regressions. Moreover, it had reliable superior
performance all the way from the Great Depression through the Oil Shock—and
reliable inferior performance since then. OOS, its nadir was just at the outset (1941),
its zenith was in 1976, for a gain of 0.1646. From 1976 to 2004, it lost 0.1513. If
we begin forecasting in 1965, as in Table 1, b/m’s predictive underperformance is
economically meaningful, with a ∆RMSE of –82.75 bp/year.

b/m
Recent All Nadir–Zenith 1942–1976

30 Years Years All Years w/o Oil Shock
IS R2

–13.27% 3.01%
OOS ∆RMSE –1.73% –0.04% 1.43% 1.87%
OOS ∆SSE –0.1513 –0.0079 0.1646 0.1654

As with our other models, its lack of OOS significance is not just a matter of low
test power. For example, Table 1 Panel B shows that in the OOS prediction beginning
in 1941, the OOS statistic came out statistically significantly positive in 68% of our
(stable-model) simulations in which the IS regression was significant. In reality, we
do not only not see statistical significance, we do not even see positive performance.
Not reported in the table, positive performance (significant or insignificant) occurred
in 81% of our simulations.

The investment-capital ratio (i/k) performed even better IS than b/m in our full-
sample estimation. Moreover, even its OOS performance is positive. However, the
figure shows that the IS performance was about half attributable to the Oil Shock,
while its OOS performance was entirely attributable to the Oil Shock. Over the
most recent 30 years, although i/k has recaptured its performance loss during the
1998-2000 bubble, it has underperformed.

i/k
Recent All Nadir–Zenith 1968–1976

30 Years Years All Years w/o Oil Shock
IS R2

–4.74% 6.88%
OOS ∆RMSE –0.63% 0.12% 1.32% 0.45%
OOS ∆SSE –0.0783 0.0154 0.1482 0.0468

eqis is similarly a good performer, with statistical significance both IS and OOS—
even though our OOS model necessarily must exclude its IS excellent first fifteen
years of performance. Figure 2 shows that the IS and OOS predictions closely
overlap—this model is apparently quite stable. Overall, the IS regression had a
∆RMSE of 1.06%/year, above the 0.43% IS ∆RMSE in the OOS period. Still, the loss due
to model instability (from 0.43% IS to 0.38% OOS; and from 0.46% IS to 0.23% OOS)
is very small, which allows eqis to have statistically significant OOS performance.
In sum, the rolling model would have outpredicted the prevailing historical mean
statistically significantly and by between 23 and 37 bp/year.
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Figure 2 has some surprises, though:

• Bad Years: eqis performed very poorly from 1937–1942, which was just the
five years before the beginning of our OOS period.

• Neutral Years: eqis performed neither especially good nor bad after 1974—
which gives it a big advantage relative to many other variables, which deteriorate
badly. Like most of our other variables, it failed to predict the 2001 downturn,
but has recovered somewhat with the 2002 stock market.

• Good Years: eqis predicts exceptionally well in two periods: the Great Depres-
sion of 1929–1936 (i.e., long before our OOS period), and the Oil Shock of 1973
to 1975.

Repeating our earlier summary,

eqis
Recent All Nadir–Zenith 1949–1981

30 Years Years All Years w/o Oil Shock
IS R2

–8.19% 9.62%
OOS ∆RMSE(R2

) –0.63% 0.38% 1.32% 0.45%
OOS ∆SSE –0.0531 0.0690 0.1479 0.0405

shows how 0.1479− 0.0405 ≈ 0.1074 out of a maximum 0.1479 performance was
due to the Oil Shock—a number which is larger than the total ∆SSE performance of
0.0690 for eqis. In any case, eqishas underperformed over the last three decades.

Our plot can also help explain dueling perspectives about eqis between Butler,
Grullon, and Weston (2004) and Baker, Taliaferro, and Wurgler (2004). One part of
their disagreement is whether eqis’ performance is just random underperformance
in sampled observations. Of course, some good years are expected to occur in any
regression, but eqis’ superior performance may not have been so random, because
it [a] occurred in consecutive years, and [b] in response to the Oil Shock events
that are often considered to have been exogenous, unforecastable, and unusual.
Butler, Grullon, and Weston also end their data in 2002; while Baker, Taliaferro,
and Wurgler refer to our earlier draft and Rapach and Wohar (2004), which end in
2003 and 1999, respectively. Our figure shows that small variations in the final
year choice can make a difference in whether eqis turns out significant or not. In
any case, both papers have good points. We agree with Butler, Grullon, and Weston
that eqis would not have been a profitable and reliable predictor for an external
investor, especially over the most recent 30 years. But we also agree with Baker,
Taliaferro, and Wurgler that conceptually, it is not the OOS performance, but the
IS performance that matters in the sense in which Baker and Wurgler (2000) were
proposing eqis—not as a third-party predictor, but as documentary evidence of the
fund-raising behavior of corporations. Corporations did repurchase profitably in
the Great Depression and the Oil Shock era (though not in the bubble collapse). Our
conclusion is that while different papers can disagree about eqis, they should agree
that it has not performed well over the most recent three decades.
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all Panel B and Figure 2 show that the kitchen sink regression has high IS signif-
icance, but such inferior OOS performance that it dwarves all individual models
combined.

cay Table 1 Panel B and Figure 2 also describe two models which have no in-sample
analogs: cay and ms (the independent variables themselves require reestimation
every period—the models change). When we use the Lettau and Ludvigson (2001)
proxy construction which takes advantage of ex-post information in the construction
of cay, we can confirm that cayp has superior performance both IS and OOS. The
latter confirms the Lettau and Ludvigson “pseudo-OOS” experiment, in which their
representative agent does not have knowledge of the model’s coefficients, but does
have knowledge of future consumption, wealth, and income data. Such an agent
could have outpredicted the benchmark OOS by 2.24% per annum.

cayp
Recent All Nadir–Zenith 1969–1997

30 Years Years All Years w/o Oil Shock
IS R2

6.33% 24.89%
OOS ∆RMSE –0.18% 2.24% 3.09% 1.06%
OOS ∆SSE –0.0123 0.2293 0.2622 0.0661

However, Figure 2 shows that even in the Lettau and Ludvigson (2001) experiment,
cayp’s performance benefited disproportionally from the years before the oil shock.
The IS R2

over the most recent 30 years is only one quarter of the full-sample
IS R2

. In their pseudo-OOS experiment, 0.1961 of cayp’s 0.2622 best-subperiod
∆SSE performance was due to the Oil Shock. And there was clearly no superior
OOS performance over the last thirty years, i.e., post oil-shock. Even with advance
knowledge, cayp had no really good years or good performance OOS since 1975.

When we conduct a true OOS experiment—in which investors are not assumed to
have advance knowledge of future consumption, wealth, and income data—there is
plainly no superior OOS performance:

caya
Recent All Nadir–Zenith 1969–1976

30 Years Years All Years w/o Oil Shock
IS R2

-|- -|-
OOS ∆RMSE –2.41% –0.50% 3.72% 1.23%
OOS ∆SSE –0.1800 –0.0553 0.1293 0.0162

ms Finally, model selection ms fails with a pattern similar to our earlier variables—
good performance until 1976, dismal performance thereafter.
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ms
Recent All Nadir–Zenith 1949–1976

30 Years Years All Years w/o Oil Shock
IS R2

-|- -|-
OOS ∆RMSE –2.36% –0.63% 2.04% 2.34%
OOS ∆SSE –0.2104 –0.1183 0.1939 0.1637

Conclusion In our sample period, there were a number of periods with sharp stock
market changes, such as the Great Depression of 1929–1933, in which the S&P500
dropped from 24.35 at the end of 1928 to 6.89 at the end of 1932, and the “bubble
period” from 1999–2001 with its subsequent collapse. However, it is the Oil Shock
recession of 1973–1975, in which the S&P500 dropped from 108.29 in October 1973
to 63.54 in September 1974—and its recovery back to 95.19 in June 1975—that
stands out. Many models depend heavily on the mid-1970s Oil Shock for their
apparent forecasting ability, often both IS and OOS. We caution against overreading
or underreading this evidence. The fact that the important years are consecutive
influential observations makes it unlikely that such observed behavior were “normal”
and independent draws. At the same time, however, we do not know how we [the
NULL or the ALTERNATIVE] could have known these special multi-year periods ahead
of time, so predicting during these periods should not be easily discounted. More
importantly and more unambiguously, no model seems to have performed well
since—that is, over the last thirty years.

In sum, on an annual prediction basis, there is no single variable that meets all
of our suggested investment criteria:

• significant IS performance;

• positive, and preferably significant, OOS performance;

• reliable and reasonably steady predictive performance—not just based on the
Oil Shock years;

• positive, and preferably significant, OOS performance over the most recent
three decades.

Most models fail on all four criteria.

5 Five-Yearly Frequencies

Some models may predict long-term returns better than short-term returns. Unfor-
tunately, we do not have many years to thoroughly explore 5-year predictions, and
therefore will only briefly touch on them. Table 2 repeats Table 1 with overlapping
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5-year returns. As before, we bootstrap all critical significance levels. This is espe-
cially important here, because we now work with overlapping observations which
leads to correlation in residuals.

There are two models/variables which seem to have positive OOS performance:
tms and caya. The tms IS model even had its better years in the OOS period, with
a ∆RMSE of 4.26% instead of the lower full IS ∆RMSE of 2.66%. This is enough to
permit a superior OOS performance of 2.56% per five-years—a meaningful difference.
An unreported plot shows that it performed well from 1968–1979, poorly from
1979–1986, and then well again from 1986–2004. Our concern with tms is that its
performance is positive only if forecast begins in 1965, and negative if it begins in
1940—a small difference with a big effect.

The caya model has no-insample equivalent, but shows superior OOS perfor-
mance, 2.06% per five-year period. On inspection, literally all its performance
occurred in the 1997–1999 bubble period. For other variables with similar bubble
gains, this gain is then dissipated from 2000–2002 when the market fell again.
(Unfortunately, we do not have data to forecast 2002–2004 for caya.)

6 Monthly Prediction

Table 3 predicts monthly equity premia with variables available on a monthly basis.
Because we require total returns from CRSP, we can only use data from 1927 onwards.

Although Table 3 Panel A shows that many of our models still remain statistically
insignificant, the number of variables with IS statistical significance is considerably
larger in the monthly than in the annual regressions. However, our conclusions
are similarly pessimistic. Six out of the seven models that are either IS statistically
significant or without IS analog (ms) underperform the prevailing mean OOS. The
two models that outperform the prevailing mean are ntis if we begin our prediction
in 1947, and csp if we begin our prediction in 1965. If we reverse the starting
periods, the two models not only fail to outperform statistically significantly, they
underperform. In sum, Table 3 does not point to a robust predictor of monthly
equity premia.

6.1 Campbell-Thompson

We describe our further monthly evidence in the context of our discussion of Camp-
bell and Thompson (2005) (CT), who offer a critique of our earlier drafts. The goal
of this section is to reconcile their evidence and perspective with our own.
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6.1.1 The Three Suggestions

CT highlight three important innovations, two of which can be seen as bringing
“healthy distrust in the models” (our paper’s point) into the models themselves.

1. They argue that a reasonable investor would not have used the models to
forecast a negative equity premium. Therefore, they truncate such predictions
at zero. (This can be applied to either IS and OOS analysis.) Given the high
equity premium realizations in our sample period—and especially in the later
half—this constraint naturally reduces poor predictions.

2. They argue that a reasonable investor would not have used a model that has a
coefficient with an incorrect sign. Therefore, they truncate such coefficients at
zero. (For some variables, such as the dividend ratios, this is easy. For other
variables, however, it is not clear what the appropriate sign of the coefficient
would be. The correct signs on coefficients in a multivariate regression are also
not obvious. In any case, this restriction turns out not to have been important,
as our table shows.)

These suggestions transform formerly linear models into non-linear models, which
are generally not the subject of our paper. However, CT do not apply these criteria
to their in-sample regressions, because they would lead to worse R2 performance.

Panel A of Table 4 follows the two CT suggestions, and adds some more diag-
nostics. The effect can be seen by comparing the plain ∆RMSEPN and CT ∆RMSECT

columns. The two CT restrictions do generally improve the OOS performance of
the models (and therefore also their economic importance). However, among our IS
significant models in Table 3, the two CT modifications change the OOS inference
for only two models: d/y and csp. As we show in Figure 3 below, this occurs for
d/y because it is now truncated to the unconditional model over the most recent
decade, and therefore not of use to an investor in 2004. This is not unusual for
d/y—52.1% of its predictions were truncated to zero. For csp, similarly, 50.2% of
all months are not linearly predicted by csp, but truncated to zero. The remaining
models remain qualitatively similar. That is, if they were significant or insignificant
in the plain version, they remain so after the CT truncations. In sum, the two CT
suggestions (and especially the first) can be recommended, but they cannot explain
the difference in perspective.

The third CT suggestion pertains to the interpretation of magnitudes:

3. They propose using a certainty equivalence (CEV) measure to evaluate the
out-of-sample predictive gains to a log-utility investor. (Brennan and Xia (2004)
make a similar argument.)

We believe the CT CEV method is an appropriate benchmark. However, it allows a
conditional model to contribute to an investment strategy not just by increasing

18



the mean, but also by reducing the variance (which Breen, Glosten, and Jagannathan
(1989) have shown to be potentially important). Moreover, the CT thought experiment
relies on an assumed risk-aversion parameter. With their γ = 3, even our uncondi-
tional prevailing mean strategy bumps against their 150% maximum investment in
12.6% of all months—mostly in the late 1990s.

Table 4 shows the resulting CEV in columns ∆UIS and ∆UOOS. The risk-aversion
parameter of 3 powerfully “amplifies” the apparent significance of predictions. Even
small predictive advantage can translate into rate of return gains that are ten times
as large—and either with positive and negative effects. One minor drawback is that
the inference depends on the precise risk aversion parameter chosen. In addition to
their assumed γ of 3, we add a column with a γ of 6.47 (7.53 for simple returns),
which would have made an investor indifferent between the risk-free interest rate
and the market. This changes one’s inference about the economic magnitude of the
models, though not in a unidirectional manner.

CT also show in equation (8) of their paper that the utility gain is roughly equal to
OOS-R2/γ. This magnification effect occurs primarily on a monthly horizons because
the difference between OOS-R2 and the ∆RMSE scales with the square root of the
forecasting horizon (for small ∆RMSE, OOS-R2 ≈ 2·∆RMSE/StdDev(R)). That is, at a
monthly frequency, the OOS-R2 is about 43 times as large as ∆RMSE. On an annual
prediction basis, this number drops from 43 to 12. An investor with a risk aversion
of 10 would therefore consider the economic significance on annual investment
horizon to be roughly the same as the ∆RMSE we consider. (We also repeated the CT
CEV equivalent at annual frequency to confirm our preceding statements.)

However, even with the truncation, this utility-based mapping fails to aid four of
our eight IS-significant candidate variables (d/y, e/p, b/m, and all). We shall discuss
the remaining four models (csp, eqis, ntis, cay3) in further detail below.

6.1.2 Other Differences Explaining Different Perspectives

CT offer good suggestions, but we believe the reason for their better performance
and therefore their more optimistic perspective lies elsewhere: they introduce
two variables we did not originally consider, and they predict simple returns (in
our Panel B) not log returns. Remarkably, the latter and seemingly innocuous
measurement difference increases the number of IS significant models from eight
to eleven, adding tbl, dfy, and d/p. If returns are truly log-normal, part of their
increased explanatory power could be due to the ability of these variables to forecast
volatility.6 (In our opinion, the fact that such small changes can cause differences in
inference hint at the sensitivity of the models.) Yet, we now argue that an investor
should still not adopt the CT perspective.

As to new variables, CT introduce the eqis variable into the monthly regres-

6This was pointed out to us by Geert Bekaert.
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sions, modify the cay model into one that we shall dub cay3 (introduced in Lettau
and Ludvigson (2005)), and add a more recent measure, the Polk, Thompson, and
Vuolteenaho (2006) csp. These three models rank as their best performers:

1. CT reasonably include eqis, because they do not explore annual predictions. It
offers an investor 13.7 bp/month superior CEV-equivalent performance and
requires not much trading (our final column). It is an equity-aggressive strategy.
With γ = 3, trading based on this variable leads to the maximum permitted
equity investment of 150% in 55% of all months. We have already discussed our
concern with this variable as a predictor on Page 13—the fact that it relies on
the good Oil Shock years, and that it has not performed well in the last thirty
years. (This also comes out clearly in the monthly plot in Figure 3.) We can
repeat the monthly equivalent of our summary,

eqis (CT)
Recent All

Nadir–Zenith
Jul 1949–Jul 1982

30 Years Years All Years w/o Oil Shock
IS R2

–0.676% 0.823%
OOS ∆RMSE –0.012% 0.011% 0.048% 0.026%
OOS ∆SSE –0.0038 0.0063 0.0150 0.0073

where we use the NBER recession from Nov 1973 to Mar 1975 as the Oil Shock
years. (The results would be starker if we defined it as the period over which
the S&P500 declined.) This shows again that about half of eqis’ best period
performance was the Oil Shock recession, a two-year performance of 0.026%
that is larger than eqis’ total sample performance of 0.011%; and that the
performance over the most recent three decades has been negative.

2. CT use the alternative cay model from Lettau and Ludvigson (2005). This
model predicts the equity premium not with the linear cay, but with all three
of its highly cointegrated ingredients. We name this novel model cay3. It
seems to have stellar performance, both IS and OOS, gaining a market timer
20.08 bp/month superior CEV-equivalent performance, again with only mod-
est trading. Our unreported exploration shows that the cay model and cay3
models are really quite different. For most of the sample period, the unre-
stricted predictive regression coefficients of the cay3 model wander far off their
cointegration-restricted cay equivalents. The model is therefore not as well the-
oretically founded as the Lettau and Ludvigson (2001) cay, but its components
are presumably known ex-ante and therefore fair game for prediction.

However, for trading purposes, it must be recognized that the cay3 model
relies on data that is not immediately available. Its components are publicly
released by the BEA about 1-2 months after the fact. Adding some delay to
trading reduces caya’s performance as follows
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dRMSEPN dRMSECT dU

Immediate Availability –0.23 bp +1.96 bp +21.89 bp
One Month Delayed –2.94 bp –0.50 bp +1.17 bp
Two Months Delayed –3.58 bp +0.15 bp +4.27 bp

For arguments’ sake, let us assume instant availability. Moreover, just as it is
for caya and cayp, it is still true that cay3 model predicts well primarily before
and until right after the Oil Shock. Figure 3 shows that although cay3 failed to
predict the Oil Shock decline, about one third of its performance stems from
the recovery period right after the Oil Shock.

cay3 (CT)
Recent All

Nadir–Zenith
Jan 1973–Jan 1976

30 Years Years All Years w/o Oil Shock
IS R2

0.744% 2.962%
OOS ∆RMSE –0.008% 0.017% 0.279% 0.514%
OOS ∆SSE –0.0025 0.0060 0.0124 0.0086

cay3 has a positive IS R2
, but one that is only one-quarter of its overall IS R2

.
It has also not performed well OOS for the last three decades. Finally, cay3
has excused itself from prediction over most of the most recent decade, being
truncated to zero. Thus, it is of no current usefulness even to an investor who
believes in it.

3. CT introduced csp into the set of models. Developed by Polk, Thompson, and
Vuolteenaho (2006), it is the premium of high-beta over low-beta stocks. Panel B
shows that it offers a market timer 6.31 bp/month superior CEV-equivalent
performance. Our plot in Figure 3 shows when and how this variable actually
predicts, and diagnoses potential concerns:

(a) csp had good performance from September 1965 to March 1980. Un-
fortunately, it underperformed by just as much from about April 1980
to October 2000. In fact, from its first OOS prediction in April 1957 to
August 2001, csp’s total net performance was zero even after the CT
truncations. All of csp’s superior performance has occurred since August
2001. Although it is commendable that it has performed well late rather
than early, some good performance over its first 45 years would have
made us deem this variable more reliable.

(b) The csp model excuses itself in 43.6% of all months from making a pre-
diction, instead truncating the forecast to zero.

(c) The main reason why the CT truncated version performs better than
the plain OLS version is that it excuses the csp variable from predicting
(poorly) from July 1957 through January 1963 (with interruptions). The
CT truncations make little difference thereafter. It is the treatment of
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these specific 66 months that would make an investor either believe in
superior positive or inferior outright negative performance for csp. We
do not understand why this particular 66 month period is crucial.

(d) The Oil Shock recession can account for 0.0132 − 0.0088 ≈ 0.0044 of
csp’s performance, a number that is not only one-third of its best period
performance, but also larger than csp’s full sample performance.

Ultimately, csp had the following characteristics:

csp (CT)
Recent All

Nadir–Zenith
May 1965–Jul 1982

30 Years Years All Years w/o Oil Shock
IS R2

0.846% 0.994%
OOS ∆RMSE –0.002% 0.008% 0.073% 0.059%
OOS ∆SSE –0.0005 0.0037 0.0132 0.0088

In sum, although csp seems relatively stable IS, it has both benefited consider-
ably from the Oil Shock, and has failed to perform OOS since 1975.

This leaves ntis and tbl as models with positive OOS and market timing perfor-
mance.7

ntis offers a market timer with a gamma of 3 the CEV equivalent of 1.98 bp/month.
(It reaches the maximum investment constraint in 57.2% of all months.) These 1.98
bp is likely to be offset by trading costs to turn over an additional 4.6% of the
portfolio every month.8 An investor with higher risk-aversion, who would not have
been so eager to highly lever herself into the market, would have experienced a
negative CEV, however.

tbl is an insignificant variable IS if we forecast log returns. If we forecast simple
returns, it is statistically significant at the 9.7% level. If an investor is comfortable with
this IS performance, we can proceed to the OOS evidence. tbl has a ∆RMSE advantage
of only 0.16 (or 0.82) bp/month, although this can translate into a respectable 9.64
(or 8.76) bp/month market timing advantage. Unfortunately, the performance is
again largely Oil Shock dependent, and has not held for the last thirty years:

7Among models that are IS insignificant, but OOS significant, none had positive performance
from 1975 to today.

8Keim and Madhavan (1997) show that one typical roundtrip trade in large stocks for institutional
investors would have conservatively cost around 38 bp from 1991–1993. Costs for other investors
and earlier time-periods were higher. Futures trading costs are not easy to gauge, but a typical
contract for a notional amount of $250,000 may cost around $10-$30. A 20% movement in the
underlying index—about the annual volatility—would correspond to $50,000, which would come
to around 5 bp.
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tbl (CT)
Recent All

Nadir–Zenith
Apr 1956–Sep 1974

30 Years Years All Years w/o Oil Shock
IS R2

–0.140% 0.205%
OOS ∆RMSE –0.016% 0.008% 0.088% 0.047%
OOS ∆SSE –0.0051 0.0047 0.0148 0.0071

6.1.3 Comparing the Perspectives

Although our perspective (that these models are not good enough for actual investing)
is different from CT’s, we believe that we have considerable agreement.

1. We agree with their points that one can reasonably truncate the models for
predictions; and that on monthly horizon, even if a small predictive ∆RMSE
difference can have relatively large consequences for a very risk-averse investor.
These are good suggestions.

2. We agree that many variables in the academic literature no longer have IS
significance (even at the 90% level), disqualifying them as forecasters.

3. We agree that OOS performance should not be used for primary analysis.
Identification and variable selection is better left to IS regressions. We would
not want to invest based on a variable which is IS insignificant, regardless
of OOS performance. Instead, OOS performance is an important regression
diagnostic, but only conditional on the model being IS significant. Therefore,
we probably agree that because OOS power is only relevant in IS statistically
significant regressions, the statistical power of the OOS tests is often quite
good.

4. We probably agree that what we call OOS performance is not truly OOS, because
it still relies on the same data that was used to establish the models. (This is
especially applicable to eqis and csp, which were only recently proposed.)

5. We probably agree that an investor would have had to have known ex-ante
which of the models would have held up.

6. We probably agree that even after the CT suggestions, many models earned
negative certainty equivalents.

7. We probably agree that none of the models had superior performance over the
last three decades, although we would be relatively more inclined to attribute
this to unstable and therefore now useless models.

In sum, we believe an investor should be aware of the issues pointed out in the
CT paper and our own paper—and then judge whether these prediction models are
sufficiently reliable for investment purposes.

23



7 Alternative Specifications

We also explored some other models and specification which have been proposed as
improvements over the simple regression specifications.

7.1 Longer-Memory Dividend and Earnings Ratios

Table 5 considers dividend-price ratios, and earnings-price ratios, and dividend-
earnings ratios with memory (which simply means that we add multiple year divi-
dends or earnings). The table is an excerpt from a complete set of 1-year, 5-year, and
10-year dividend-price ratios, earnings-price ratios, and dividend-earnings ratios.
(That is, we tried all 90 possible model combinations.) The table contains all IS
significant specifications from our monthly regressions begin forecasting in 1965,
our monthly, annual, and five-yearly forecasts begin either in 1902 or 1965.

Even though there were more combinations of dividend-earnings ratios than
either dividend-price or earnings-price ratio, not a single dividend-earnings ratio
turned out IS statistically significant. The reader can also see that out of our 27
IS significant models, only 5 had OOS positive performance, all of which were
statistically significant. (For 2 of these models, the OOS significance is modest, not
even reaching the 95% significance level.) Unreported graphs show that none of
these performed well over the last 3 decades. We leave it to the reader to decide
whether they believe that real-world investors would have been able to choose the
right models for prediction.

7.2 Different Estimation To Allow For Nonstationary Independent
Variables

Stambaugh (1999) shows that predictive coefficients in small samples are biased
if the independent variable is close to a random walk. Many of our variables have
autoregressive coefficients above 0.5 on monthly frequency. (The exceptions are
ntis, ltr, and dfy.) Our previously reported statistics take this into account, because
we bootstrapped for significance levels mimicking the IS autocorrelation of each
independent variable. However, the Stambaugh (1999) coefficient correction is a
more powerful test in non-asymptotic samples. Lewellen (2004) and Campbell and
Yogo (2003) further improve on the estimation technique by assuming different
boundary behavior. (A different technique to account for autocorrelation in dividend
ratios in Goyal and Welch (2003) is structural, not statistical, and thus can apply
only to the dividend price ratio.) This section therefore explores equity premium
forecasts using these corrected coefficients.

In Table 6, we predict with Stambaugh and Lewellen corrected coefficients. Both
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methods break the link between R2
(which is maximized by OLS) and statistical

significance. The Lewellen correction is surprisingly powerful IS. Given our boot-
strapped critical rejection levels under the NULL hypothesis, it was able to identify
eight (rather than just three) ALTERNATIVE models as different from the NULL. In
six of them, it even imputed significance in each and every of our 10,000 bootstraps!
The Lewellen coefficient is often dramatically different from the OLS coefficients,
resulting in negative R2

even among its IS significant variable estimations.

Unfortunately, neither the Stambaugh nor the Lewellen technique manage to
improve OOS prediction. Of all models, only the e/p ratio in the Lewellen specification
seems to perform better with a positive ∆RMSE. However, like other variables, it has
not performed particularly well over the most recent 30 years—although it is our
only variable that had non-negative OOS performance over the last three decades.

e/p (L)
Recent All

Nadir–Zenith
Sep 1974–Feb 2003

30 Years Years All Years w/o Oil Shock
IS R2

–0.497% 0.036%
OOS ∆RMSE 0.004% 0.004% 0.010% 0.008%
OOS ∆SSE 0.0013 0.0015 0.0032 0.0024

8 Encompassing Tests

A standard encompassing test is a hybrid of ex-ante OOS predictions and an ex-post
optimal convex combination of unconditional forecast and conditional forecast. A
parameter λ gives the ex-post weight on the conditional forecast for the optimal
forecast that minimizes the ex-post MSE. The ENC statistic in equation (7) can be
regarded as a test statistic for λ. If λ is between 0 and 1, we can think of the
combination model as a “shrinkage” estimator. It produces an optimal combination
OOS forecast error, which we denote ∆RMSE?. However, we can also presume that
investors would not have known the optimal ex-post λ. This means that they would
have computed λ based on the best predictive up-to-date combination of the two OOS
model (NULL and ALTERNATIVE), and then would have used this λ to forecast one
month ahead. We denote the relative OOS forecast error of this rolling λ procedure
as ∆RMSE?r .9

Table 7 shows the results of encompassing forecast estimates. Panel A predicts
annual equity premia. Necessarily, all ex-post λ combinations have positive∆RMSE?—
but almost all rolling λ combinations have negative ∆RMSE?r . The exceptions are
d/e, and dfy, all, and caya in some but not all specifications. d/e and dfy can

9For the first three observations, we presume perfect optimal foresight, resulting in the minimum
∆RMSE. This tilts the rolling statistic in favor of no inferior performance. The results remain the
same if we use reasonable variations for when we begin using historical rolling λ estimates and
what λ we use until this point.
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immediately be excluded, because their optimal λ is negative. This leaves all and
caya. Again, not reported, these could not outperform over the most recent three
decades.

In the monthly rolling encompassing tests, only svar and d/e (in one specification)
are positive, neither with a positive λ.

In sum, “learned shrinking” would not have improved any of our models to the
point where we would have expected them to outperform—quite the opposite.

9 Other Literature

Our paper is of course not the first to explore equity premium prediction or OOS
tests.10 Many of the earlier OOS tests have focused on the dividend ratios. The
models that have most influenced our paper were the following:

• Fama and French (1988) interpreted the OOS performance of dividend ratios
to have been a success. Our paper comes to the opposite conclusion primarily
because the sample period has been extended.

• Bossaerts and Hillion (1999) interpreted the OOS performance of the dividend
yield (not dividend price ratio) to be a failure, too. However, they relied on a
larger cross-section of 14 (correlated) countries and not on a long OOS time
period (1990–1995). Because this was a period when the dividend-yield was
known to have performed poorly, the findings are difficult to extrapolate.

• Ang and Bekaert (2003) similarly explore the dividend yield in a more rigorous
structural model. They, too, find poor OOS predictability for the dividend yield.

• Goyal and Welch (2003) explore the OOS performance of the dividend ratios
in some detail on annual horizons—and in more detail than our own paper.
Our current paper expands the set of variables and data periodicities to be
comprehensive, explores different techniques, and considers issues of power.

OOS tests have also been used in the context of other models. For example,
Lettau and Ludvigson (2001) run rolling OOS regressions—but not in the same spirit
as our paper: the construction of their CAY variable itself relies on ex-post data.
This thought experiment applies to a representative investor, who knows the full-
sample estimation coefficients for CAY, but does not know the full-sample predictive
coefficients. This is not the experiment our own paper pursues.

10There are many other papers that have critiqued predictive regressions on other grounds
than OOS. In particular, the use of dividend ratios has been critiqued in many other papers (see,
e.g., Goetzmann and Jorion (1993) and Ang and Bekaert (2003)). A number of papers have also
documented low in-sample power (e.g., see Goetzmann and Jorion (1993), Nelson and Kim (1993),
Torous and Valkanov (2000), and Valkanov (2003)). Apologies to everyone whose paper we omit to
cite here—the literature is voluminous.

26



There are at least three studies in which authors seek to explore a more compre-
hensive set of variables:

• Pesaran and Timmerman (1995) (and others) have pointed out that our pro-
fession has snooped data (and methods) in search of models that seem to
predict the equity premium in the same single U.S. or OECD data history. They
explore model selection in great detail, exploring dividend-yield, earnings-price
ratios, interest rates, and money in 29 = 512 model variations. Their data
series is monthly, beginning in 1954 and ends (by necessity) twelve years ago
in 1992. They conclude that investors could have succeeded, especially in the
volatile periods of the 1970s. But they do not entertain the historical equity
premium mean as a NULL hypothesis, which makes it difficult to compare their
results to our own. Our paper shows that the Oil Shock experience generally is
almost unique in making many predictive variables seem to outperform. Still,
even including the two-year Oil Shock period in the sample, the overall OOS
performance of our ALTERNATIVE models is typically poor.

• Ferson, Sarkissian, and Simin (2003) is not exactly based on OOS regressions,
but it is interested in a closely related issue—spurious regressions and data
mining in the presence of serially correlated independent variables. They
suggest increasing the critical t value of the in-sample regression. The paper
concludes that “many of the regressions in the literature, based on individual
predictor variables, may be spurious.” Torous and Valkanov (2000) disagree
with Ferson, Sarkissian, and Simin. They find that a low signal-noise ratio
of many predictive variables makes a spurious relation between returns and
persistent predictive variables unlikely and, at the same time, would lead to no
out-of-sample forecasting power.

The above papers disagree with the general tenet of predictability, but they appear
to be in the minority. Still, bits and pieces of evidence we report have surfaced
elsewhere, and some authors working with the data may already know what variable
works and where it does not work—but this is not easy to systematically determine
for a reader of this literature. The general literature tenet remains that the empirical
evidence and professional consensus is generally supportive of predictability. This
is why we believe that it was important for us to review models in a comprehensive
fashion—variable-wise, horizon-wise, and time-wise—and to bring all variables up-to-
date. This alone can explain some otherwise startling discrepancies in the literature.

Rapach and Wohar (2004) is perhaps closest to our paper. It is also fairly recent,
also fairly comprehensive, and also explores out-of-sample performance for a number
of variables. We come to many similar conclusions. Their study ends in 1999, while
our data end in 2004—a fairly dramatic five years. Moreover, our study focuses
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more on diagnosis of weaknesses, than just on detection.11,12 Moreover, our paper
also focuses on pointing out the performance after the Oil Shock.

10 Conclusion

Findings Our paper systematically investigates the IS and OOS performance of
linear regressions to predict the equity premium with variables popular in academic.
We believe that the evidence suggests none of the academic models we reexamined
warrants a strong investment endorsement. Most models not only cannot beat the
unconditional benchmark, but also outright underperform it. Our conclusions can
be regarded as being conservative because we do not conduct a true OOS test—
we include the same data that were used to establish the models. We also ignore
the question of how an investor would have known which of the many models we
considered would ultimately have worked.

Our plots help diagnose when and why models failed. They show why, standing
in 2005 (or earlier), popular academic models have not worked IS or OOS or both. If
we exclude the two consecutive years of the 1973 Oil Shock, most models would have
performed even worse. Most importantly, no model has been reasonably robust,
performing similarly over different subperiods—and specifically, no model has done
well over the most recent three decades. Consequently, for the very few models that
were significant in the full sample (such as eqis), an investor would have to have
faith that the results from the full sample are more indicative than the experience of
the most thirty years, i.e., that the underlying model has not changed. This applies
to most models even when estimated in-sample.

One can of course cherry-pick models. A choice of sample period, data frequency,
and method can lead to IS statistical that seems significant IS, and even more rarely to
both IS and OOS superior performance. But we believe such rare performance is not
robust evidence of predictability.13 Our findings are also not driven by power that
is weaker than those of earlier papers. Our findings are not driven by a few outlier
years. Our findings do not disappear if we use different earnings and dividends

11A particularly interesting factoid applies to eqis (the share of equity issued by corporations, see
below), which they (like us) deem to be the best predictor for annual equity premium forecasting.
If we add 2000–2004, the performance of eqis deteriorates to make it insignificant based on MSE-T
statistic.

12Another study by Guo (2006) finds that svar has OOS predictive power. However, Guo uses post
WW-II sample period and downweights the fourth quarter of 1987 in calculating stock variance. We
checked that this is why he can find significance where we find none. In the pre-WW2 period, there
are many more quarters that have even higher stock variance than the fourth quarter of 1987. If
we use a longer sample period, Guo’s results also disappear regardless of whether we downweight
the highest observation or not.

13Our earlier draft was critiqued by referees for coming to opposite conclusions as those from
other circulating or forthcoming papers, specifically Guo (2006) and Rapach and Wohar (2004). We
replicated these papers, and found that differences were due to sample period or year-weighting.
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definition and corrections for the time-series properties of the independent variable.
The models perform no better in an encompassing OOS tests, provided we use a test
that does not rely on ex-post information.

In sum, by assuming that the equity premium is “like it always has been,” an
investor would have predicted just as well. (To draw this conclusion, we relied not
only on the printed tables in our paper, but on a much larger set of tables that
explored combinations of modified data definitions, data frequencies, time periods,
econometric specifications, etc).14

Directions We can speculate why the models generally performed so poorly. It is
probably instability in the underlying models.15 The evidence in the most recent
thirty years speaks especially strongly against all models explored.

If we now explored more variables and/or more sophisticated models (e.g.,
through structural shifts or Kalman filters), then we face the issue of specification
search even more strongly. Some of these models are bound to work both IS or OOS
by pure chance. Thus, researchers should then need to wait for more and new OOS
data to become available in order to test such new variables or more sophisticated
models. Having stated the obvious, the approach in Lettau and Van Nieuwerburgh
(2005) seems promising, however, in that it seeks to model structural change not
based on the forecasting regression, but based on mean shifts in the dependent
variables. Another promising method relies on theory—an argument along the line
of Cochrane (2005)’s observation that the dividend yield must predict future returns
eventually if it fails to predict dividend growth. However, such approaches apply
only to certain variables (in particular, the dividend price ratio).

Broader Implications Our paper is simple, but we believe its implications are not.
The belief that the state variables which we explored in our paper can predict
stock returns and/or equity premia is not only widely held, but the basis for two
entire literatures: one literature on how these state variables predict the equity
premium, and one literature of how smart investors should use these state variables
in better portfolio allocations. This is not to argue that an investor would not update
his estimate of the equity premium as more equity premium realizations come in.
Updating will necessarily induce time-varying opportunity sets (see Xia (2001) and
Lewellen and Shanken (2002)). Instead, our paper suggests only that our profession

14The tables in this paper have been distilled from a larger set of 52 table panels on around
seventy pages, which are available from our website—and on which we sometimes draw in our text
description of results. These tables also explore a set of monthly price changes from 1871 to 1926
from Robert Shiller’s website to compute monthly percent pr ice changes after 1871, which were
the main monthly tables in our earlier draft.

15Not reported, we can statistically reject regression model stability for all variables we examined
in our monthly tests, and for almost all variable in our annual tests [except dfs, infl, and cayp] by
using the CUSUMQ test, which is known to be fairly weak.
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has yet to find a third variable that has meaningful robust empirical equity premium
forecasting power, both IS and OOS, at least from the perspective of a real-world
investor. We hope that the simplicity of our approach strengthens the credibility of
our evidence.

Website Data Sources

Robert Shiller’s Website: http://aida.econ.yale.edu/∼shiller/data.htm.

NBER Macrohistory Data Base:
http://www.nber.org/databases/macrohistory/contents/chapter13.html.

FRED: http://research.stlouisfed.org/fred2/categories/22.

Value-Line: http://www.valueline.com/pdf/valueline_2004.html.

Bureau of Labor Statistics Webpage: http://www.bls.gov/cpi/

Martin Lettau’s Webpage: (cay), http://pages.stern.nyu.edu/∼mlettau/.

Jeff Wurgler’s Webpage: (eqis), http://pages.stern.nyu.edu/∼jwurgler/
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Figure 1: Annual Performance of In-Sample Insignificant Predictors
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Figure 1: continued
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Figure 1: continued
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Figure 1: continued
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Figure 1: continued
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Explanation: These figures plot the IS and OOS performance of annual predictive regressions. These
are the cumulative squared prediction errors of the prevailing mean NULL minus the cumulative
squared prediction error of the predictive variable from a linear historical regression. For the
OOS graph, the NULL is the prevailing mean. The IS prediction is dotted, the OOS is solid. An
increase in a line indicates better performance of the named model; a decrease in a line indicates
better performance of the NULL. The blue band is the equivalent of 95% two-sided levels, based on
MSE-T critical values from McCracken (2004). (MSE-T is the Diebold and Mariano (1995) t-statistic
modified by Harvey, Leybourne, and Newbold (1998)). The right axis shifts the zero point to 1965.
The Oil Shock is marked by a red vertical line.
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Figure 2: Annual Performance of In-Sample Significant Predictors
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Figure 2: continued
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Figure 2: continued
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Figure 2: continued
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Figure 3: Monthly Performance of In-Sample Significant Predictors
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Figure 3: continued
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Explanation: These figures are the analogs of figure 1, plotting the IS and OOS performance of the
named model. However, they use monthly data. The Campbell-Thompson (2005) (CT) performance
is plotted in blue, the plain model performance is plotted in green. The bars at the top indicate
when the CT model makes a non-linear prediction—a “0” indicates truncation at 0, an “=” indicates a
wrong sign coefficient, in which case CT revert to the unconditional model. (When the CT risk-averse
investor would purchase equities worth 150% of his wealth, the maximum permitted, it is marked
by a “=” in the figure.) In addition to the bars at the top, we have also marked this by fattening the
CT OOS prediction line. In all cases plotted here, the CT performance is between the IS and the
plain OOS performance. The Oil Shock is marked by a red vertical line.
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Table 1: Forecasts at Annual Frequency

This table presents statistics on forecast errors in-sample (IS) and out-of-sample (OOS) for excess
stock return forecasts at the annual frequency (both in the forecasting equation and forecast).
Variables are explained in Section 2. Stock return is price changes, including dividends, of S&P500.
Panel A presents the results for insignificant predictors while Panel B presents the results for
significant predictors. The data period for each variable is indicated next to it. The column heading
‘D+20’ in Panel A begins forecast 20 years after the sample date while the column heading ‘1965-’

begins forecast in 1965. All numbers, except R2
and power, are in percent per year. A star next

to R2
denotes significance of the in-sample regression (as measured by empirical F -statistic).

∆RMSE is the RMSE (root mean square error) difference between the unconditional forecast and
the conditional forecast for the same sample/forecast period (positive numbers signify superior
out-of-sample conditional forecast). The column ‘IS for OOS’ in Panel B gives the ∆RMSE of IS
errors for OOS period. MSE-F is F -statistic by McCracken (2004), which tests for equal MSE of the
unconditional forecast and the conditional forecast. One-sided critical values of MSE statistics
are obtained empirically from bootstrapped distributions, except for caya and all models where
they are obtained from McCracken (2004). Critical values for ms model are not calculated. cayp
uses ex-post information. ‘Power’ is the power of ∆RMSE and is calculated as the fraction of draws
where the simulated ∆RMSE is greater than the empirically calculated 95% critical value and is
reported in percent. The two numbers under the power column are power for all simulations and
simulations that are found to be in-sample significant at the 95% level. Significance levels at 90%,
95%, and 99% are denoted by one, two, and three stars, respectively.

Panel A: Insignificant in-sample predictors

Full Data 1927–2004 Data
Variable Data IS OOS IS OOS

R2 ∆RMSE ∆RMSE R2 ∆RMSE
D+20 1965– 1965–

d/p Dividend Price Ratio 1872–2004 0.47 –0.1092 –0.0908 1.60 0.0558
d/y Dividend Yield 1872–2004 0.89 –0.0971 –0.3162 See Panel B
e/p Earning Price Ratio 1872–2004 1.00 –0.0886 0.0899 See Panel B
d/e Dividend Payout Ratio 1872–2004 –0.75 –0.3140 –0.1846 –1.24 –0.5659
svar Stock Variance 1885–2004 –0.76 –2.3405 0.0104 –1.33 –0.0715
ntis Net Equity Expansion 1927–2004 –0.03 –0.0352 –0.2303 –0.03 –0.2303
tbl T-Bill Rate 1920–2004 0.57 –0.1083 –0.1318 0.37 –0.5473
lty Long Term Yield 1919–2004 –0.53 –0.4638 –0.7499 –0.86 –1.0074
ltr Long Term Return 1926–2004 1.00 –0.7696 –1.2016 0.93 –1.0396
tms Term Spread 1920–2004 0.30 –0.0488 –0.0008 1.06 0.0315
dfy Default Yield Spread 1919–2004 –1.20 –0.1376 –0.1249 –1.33 –0.0986
dfr Default Return Spread 1926–2004 0.38 –0.0330 –0.0194 0.30 –0.0100
infl Inflation 1919–2004 –0.98 –0.1939 –0.0714 –1.05 –0.4168

43



P
an

el
B

:
Si

g
n

ifi
ca

n
t

in
-s

am
p

le
p

re
d

ic
to

rs
o
r

m
o
d

el
s

w
it

h
o
u

t
in

-s
am

p
le

eq
u

iv
al

en
t

Fo
re

ca
st

s
b

eg
in

2
0

ye
ar

s
af

te
r

sa
m

p
le

d
at

a
Fo

re
ca

st
s

b
eg

in
1

9
6

5
IS

IS
fo

r
O

O
S

O
O

S
IS

fo
r

O
O

S
O

O
S

V
ar

ia
b

le
D

at
a

R
2

∆
R

M
SE

∆
R

M
SE

∆
R

M
SE

M
SE

-F
P
o
w

er
∆

R
M

SE
∆

R
M

SE
M

SE
-F

P
o
w

er

b
/m

B
o
o
k

to
M

ar
k
et

1
9

2
1

–2
0

0
4

3
.0

1
*

0
.3

9
8

7
*

0
.1

8
5

4
–0

.0
3

8
3

–0
.3

1
4

1
(6

8
)

–0
.2

7
8

9
–0

.8
2

7
5

–3
.7

8
3

8
(6

0
)

e
q

is
P
ct

Eq
u

it
y

Is
su

in
g

1
9

2
7

–2
0

0
4

9
.6

2
**

*
1

.0
6

4
1

**
*

0
.4

3
3

2
*

0
.3

7
6

5
2

.8
3

**
7

5
(8

5
)

0
.4

5
9

1
*

0
.2

3
1

3
1

.1
8

*
6

8
(7

8
)

i/
k

In
vs

tm
n

t
C

ap
it

al
R

at
io

1
9

4
7

–2
0

0
4

6
.8

8
**

0
.6

9
3

5
**

0
.3

4
0

4
0

.1
2

4
0

0
.5

8
*

4
8

(7
8

)
0

.3
4

0
4

0
.1

2
4

0
0

.5
8

*
4

8
(7

8
)

a
ll

K
it

ch
en

Si
n

k
1

9
2

7
–2

0
0

4
1

5
.6

1
**

3
.0

0
4

2
2

.0
8

9
2

–5
.4

0
3

0
–2

5
.5

9
-|-

(
-|-

)
1

.5
7

2
8

–6
.8

1
1

3
–2

0
.2

6
-|-

(
-|-

)

ca
y
p

C
n

sm
p

tn
,W

lt
h

,I
n

cm
e

1
9

4
8

–2
0

0
1

2
4

.8
9

**
*

2
.2

1
8

8
**

*
2

.3
3

5
7

**
*

2
.2

4
1

8
1

1
.8

3
**

*
8

8
(9

0
)

2
.3

3
5

7
**

*
2

.2
4

1
8

1
1

.8
3

**
*

8
8

(9
0

)

ca
y
a

C
n

sm
p

tn
,W

lt
h

,I
n

cm
e

1
9

4
8

–2
0

0
1

-|-
-|-

-|-
–0

.4
9

5
8

–1
.9

9
-|-

(
-|-

)
-|-

–0
.4

9
5

8
–1

.9
9

-|-
(

-|-
)

m
s

M
o
d

el
Se

le
ct

io
n

1
9

2
7

–2
0

0
4

-|-
-|-

-|-
–0

.6
2

7
2

–4
.3

1
-|-

(
-|-

)
-|-

–1
.1

3
0

9
–5

.0
6

-|-
(

-|-
)

Fo
re

ca
st

s
b

eg
in

1
9

6
5

IS
IS

fo
r

O
O

S
O

O
S

V
ar

ia
b

le
D

at
a

R
2

∆
R

M
SE

∆
R

M
SE

∆
R

M
SE

M
SE

-F
P
o
w

er

d
/y

D
iv

id
en

d
Y

ie
ld

1
9

2
7

–2
0

0
4

2
.6

5
*

0
.3

7
9

9
*

0
.2

4
2

1
–0

.3
1

2
1

–1
.5

1
3

0
(7

2
)

e
/p

Ea
rn

in
g

P
ri

ce
R

at
io

1
9

2
7

–2
0

0
4

3
.0

1
*

0
.4

1
4

7
*

0
.1

6
3

5
–0

.0
8

6
1

–0
.4

2
3

8
(6

4
)

b
/m

B
o
o
k

to
M

ar
k
et

1
9

2
7

–2
0

0
4

3
.9

7
*

0
.5

0
7

9
*

–0
.4

0
9

7
–1

.3
0

7
0

–5
.7

9
4

2
(6

1
)

e
q

is
P
ct

Eq
u

it
y

Is
su

in
g

1
9

2
7

–2
0

0
4

9
.6

2
**

*
1

.0
6

4
1

**
*

0
.4

5
9

1
*

0
.2

3
1

3
1

.1
8

*
6

8
(7

8
)

i/
k

In
vs

tm
n

t
C

ap
it

al
R

at
io

1
9

4
7

–2
0

0
4

6
.8

8
**

0
.6

9
3

5
**

0
.3

4
0

4
0

.1
2

4
0

0
.5

8
*

4
8

(7
8

)

a
ll

K
it

ch
en

Si
n

k
1

9
2

7
–2

0
0

4
1

5
.6

1
**

3
.0

0
4

2
1

.5
7

2
8

–6
.8

1
1

3
–2

0
.2

6
-|-

(
-|-

)

ca
y
p

C
n

sm
p

tn
,W

lt
h

,I
n

cm
e

1
9

4
8

–2
0

0
1

2
4

.8
9

**
*

2
.2

1
8

8
**

*
2

.3
3

5
7

**
*

2
.2

4
1

8
1

1
.8

3
**

*
8

8
(9

0
)

ca
y
a

C
n

sm
p

tn
,W

lt
h

,I
n

cm
e

1
9

4
8

–2
0

0
1

-|-
-|-

-|-
–0

.4
9

5
8

–1
.9

9
-|-

(
-|-

)

m
s

M
o
d

el
Se

le
ct

io
n

1
9

2
7

–2
0

0
4

-|-
-|-

-|-
–1

.1
3

0
9

–5
.0

6
-|-

(
-|-

)

44



Table 2: Forecasts at 5-year Frequency

This table presents statistics on forecast errors in-sample (IS) and out-of-sample (OOS) for excess
stock return forecasts at the 5-year frequency (both in the forecasting equation and forecast).
Variables are explained in Section 2. Stock return is price changes, including dividends, of S&P500.
Panel A presents the results for insignificant predictors while Panel B presents the results for
significant predictors. The data period for each variable is indicated next to it. The column heading
‘D+20’ in Panel A begins forecast 20 years after the sample date while the column heading ‘1965-’

begins forecast in 1965. All numbers, except R2
and power, are in percent per 5-years. A star

next to R2
denotes significance of the in-sample regression (as measured by empirical F -statistic).

∆RMSE is the RMSE (root mean square error) difference between the unconditional forecast and
the conditional forecast for the same sample/forecast period (positive numbers signify superior
out-of-sample conditional forecast). The column ‘IS for OOS’ in Panel B gives the ∆RMSE of IS
errors for OOS period. MSE-F is F -statistic by McCracken (2004), which tests for equal MSE of the
unconditional forecast and the conditional forecast. One-sided critical values of MSE statistics
are obtained empirically from bootstrapped distributions, except for caya and all models where
they are obtained from McCracken (2004). Critical values for ms model are not calculated. cayp
uses ex-post information. ‘Power’ is the power of ∆RMSE and is calculated as the fraction of draws
where the simulated ∆RMSE is greater than the empirically calculated 95% critical value and is
reported in percent. The two numbers under the power column are power for all simulations and
simulations that are found to be in-sample significant at the 95% level. Significance levels at 90%,
95%, and 99% are denoted by one, two, and three stars, respectively.

Panel A: Insignificant in-sample predictors

Full Data 1927–2004 Data
Variable Data IS OOS IS OOS

R2 ∆RMSE ∆RMSE R2 ∆RMSE
D+20 1965– 1965–

d/y Dividend Yield 1872–2004 5.54 –0.8110 –2.6202 See Panel B
e/p Earning Price Ratio 1872–2004 5.55 –0.1781 –0.5398 13.41 –2.9428
d/e Dividend Payout Ratio 1872–2004 0.50 –0.7828 0.2876 1.20 0.1171
svar Stock Variance 1885–2004 0.50 –13.3482 0.1274 –0.71 –0.1754
b/m Book to Market 1921–2004 9.38 –2.5234 –7.9822 12.36 –9.7919
ntis Net Equity Expansion 1927–2004 3.15 –8.0893 0.7695* 3.15 0.7695*

tbl T-Bill Rate 1920–2004 4.13 –2.6722 –4.5774 5.30 –9.5884
lty Long Term Yield 1919–2004 0.10 –17.5501 –11.1243 –0.03 –17.8513
ltr Long Term Return 1926–2004 –1.38 –1.0897 –2.7260 –1.39 –1.8780
tms Term Spread 1920–2004 7.33 –4.4184 2.2195** See Panel B
dfy Default Yield Spread 1919–2004 3.32 –9.3515 1.3001 0.77 0.4996
dfr Default Return Spread 1926–2004 –1.15 –0.6178 0.0299 –1.09 0.0309
infl Inflation 1919–2004 –1.19 –1.7413 –0.8830 –1.29 –1.9284
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Table 3: Forecasts at Monthly Frequency

This table presents statistics on forecast errors in-sample (IS) and out-of-sample (OOS) for excess
stock return forecasts at the monthly frequency (both in the forecasting equation and forecast).
Variables are explained in Section 2. Stock return is price changes, including dividends, of S&P500.
Panel A presents the results for insignificant predictors while Panel B presents the results for
significant predictors. The data period for each variable is indicated next to it. The column heading
‘D+20’ in Panel A begins forecast 20 years after the sample date while the column heading ‘1965-’

in Panel A begins forecast in 1965. All numbers, except R2
and power, are in percent per month.

A star next to R2
denotes significance of the in-sample regression (as measured by empirical

F -statistic). ∆RMSE is the RMSE (root mean square error) difference between the unconditional
forecast and the conditional forecast for the same sample/forecast period (positive numbers signify
superior out-of-sample conditional forecast). The column ‘IS for OOS’ in Panel B gives the ∆RMSE of
IS errors for OOS period. MSE-F is F -statistic by McCracken (2004), which tests for equal MSE of the
unconditional forecast and the conditional forecast. One-sided critical values of MSE statistics are
obtained empirically from bootstrapped distributions, except for all model where they are obtained
from McCracken (2004). Critical values for ms model are not calculated. ‘Power’ is the power
of ∆RMSE and is calculated as the fraction of draws where the simulated ∆RMSE is greater than
the empirically calculated 95% critical value and is reported in percent. The two numbers under
the power column are power for all simulations and simulations that are found to be in-sample
significant at the 95% level. Significance levels at 90%, 95%, and 99% are denoted by one, two, and
three stars, respectively.

Panel A: Insignificant in-sample predictors

Variable Data IS OOS

R2 ∆RMSE ∆RMSE
D+20 1965–

d/p Dividend Price Ratio 192701–200412 0.14 0.0014 0.0013
d/e Dividend Payout Ratio 192701–200412 0.03 –0.0292 –0.0397
svar Stock Variance 192701–200412 –0.08 –0.0027 –0.0028
tbl T-Bill Rate 192701–200412 0.12 0.0005* 0.0013
lty Long Term Yield 192701–200412 –0.00 –0.0189 –0.0204
ltr Long Term Return 192701–200412 0.03 –0.0192 –0.0059
tms Term Spread 192701–200412 0.07 0.0039** 0.0065**

dfy Default Yield Spread 192701–200412 –0.07 –0.0025 0.0010
dfr Default Return Spread 192701–200412 –0.00 –0.0073 –0.0020
infl Inflation 192701–200412 –0.00 0.0023* 0.0033
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Table 5: Significant Forecasts Using Various d/p, e/p, and d/e Ratios

This table presents statistics on forecast errors in-sample (IS) and out-of-sample (OOS) for excess
stock return forecasts at various frequencies. Variables are explained in Section 2. Stock return
is price changes, including dividends, of S&P500 (monthly data uses CRSP data for calculation of

stock returns). A star next to R2
denotes significance of the in-sample regression (as measured

by empirical F -statistic). ∆RMSE is the RMSE (root mean square error) difference between the
unconditional forecast and the conditional forecast for the same sample/forecast period (positive
numbers signify superior out-of-sample conditional forecast). All ∆RMSE numbers are in percent
per frequency corresponding to the column entitled ‘Freq’. The ‘Freq’ column also gives the first
year of forecast. MSE-F is the F -statistic by McCracken (2004), which tests for equal MSE of the
unconditional forecast and the conditional forecast. One-sided critical values of MSE statistics are
obtained empirically from bootstrapped distributions. Significance levels at 90%, 95%, and 99% are
denoted by one, two, and three stars, respectively. The table reports only those combinations of
d/p e/p and d/e that were found to be in-sample significant.

IS OOS

Variable Data Freq R2 ∆RMSE MSE-F

e/p Earning(1Y) Price Ratio 1927–2004 M 1965– 0.53** –0.0224 –4.84
e5/p Earning(5Y) Price Ratio 1927–2004 M 1965– 0.32* –0.0086 –1.87
e10/p Earning(10Y) Price Ratio 1927–2004 M 1965– 0.48** –0.0135 –2.91

e3/p Earning(3Y) Price Ratio 1882–2004 A 1902– 2.46** –0.0133 –0.14*

e5/p Earning(5Y) Price Ratio 1882–2004 A 1902– 2.83** 0.0390 0.42*

e10/p Earning(10Y) Price Ratio 1882–2004 A 1902– 4.88** 0.2967 3.26**

d5/p Dividend(5Y) Price Ratio 1882–2004 A 1902– 2.52* 0.0473 0.51*

d10/p Dividend(10Y) Price Ratio 1882–2004 A 1902– 2.14* –0.0042 –0.05*

d/e10 Dividend(1Y) Earning(10Y) Ratio 1882–2004 A 1902– 1.48* –0.0597 –0.64

e3/p Earning(3Y) Price Ratio 1882–2004 A 1965– 2.46** –0.0861 –0.43
e5/p Earning(5Y) Price Ratio 1882–2004 A 1965– 2.83** –0.2008 –0.99
e10/p Earning(10Y) Price Ratio 1882–2004 A 1965– 4.88** –0.6726 –3.19
d5/p Dividend(5Y) Price Ratio 1882–2004 A 1965– 2.52* –0.4591 –2.22
d10/p Dividend(10Y) Price Ratio 1882–2004 A 1965– 2.14* –0.4263 –2.07
d/e10 Dividend(1Y) Earning(10Y) Ratio 1882–2004 A 1965– 1.48* –1.0451 –4.79

e3/p Earning(3Y) Price Ratio 1882–2004 5Y 1902– 10.49* 0.7036 3.55**

e5/p Earning(5Y) Price Ratio 1882–2004 5Y 1902– 15.32** 0.9691 4.94**

e10/p Earning(10Y) Price Ratio 1882–2004 5Y 1902– 15.80* –0.5186 –2.50
d/p Dividend(1Y) Price Ratio 1882–2004 5Y 1902– 11.83* –0.0464 –0.23*

d3/p Dividend(3Y) Price Ratio 1882–2004 5Y 1902– 12.67* –0.3145 –1.53*

d5/p Dividend(5Y) Price Ratio 1882–2004 5Y 1902– 13.35* –0.6684 –3.21

e3/p Earning(3Y) Price Ratio 1882–2004 5Y 1965– 10.49* –2.1562 –4.29
e5/p Earning(5Y) Price Ratio 1882–2004 5Y 1965– 15.32** –3.4594 –6.52
e10/p Earning(10Y) Price Ratio 1882–2004 5Y 1965– 15.80* –4.0076 –7.39
d/p Dividend(1Y) Price Ratio 1882–2004 5Y 1965– 11.83* –4.4347 –8.04
d3/p Dividend(3Y) Price Ratio 1882–2004 5Y 1965– 12.67* –4.2526 –7.77
d5/p Dividend(5Y) Price Ratio 1882–2004 5Y 1965– 13.35* –4.6114 –8.30
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