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Abstract

This paper begins with the expectations theory of the term structure of
interest rates with constant term premia and then postulates how expectations
of future short term interest rates are formed. Expectations depend in part on
predictions from a set of VAR equations and in part on the current and two
lagged values of the short term interest rate. The results suggest that there is
relevant independent information in both the VAR equations’ predictions and
the current and two lagged values of the short rate. The model fits the long
term interest rate data well, including the 2004-2006 period, which some have
found a puzzle. The properties of the model are consistent with the response
of the long term U.S. Treasury bond rate to surprise price and employment
announcements. The overall results suggest that long term rates can be fairly
well explained by modeling expectation formation of future short term rates.

1 Introduction

The expectations theory of the term structure of interest rates says that long rates

depend on expected future short rates. As Campbell and Shiller (1991) point out,

∗Cowles Foundation and International Center for Finance, Yale University, New Haven, CT
06520-8281. Voice: 203-432-3715; Fax: 203-432-6167; email: ray.fair@yale.edu; website:
http://fairmodel.econ.yale.edu. I am indebted to William Brainard, John Campbell, Andrew Lo,
and Robert Shiller for helpful comments.



this theory is sometimes taken to include the hypothesis that expectations are ratio-

nal and sometimes not. Tests generally reject the hypothesis that expectations are

rational,1 which is then a rejection of the expectations theory of the term structure

if the theory is taken to include the hypothesis of rational expectations. This paper

takes a somewhat different approach from the recent literature in estimating term

structure equations. It assumes that the expectations theory holds with constant

term premia and models how expectations are formed. Expectations are assumed

to be based in part on predictions from a four-equation VAR model. Conditional

on predictions from this model, four term structure equations are estimated by full

information maximum likelihood (FIML). The overall model can be used to make

predictions of interest rates of different maturities, and these predictions can be

compared to predictions from other models.

The model is presented in Section 2; estimation is discussed in Section 3; and

the estimates and prediction comparisons are presented in Section 4. Section 4 also

examines how well the model predicts the period since 2000. Section 5 examines

some of the properties of the model and compares these to the effects on long term

interest rates from surprise price and employment announcements. The data are

quarterly and four maturities are considered: one year, three years, five years, and

ten years. The variables and notation used in this paper are presented in Table 1.

The estimation period is 1963:2–2006:4, for a total of 175 quarterly observations.

The interest rate data are for the last day of the quarter.

Recent work analyzing the term structure has begun to consider adding more

1In fact, King and Krumann (2002), fn. 17, p. 61, cite an unnamed monetary economist who
argues that the expectations theory of the term structure has been rejected so many times that it
should never be used!
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macro variables to the analysis than simply short and long term interest rates,2

and this study is in this spirit. Through the VAR equations agents use data on

unemployment, inflation, and a cost shock variable to help form their expectations

of future short rates, which then affect long rates. Contrary to much recent work,

however, the term premia are assumed to be constant. None of the fluctuations in

long rates are attributed in this study to fluctuations in term premia. The emphasis

is instead on fluctuations in expectations of future short rates. Also, contrary to

much recent work, no latent factors are postulated in this study.

2 The Model

The five interest rate variables in Table 1 in the model are: r1, the three-month rate,

r4, the one-year rate, r12, the three-year rate, r20, the five-year rate, and r40, the

ten-year rate. The subscripts refer to quarters, rather than years or months, since

the data are quarterly, and the interest rates are at quarterly rates. The interest

rates other than r1 will be called “long rates.” The interest rate variables were

chosen to maximize the length of the estimation period. The available data allow

the estimation period to begin in 1963:2. Choosing more long rates would have

2See, for example, Kozicki and Tinsley (2001), Dewachter and Lyrio (2006), and Rudebusch,
Sack, and Swanson (2007). Early work in this area, such as Sargent (1979), assumed only interest
rates in the information sets of agents. Cochrane and Piazzesi (2006), who work with an affine-yield
model, argue (p. 49) that a natural next step in the analysis is to incorporate other information, such
as inflation, about long-term interest rate expectations. Rudebusch and Wu (2003), again working
with an affine-yield model, interpret their latent term structure level factor as a medium-term central
bank inflation target and their latent slope factor as cyclical variation in inflation and output gaps. In
the present paper, as discussed next, the macro variables in the VAR equations are unemployment,
inflation, and a cost shock variable. In a very early paper Modigliani and Shiller (1973) estimated
term structure equations with a corporate bond yield on the left hand side and current and lagged
values of the commercial paper rate and the inflation rate on the right hand side.
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Table 1
The Data Used

Data from Federal Reserve Board, H.15
(annual rates, last business day of the quarter)
R∗

1 = three-month Treasury bill rate, discount basis.
R1 = [(365/360)R∗

1]/(100 − .25R∗
1).

R4 = one-year yield on U.S. Treasury securities.
R12 = three-year yield on U.S. Treasury securities.
R20 = five-year yield on U.S. Treasury securities.
R40 = ten-year yield on U.S. Treasury securities.

Macro Data
Quarterly Averages
UR = Unemployment rate. BLS data; variable UR in Fair (2004).
PF = Nonfarm price deflator. BEA data; variable PF in Fair (2004).
PIM = Import price deflator. BEA data; variable PIM in Fair (2004).

Variables in the Model
r1 = (1 + R1).25 − 1
r4 = (1 + R4).25 − 1
r12 = (1 + R12).25 − 1
r20 = (1 + R20).25 − 1
r40 = (1 + R40).25 − 1
u = UR
π = log(PF/PF−1)
s = log(PIM/PIM−1)

• Estimation period is 1963:2–2006:4, 175 observations.
• As noted in the table, an adjustment was made to the three-month rate,

which is on a discount basis, to convert it to a yield.

shortened this period. Also, there are no gaps in the data for any of the five

variables, which is not true for some of the other long rates. The other variables in

the model are π, the domestic inflation rate, u, the unemployment rate, and s, the

percentage change in the price of imports, a cost shock variable.

The Term Structure Equations

The interest rates r4, r12, r20, and r40 are yields on coupon bonds, and because

of this the linearized expectations model in Shiller (1979) is used for the term
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structure equations, which handles this problem. In the following equations γ is

1/(1 + r̄), where r̄ is taken to be .015, which is roughly the mean of r1 in the

sample period (at a quarterly rate). The four equations are:

r4t =
1 − γ

1 − γ4
(r1t + γre

1t+1 + γ2re
1t+2 + γ3re

1t+3) + δ1 (1)

r12t =
1 − γ

1 − γ12
(r1t + γre

1t+1 + γ2re
1t+2 + · · ·+ γ11re

1t+11) + δ2 (2)

r20t =
1 − γ

1 − γ20
(r1t + γre

1t+1 + γ2re
1t+2 + · · ·+ γ19re

1t+19) + δ3 (3)

r40t =
1 − γ

1 − γ40
(r1t + γre

1t+1 + γ2re
1t+2 + · · ·+ γ39re

1t+39) + δ4 (4)

t refers to the last day of quarter t. The expectations, denoted by a superscript e,

are assumed to be made on this day. For example, re
1t+1 is the expectation made

on the last day of quarter t of the three-month rate that will exist on the last day

of quarter t + 1. The δ coefficients are the term premia. They are assumed to be

constant across time, but possibly different across equations.

Equations (1)–(4) are standard term structure equations aside from the use of γ

to adjust for the bonds being coupon bonds. If the bonds were zero-coupon bonds,

then γ is 1 and the equations are the same as equation (10.2.10) in Campbell, Lo,

and MacKinlay (1997), p. 417, except for the addition of the δ coefficients.

The VAR Equations

The four variables in the VAR equations are: the three-month interest rate, r1, the

inflation rate, π, the unemployment rate, u, and the cost shock variable, s. The right

hand side variables in each equation include a constant term and four lagged values
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of each variable. The predictions are assumed to be made at the end of quarter t

for quarters t+ 1 through t+ 39, where quarter t+ 39 is the last quarter for which

expectations of r1 are needed in the term structure equations. The variables r1t,

πt, ut, and st are assumed to be known at the end of quarter t when the predictions

for quarters t+ 1 and beyond are made. The equations are:

r1t+1 = f6(cnst, r1t, r1t−1, r1t−2, r1t−3, πt, πt−1, πt−2, πt−3,

ut, ut−1, ut−2, ut−3, st, st−1, st−2, st−3),+u6t+1 (5)

πt+1 = f7(cnst, r1t, r1t−1, r1t−2, r1t−3, πt, πt−1, πt−2, πt−3,

ut, ut−1, ut−2, ut−3, st, st−1, st−2, st−3),+u7t+1 (6)

ut+1 = f8(cnst, r1t, r1t−1, r1t−2, r1t−3, πt, πt−1, πt−2, πt−3,

ut, ut−1, ut−2, ut−3, st, st−1, st−2, st−3),+u8t+1 (7)

st+1 = f9(cnst, r1t, r1t−1, r1t−2, r1t−3, πt, πt−1, πt−2, πt−3,

ut, ut−1, ut−2, ut−3, st, st−1, st−2, st−3),+u9t+1 (8)

The fi functions are linear, and cnst denotes the constant term. The subscript t+1

has been used to emphasize the fact that the VAR equations are used to predict

quarter t+1 (at the end of quarter t) given knowledge of the variables for quarter t.

Expectation Formation

The VAR equations may or may not approximate well how agents actually form

their future expectations, and the following specification allows this to be tested. It

distinguishes between the VAR equations’ predictions of future short term interest

rates and the agents’ expectations of these rates. For a given set of coefficients and
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initial conditions and setting all error terms to zero, the four VAR equations can

be solved at the end of quarter t for values of r1 for quarters t + 1 and beyond.

Let ree
1t+i denote the prediction from these four equations for r1t+i (i = 1, . . . , 39).

Agents’ expectations that enter equations (1)–(4), which have a superscript e,

are not necessarily assumed to be the same as these predictions, which have a

superscript ee. Agents are instead assumed to form their expectations (at the end

of quarter t) in the following way:

re
1t+1 = α1r

ee
1t+1 + β1,1r1t + β1,2r1t−1 + β1,3r1t−2 + ζ1 + v1t

re
1t+2 = α2r

ee
1t+2 + β2,1r1t + β2,2r1t−1 + β2,3r1t−2 + ζ2 + v2t

... (9)

re
1t+39 = α39r

ee
1t+39 + β39,1r1t + β39,2r1t−1 + β39,3r1t−2 + ζ39 + v39t

Each equation in (9) says that agents’ expectation of a future value of r1 is a function

of the VAR equations’ prediction of this value, of the actual (observed) values of

r1 for quarters t, t−1, and t−2, and of a constant term. The error term, v, reflects

all the factors that affect expectations that are not captured in the right hand side

variables.

If the VAR predictions contain no relevant information not in r1t, r1t−1, r1t−2,

and the constant, then the α coefficients are 0. If, on the other hand, r1t, r1t−1, and

r1t−2 contain no relevant information not in the VAR predictions and the constant,

then the β coefficients are 0. If the β coefficients are 0 and the α coefficients

are 1, then (9) says agents’ expectation for a particular quarter equals the VAR

prediction aside from a possible constant and error. This specification thus allows

some flexibility in modeling how expectations are formed. Agents’ expectations
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are not forced to be exactly the VAR equations’ predictions. The VAR equations

may be just one input into the expectation process.

3 Estimation

In equations (1)–(4), let λi = (1 + γ)/(1 + γi), i = 4, 12, 20, 40. It will be useful

for estimation purposes to write equations (1)–(4) as:

r4t

λ4

− r1t = γre
1t+1 + γ2re

1t+2 + γ3re
1t+3 +

δ1
λ4

(1)′

r12t

λ12

− r4t

λ4

= γ4re
1t+4 + · · · + γ11re

1t+11 +
δ2
λ12

− δ1
λ4

(2)′

r20t

λ20

− r12t

λ12

= γ12re
1t+12 + · · ·+ γ19re

1t+19 +
δ3
λ20

− δ2
λ12

(3)′

r40t

λ40

− r20t

λ20

= γ20re
1t+20 + · · ·+ γ39re

1t+39 +
δ4
λ40

− δ3
λ12

(4)′

The 39 expectation equations in (9) can then can be substituted into equations

(1)′–(4)′ to yield:

r4t

λ4
− r1t = α1γr

ee
1t+1 + α2γ

2ree
1t+2 + α3γ

3ree
1t+3 + θ1,1r1t + θ1,2r1,t−1

+θ1,3r1,t−2 + ψ1 + (γv1t + γ2v2t + γ3v3t) (1)′′
r12t

λ12
− r4t

λ4
= α4γ

4ree
1t+4 + · · ·+ α11γ

11ree
1t+11 + θ2,1r1t + θ2,2r1,t−1

+θ2,3r1,t−2 + ψ2 + (γ4v4t + · · ·+ γ11v11t) (2)′′
r20t

λ20
− r12t

λ12
= α12γ

12ree
1t+12 + · · ·+ α19γ

19ree
1t+19 + θ3,1r1t + θ3,2r1,t−1

+θ3,3r1,t−2 + ψ3 + (γ12v12t + · · · + γ19v19t) (3)′′
r40t

λ40
− r20t

λ20
= α20γ

20ree
1t+20 + · · ·+ α39γ

39ree
1t+39 + θ4,1r1t + θ4,2r1,t−1

+θ4,3r1,t−2 + ψ4 + (γ20v20t + · · · + γ39v39t) (4)′′
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where θ1,i =
∑3

j=1 βj,iγ
j , θ2,i =

∑11
j=4 βj,iγ

j, θ3,i =
∑19

j=12 βj,iγ
j, and θ4,i =

∑39
j=20 βj,iγ

j , i = 1, 2, 3. Also, ψ1 = δ1/λ4 +
∑3

j=1 ζjγ
j , ψ2 = δ2/λ12 − δ1/λ4 +

∑11
j=4 ζjγ

j, ψ3 = δ3/λ20 − δ2/λ12 +
∑19

j=12 ζjγ
j, and ψ4 = δ4/λ40 − δ3/λ20 +

∑39
j=20 ζjγ

j .

Timing

Before considering estimation further, it is important to be clear on the timing that

is assumed in the model. At the end of quarter t agents solve the VAR equations

for quarters t + 1 through t + 39, given a set of coefficients and assuming zero

errors. They are assumed to know the values of r1, π, u, and s for quarters t and

back. This solution yields predictions of 39 future values of r1—the values with

superscript ee. Given these values and given the actual values of r1t, r1t−1, and

r1t−2, equations (1)′′–(4)′′ are solved for r4t, r12t, r20t, and r40t. This assumes

that r1t is known before the other four rates are determined (say, a few minutes

before). Note that r1t is not predicted from the VAR equations, where the first

quarter predicted is t+ 1. It is simply assumed to be known at the end of quarter

t for purposes of determining r4t, r12t, r20t, and r40t in equations (1)′′–(4)′′. So

the timing is: agents predict quarters t + 1 and beyond knowing r1t, πt, ut, and

st, and then given these predictions and the actual value of r1t, the long rates are

determined

9



Restrictions

Two sets of restrictions were imposed on equations (1)′′–(4)′′ before estimation.

These restrictions would not be needed if there were 39 interest rates (two-quarter,

three-quarter, ..., 40-quarter) instead of only four. The first set concerns the v error

terms. These errors pick up the effects on expectations that are not captured by the

variables in equations (9). It may be that these errors are serially correlated, and

to test for this the error terms are assumed to be first-order serially correlated with

the restrictions that 1) v1, v2 and v3 have the same serial correlation coefficient,

2) v4, . . . , v11 have the same serial correlation coefficient, 3) v12, . . . , v19 have

the same serial correlation coefficient, and 4) v20, . . . , v39 have the same serial

correlation coefficient, denoted ρ1, ρ2, ρ3, and ρ4 respectively. . Let μ1 = γv1 +

γ2v2 + γ3v3, μ2 = γ4v4 + · · · + γ11v11, μ3 = γ12v12 + · · · + γ19v19, and μ4 =

γ20v20 + · · ·+ γ39v39. The serial correlation assumptions are then:

μ1t = ρ1μ1t−1 + ε1t (10)

μ2t = ρ2μ1t−1 + ε2t (11)

μ3t = ρ3μ1t−1 + ε3t (12)

μ4t = ρ4μ1t−1 + ε4t (13)

where the ε error terms are assumed to be iid.

The second set of restrictions concerns the α coefficients. There are 39 of

them, which is too many to estimate individually given that there are only four

equations. Instead, four coefficients were estimated unrestricted: α1, α4, α12, and

α20. The restrictions imposed are that 1) α2 and α3 equal α1, 2) α5 through α11

equal α4, 3) α13 through α19 equal α12, and 4) α21 through α39 equal α20. This
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means that two restrictions are imposed on equation (1)′′, seven each are imposed

on equations (2)′′ and (3)′′, and 19 are imposed on equation (4)′′.

Note that the δ, ζ , andβ coefficients are not identified. The lack of identification

of the β coefficients is again a consequence of having data for only four long rates

rather than 39. A key question for purposes of this paper is whether the estimates

of the α coefficients are significant. In other words, is there relevant information

in the VAR predictions that is not in r1t, r1t−1, and r1t−2?

Using these two sets of restrictions, equations (1)′′–(4)′′ can be written:

r4t

λ4

− r1t = α1(γr
ee
1t+1 + γ2ree

1t+2 + γ3ree
1t+3) + θ1,1r1t + θ1,2r1,t−1

+θ1,3r1,t−2 + ψ1 + μ1t (1)′′′
r12t

λ12

− r4t

λ4

= α4(γ
4ree

1t+4 + · · · + γ11ree
1t+11) + θ2,1r1t + θ2,2r1,t−1

+θ2,3r1,t−2 + ψ2 + μ2t (2)′′′
r20t

λ20

− r12t

λ12

= α12(γ
12ree

1t+12 + · · · + γ19ree
1t+19) + θ3,1r1t + θ3,2r1,t−1

+θ3,3r1,t−2 + ψ3 + μ3t (3)′′′
r40t

λ40

− r20t

λ20

= α20(γ
20ree

1t+20 + · · · + γ39ree
1t+39) + θ4,1r1t + θ4,2r1,t−1

+θ4,3r1,t−2 + ψ4 + μ4t (4)′′′

The term structure model consists of equations (1)′′′– (4)′′′, where the error terms

are assumed to be first order serially correlated as in (10)–(13). There are 24

unrestricted coefficients to estimate, counting the four serial correlation coefficients

in (10)–(13). Again, γ is constant; it is 1/1.015.
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Computational Issues

The four VAR equations were estimated by OLS for the 1963:2–2006:4 period, 175

quarters. Then for each quarter between 1963:3 and 2007:1 a dynamic simulation

was run for 39 quarters ahead. For example, for the period beginning in 1963:3 a

simulation was run for 1963:3 thorough 1973:1 using only information available

from 1963:2 back. This yields the 39 predictions relevant for quarter 1963:2. This

process is then repeated 174 more times. The last simulation, which begins in

2007:1, uses data from 2006:4 back and predicts through 2016:3.

Under the assumption that the errors terms ε1t, ε2t, ε3t, and ε4t are jointly nor-

mally distributed with zero means and some covariance matrix Σ, the 24 coef-

ficients can be estimated by full information maximum likelihood (FIML). The

FIML estimation of nonlinear models with rational expectations is discussed in

Fair and Taylor (FT) (1990), and the present estimation problem is a special case

of the general problem considered in FT. It is special in that once the predictions

are computed from the VAR equations, they can be used in the term structure equa-

tions with no feedback to the VAR equations. So given the predictions from the

VAR equations, this is a standard FIML estimation problem.

Once a procedure is available for computing the value of the likelihood function

for a given set of coefficients, the estimation problem can be turned over to a non-

linear maximization algorithm. These algorithms search over sets of coefficients

to find the set that maximizes the objective function. For the FIML estimation

of large models the algorithm that I have found best to use is the Parke (1982)

algorithm, and it has been used for the work below.
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4 The Results

Coefficient Estimates

The 24 coefficient estimates for the term structure equations are presented in Ta-

ble 2.3 The variance-covariance matrix of the coefficient estimates is the inverse

of the matrix of the second derivatives of the log of the likelihood function. The

24 × 24 second derivative matrix was computed numerically after the maximum

of the likelihood function had been reached.

The α estimates are individually significant, and the hypothesis that the α’s

are all zero is strongly rejected, with a p-value of .00004. The estimates are not,

however, close to 1, ranging from .149 to .340. r1t is highly significant, and r1t−1

and r1t−2 are significant or close to significant except in equation (1)′′′.4 There is

thus relevant independent information in both the VAR predictions and the current

and two lagged values of r1 regarding the expected future values of r1.

The θ1,i coefficients are the weighted sum of three β’s; the θ2,i and θ3,i coeffi-

cients are the weighted sum of eight β’s; and the θ4,i coefficients are the weighted

sum of 20 β’s, i = 1, 2, 3. Although the weights are declining, one would probably

expect the θ1,i estimates to be the smallest for a given i, which is the case in Table 2.

One would also expect the θ3,i estimates to be smaller than the θ2,i estimates for a

given i because of the declining weights, which is also the case in Table 2 except

for i = 2. Finally, one would expect the θ4,i estimates to be the largest because of

3To save space, the 68 coefficient estimates for the VAR equations are not presented. Remember
that the VAR equations are estimated first by OLS (for the same 1963:2–2006:4 period), and then
the predictions from these equations are used for the estimates in Table 2.

4The hypothesis that the four coefficients for r1t−2 are all zero was rejected, with a p-value of
.0068.
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Table 2
Coefficient Estimates for Equations (1)′′′– (4)′′′

(1)′′′ (2)′′′ (3)′′′ (4)′′′

ree
1t+j’s—α1, α4, α12, α20: .340 .149 .231 .237

(4.59) (2.60) (3.42) (2.09)

r1t—θ1,1, θ2,1, θ3,1, θ4,1: 1.949 3.670 2.512 3.561
(11.26) (10.78) (9.45) (7.11)

r1t−1—θ1,2, θ2,2, θ3,2, θ4,2: .021 .564 .688 1.577
(0.19) (1.93) (2.66) (3.19)

r1t−2—θ1,3, θ2,3, θ3,3, θ4,3: .030 .775 .465 .836
(0.29) (2.76) (1.85) (1.72)

cnst—ψ1, ψ2, ψ3, ψ4: .0031 .0338 .0385 .1031
(2.24) (4.82) (4.80) (4.00)

ρ1, ρ2, ρ3, ρ4: .507 .736 .781 .850
(9.15) (21.07) (25.52) (31.47)

• χ2 test of hypothesis that all α’s are zero: value = 25.41,
4 degrees of freedom, p-value = .00004.

• FIML estimation.
• Estimation period is 1963:2–2006:4.
• t-statistics are in parentheses.

the larger sum, and this is the case in Table 2 except for θ4,1 versus θ2,1. Similarly,

one would expect the same pattern for the estimates of the constant term. This is

the case except that the estimate of ψ3 is slightly larger than the estimate of ψ2.

The estimates of the serial correlation coefficients are large and highly sig-

nificant. This means that the error terms in (9) are serially correlated. The high

degree of serial correlation in term structure equations is a persistent problem. It

has been noticed in papers ranging in time from Modigliani and Shiller (1973)

to Dewachter and Lyrio (2006). If one interprets the serially correlated errors as
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reflecting serially correlated omitted variables, the results suggest that there are

important omitted variables in the expectation equations (9). This is discussed

further in the Conclusion.

Root Mean Squared Errors

Once the model is estimated, it can be used to make predictions of the four long

rates, and these can be compared to predictions from other models. For present

purposes, two other models have been used. The first is the random walk (RW)

model, where each rate equals last quarter’s rate:

rit = rit−1, i = 4, 12, 20, 40 (14)

This model does not use information on r1t, which the model in this paper does,

and an alternative model that incorporates this information is one in which the

change in each rate equals the change in r1t:

rit = rit−1 + r1t − r1t−1, i = 4, 12, 20, 40 (15)

This model will be called “random walk plus” (RW+).

Root mean squared error (RMSEs) are presented in Table 3. The prediction

period is the same as the estimation period, 1963:2–2006:4, 175 observations. The

errors are in percentage points at annual rates. The RMSEs for the present model

range from .367 percentage points for r4 to .490 percentage points for r20. They

are all smaller than the corresponding errors for RW and RW+, and so the model

does noticeably better than RW and RW+. Note that the RW and RW+ models use

information on the lagged long rate, which the present model does not use directly.
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Table 3
Root Mean Squared Errors

Present
Model RW RW+

r4t .367 1.019 .461
r12t .473 .842 .629
r20t .490 .768 .692
r40t .470 .639 .765

• Prediction period is
1963:2–2006:4.

• Errors are in percentage
points at annual rates.

However, the present model uses information on the lagged errors through the serial

correlation coefficients, which in effect incorporates information on the lagged long

rate.

Backus and Wright (2007), among others, have puzzled over the fact that as the

Fed raised the short term interest rate from 2004 to 2006, long term rates did not

rise. They argued that the most likely explanation is a fall in the term premia. In the

present model the term premia are assumed to be constant, and so it is interesting

to see how the model predicts the 2004-2006 period. Is this period really a puzzle?

To examine this question both the VAR equations and the term structure equa-

tions were reestimated for the estimation period ending in 1999:4. Then predictions

of the long rates were made for the 2000:1–2006:4 period, which are outside sam-

ple predictions. Results for the ten-year rate, r40, are presented in Table 4. Also

presented in the table is the actual value of r1. This was a period in which r1 fell

rapidly through 2004:1 and then rose rapidly after that. How well did the model

predict r40 in this period? Remember that the predictions are bases in part on the

39-quarter-ahead predictions from the VAR equations and in part on the current
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Table 4
Outside Sample Predictions for 2000:1–2006:4

Quarter r1 ˆr40 r40 ˆr40 − r40

2000.1 5.76 6.67 5.90 0.77
2000.2 5.75 6.17 5.90 0.27
2000.3 6.09 6.31 5.68 0.63
2000.4 5.77 5.90 5.02 0.87
2001.1 4.24 4.75 4.84 -0.09
2001.2 3.60 4.69 5.31 -0.62
2001.3 2.38 4.64 4.52 0.12
2001.4 1.73 4.10 4.98 -0.88
2002.1 1.78 4.80 5.31 -0.51
2002.2 1.69 5.09 4.77 0.31
2002.3 1.56 4.65 3.58 1.06
2002.4 1.21 3.59 3.78 -0.18
2003.1 1.13 3.87 3.78 0.09
2003.2 0.90 3.64 3.49 0.15
2003.3 0.94 3.66 3.90 -0.24
2003.4 0.94 3.94 4.20 -0.26
2004.1 0.94 4.22 3.81 0.41
2004.2 1.33 4.06 4.54 -0.49
2004.3 1.70 4.68 4.08 0.60
2004.4 2.20 4.46 4.17 0.28
2005.1 2.76 4.62 4.43 0.19
2005.2 3.09 4.82 3.88 0.94
2005.3 3.50 4.46 4.27 0.19
2005.4 4.03 4.83 4.32 0.51
2006.1 4.56 4.97 4.77 0.20
2006.2 4.91 5.36 5.05 0.31
2006.3 4.81 5.34 4.56 0.77
2006.4 4.93 4.99 4.63 0.36

• Estimation period was 1963:2–1999:4.
• Values are in percentage points at annual rates.
• RMSE = .541 for 2000:1–2003:4.
• RMSE = .494 for 2004:1–2006:4.
• Mean error = .094 for 2000:1–2003:4.
• Mean error = .357 for 2004:1–2006:4.

and two lagged values of r1. The RMSE is .541 for the sub period 2000:1–2003:4

and .494 for the sub period 2004:1–2006:4. These compare to the RMSE in Table

3 for r40 of .470, and so the RMSEs are only slightly larger. The mean error is

.094 for the first sub period and .357 for the second. The model thus overpredicts
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the ten-year rate by an average of .357 percentage points in the 2004–2006 period.

This is consistent with Backus and Wright’s puzzle that the long term rates were

lower-than-expected in this period, but the size of the mean error is not large.

There is at most only a modest puzzle here. In other words, a model that generates

expectations of future short term rates as in (9) can account for much of the behavior

of long term rates in the 2004–2006 period.

5 Properties of the Model

Two Experiments

To examine the properties of the model, two experiments were performed using

the coefficient estimates in Table 2 (and the corresponding VAR estimates). First,

the model was solved for a particular quarter t = 1991:4 with all relevant error

terms set to zero.5 Call this the “base” solution. Then for the first experiment

the error term in equation (6)—the VAR equation for π—was taken to be .01 in

t + 1 = 1992:1 and zero otherwise. All other error terms were still set to zero.

The model was then solved. Call this the “π shock” solution. This shock is a

one percentage point inflation shock. For the second experiment the error term

in equation (7)—the VAR equation for the unemployment rate—was taken to be

−.01 in t+ 1 = 1992:1 and zero otherwise. All other error terms were still set to

zero. The model was then solved. Call this the “u shock” solution. This shock is

a one percentage point unemployment rate shock.

5Because the model is linear in variables, the results do not depend on the particular quarter,
1991:4, used. Any quarter will give the same results.
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The results for the four long rates are presented in Table 5. Each value in the

table is the predicted value from the shocked solution minus the predicted value

from the base solution times 400 (to put the values in percentage points at an annual

rate).

The π shock led to an increase in r4t of 4.8 basis points. The other changes are

2.8, 2.5, and 1.8 basis points, respectively. The changes for the u shock are 14.0,

7.3, 4.5, and 2.8 basis points respectively. Both shocks thus led to an increase in

the long rates for the current period. This is because the shocks for quarter t+ 1

changed the VAR predictions of the values of r1 for quarters t + 2 and beyond,

which then affected the long rates through the term structure equations. The shocks

led agents to expect higher short term rates in the future, which led to an increase

in the current long term rates.

Comparison to Surprise Announcement Effects

The properties just described are consistent with the responses of long term inter-

est rates to surprise announcements about prices and employment. In Fair (2003)

I searched, using tick data on stock and bond prices and exchange rates, for an-

nouncements and events that led to large changes in prices within five minutes.

The period examined was 1982–2000, and news wires were used for the searches.

221 announcements and events were found that led to large five minute changes in

at least one of the five variables examined. The five variables were the S&P 500

stock price index, the 30-year U.S. Treasury bond price, and three exchange rates.

The three exchange rates were the U.S. dollar relative to the Deutsche mark or
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Table 5
Effects of a Price Shock and

an Unemployment Shock

p shock u shock

r4 .048 .140
r12 .028 .073
r20 .025 .045
r40 .018 .028

• Values in percentage points
at annual rates.
.048 is 4.8 basis points.

• Price shock was 1.0
percentage points.

• Unemployment shock was
−1.0 percentage points.

euro, the Japanese yen, and the British pound.

Table 3 in Fair (2003) lists all 221 announcements and events and their five

minute effects. There are 11 CPI or PPI announcements in which inflation was

higher-than-expected and 15 announcements in which inflation was lower than

expected.6 For all 11 higher-than-expected announcements the bond price fell (the

30 year interest rate rose), and for all 15 lower-than-expected announcements the

bond price rose. A positive (negative) inflation shock thus leads to an increase (a

decrease) in long term rates, which is consistent with the properties of the model.

When there is, say, a positive inflation shock, agents expect short term rates to be

larger in the future, which immediately increases long term rates.

In Table 3 in Fair (2003) there are 28 employment announcements in which em-

ployment was stronger than expected and 25 announcements in which employment
6The 11 higher-than-expected announcements are 56, 57, 61, 69, 83, 92, 124, 164, 191, 210, and

215. The 15 lower-than-expected announcements are 59, 64, 72, 93, 108, 112, 115, 120, 125, 142,
148, 155, 161, 196, and 205. (Fair (2003), Table 3, pp. 324–325.)
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was weaker than expected (announcements when the bond market was open).7 The

30-year interest rate rose after the stronger than expected employment announce-

ment in 22 of the 28 cases, and it fell after the weaker than expected announcement

in 19 of the 25 cases. It is thus generally the case that stronger (weaker) than ex-

pected employment announcements lead to an increase (a decrease) in the 30-year

rate. Again, these results are consistent with the properties of the model, where

the negative shock to the VAR unemployment equation led to an increase in the

long term rates. When the announcement is stronger than expected (negative shock

to the unemployment equation) agents’ expectations of future short term rates in-

crease, which leads to an immediate change in long term rates, and vice versa when

the announcement is weaker than expected (positive shock to the unemployment

equation).

6 Conclusion

This paper begins with the expectations theory of the term structure of interest rates

with constant term premia, equations (1)–(4), and then postulates how expectations

of future short term interest rates are formed. The results in Table 2 suggest that

7The 28 stronger than expected announcements are 53, 55, 94, 105, 107, 118, 119, 121, 123,
129, 134, 136, 138, 139, 143, 144, 146, 147, 150, 154, 158, 163, 165, 187, 189, 199, 212, and
214. The 25 weaker than expected announcements are 58, 63, 68, 71, 73, 81, 82, 86, 88, 91, 97,
101, 103, 109, 111, 114, 116, 117, 128, 133, 141, 149, 194, 202, and 208. (Fair (2003), Table 3,
pp. 325–328.) In a few cases it is not obvious whether an announcement is a positive or negative
surprise, and so a few of these classifications may be incorrect. Also, the average hourly wage rate
is announced at the same time as employment, and it may be in a few cases that the surprise was
regarding the wage rate and not employment. The possible misclassifications and the wage rate
announcements may explain some of the 12 cases discussed next where the 30-year rate did not
change as expected.
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there is relevant independent information in both the VAR equations’ predictions

of the future short term rates and the current and two lagged values of the short

term rate. The results in Table 3 show that the model fits the data better than the

random walk model and the model in which the change in the long rate is equal

to the change in the short rate. The results in Table 4 show that the model fits the

2000-2006 period fairly well—there is not much of a puzzle regarding the long

term rates in the 2004–2006 period. The properties of the model reported in Table 5

are consistent with the response of the 30-year U.S. Treasury bond rate to surprise

price and employment announcements.

It future work it may be interesting to experiment with models other than

the VAR model used here. No searching was done in this study over alternative

models. The VAR equations were specified at the beginning of this study and

never changed. The model that one is after is the model that best approximates

what agents actually use to generate their expectations, not necessarily the model

that best approximates the actual economy. The model need not be a VAR model.

It will be interesting to see if models can be found that lead to smaller estimated

serial correlation coefficients in Table 2. One could also experiment with adding

other variables directly to the expectation equations (9). Finally, one could expand

the number of long rates considered, possibly at a cost of shortening the estimation

period, which would allow moreα coefficients to be directly estimated. The overall

results in this paper suggest that long term rates can be fairly well explained by

modeling expectation formation of future short term rates.
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