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Ray C. Fair*
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Abstract

This paper outlines a bootstrapping approach to the estimation and analy-
sis of macroeconometric models. It integrates for dynamic, nonlinear, simul-
taneous equation models the bootstrapping approach to evaluating estimators
initiated by Efron (1979) and the stochastic simulation approach to evaluat-
ing models’ properties initiated by Adelman and Adelman (1959). It also
estimates for a particular model the gain in coverage accuracy from using
bootstrap confidence intervals over asymptotic confidence intervals.

1 Introduction

Consider a dynamic, nonlinear, simultaneous equations model of the following

form:

ﬁ(yt’yl—l’""y[—p’xlaai):uil‘v i:]—""’n’ t::l-’""Ta (l)

wherey; is ann—dimensional vector of endogenous variablgsis a vector of

exogenous variables, and is a vector of coefficients. The firgt equations
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Kilian, and Adrian Pagan for many helpful comments. All errors are mine.



are assumed to be stochastic, with the remaining equations identities. The vector
of error termsyu; = (u1, ..., un:) , IS assumed to bied with mean zero. The
function f; may be nonlinear in variables and coefficients. It is assumed that an
estimator is available for obtaining consistent estimates of the coefficients.

This specification is fairly general. Itincludes as a special case the VAR model.
It also incorporates autoregressive errors. If the original error term in equation
follows arth order autoregressive process, 88y—= p1;Wir—1+ ...+ PriWir—r +
ui:, then equationin (1) can be assumed to have been transformed into onawith
on the right hand side. The autoregressive coefficiepts. . p,; are incorporated
into thew; coefficient vector, and additional lagged variable values are introduced.
This transformation makes the equation nonlinear in coefficients if it were not
otherwise, but this adds no further complications because the model is already
allowed to be nonlinear. The assumption thats iid is thus not as restrictive as
it would be if the model were required to be linear in coefficients.

This paper outlines a bootstrapping approach to the estimation and analysis of
the model in (1). Two somewhat separate literatures are relevant for this topic.
The bootstrap was introduced in statistics in 1979 by Efron (187®e literature
that followed this classic paper stressed the use of the bootstrap for estimation
and the evaluation of estimators. Earlier, however, Adelman and Adelman (1959)
had introduced in economics the idea of drawing errors to analyze the properties
of econometric models. The literature that followed this classic paper stressed
the stochastic simulation of large scale macroeconometric models. The common

procedure in this literature has been to draw errors from estimated distributions

1See Hall (1992) for the history of resampling ideas in statistics prior to Efron’s paper.



under the assumption of normality, although errors can just as easily be drawn from
the empirical distribution of the estimated residuals. The present paper focuses
exclusively on the idea of drawing errors from the estimated residuals, which is
distribution free, and it uses these draws for both estimation and analysis.

While there is by now alarge literature on the use of the bootstrap in economics,
most of it has focused on small time series models. Good recent reviews are Li
and Maddala (1996), Horowitz (1997), Berkowitz and Kilian (2000), and Hardle,
Horowitz, and Kreiss (2001). The paper closest to the present work is Freedman
(1984), who considered the bootstrapping of the 2SLS estimator in a dynamic,
linear, simultaneous equations model. Runkle (1987) used the bootstrap to examine
impulse response functions in VAR models, and Kilian (1998) extended this work
to correct for bias. There is also work on bootstrapping GMM estimators (see,
for example, Hall and Horowitz (1996)), but this work is of limited relevance here
because it does not assume knowledge of a complete model.

In his review of bootstrapping MacKinnon (2002) analyzes an example of
a linear simultaneous equations model consisting of one structural equation and
one reduced form equation. He points out (p. 14) that “Bootstrapping even one
equation of a simultaneous equations model is a good deal more complicated that
bootstrapping an equation in which all the explanatory variables are exogenous
or predetermined. The problem is that the bootstrap DGP must provide a way to
generate all of the endogenous variables, not just one of them.” In this paper the
process generating the endogenous variables is the complete model (1). All the
nonlinear restrictions on the reduced form coefficients are accounted for.

As mentioned above, the standard procedure in the literature that followed the
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Adelman and Adelman (1959) paper has been to draw errors from estimated dis-
tributions. Also, in much of this literature coefficient uncertainty has not been
taken into account: coefficient estimates have been taken to be fixed. Early stud-
ies that drew from estimated error distributions and treated coefficient estimates
as fixed include Nagar (1969), Evans, Klein, and Saito (1972), Fromm, Klein,
and Schink (1972), Green, Leibenberg, and Hirsch (1972), Cooper and Fischer
(1972), Sowey (1973), Cooper (1974), Garbade (1975), Bianchi, Calzolari, and
Corsi (1976), and Calzolari and Corsi (1977). When coefficient estimates have
not been taken to be fixed, they have been drawn from estimated distributions of
the coefficient estimates. Studies that diasth error terms and coefficients in-
clude Schink (1971), Haitovsky and Wallace (1972), Cooper and Fischer (1974),
Muench, Rolnick, Wallace, and Weiler (1974), Schink (1974), and Fair (1980a).

In a theoretical paper Brown and Mariano (1984) analyzed the procedure of
drawing errors from the estimated residuals for a static nonlinear econometric
model with fixed coefficient estimates. For the stochastic simulation results in Fair
(1998) errors were drawn from the estimated residuals for a dynamic, nonlinear,
simultaneous equations model with fixed coefficient estimates, and this may have
been the first time this distribution free approach was used for such models.

This paper makes two contributions. The first is to integrate for dynamic,
nonlinear, simultaneous equations models the bootstrap approach to evaluating
estimators and the stochastic simulation approach to evaluating models’ properties.
The procedure in Section 4 for treating coefficient uncertainty has not been used
before for these kinds of models. The second is to estimate the gain in coverage

accuracy from using bootstrap confidence intervals over asymptotic intervals for
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a particular model (called the “US model”). It will be seen that the gain is fairly
large for this model.

This paper does not provide the theoretical restrictions on the model in (1)
that are needed for the bootstrap procedure to be valid. Assumptions hégond
errors and the existence of a consistent estimator are needed, but these have not
been worked out in the literature for the model considered here. This paper simply
assumes that the model meets whatever restrictions are sufficient for the bootstrap
procedure to be valid. Its contribution is to apply the procedure to the model in (1)
and to estimate the gain in coverage accuracy assuming the procedure is valid. It
remains to be seen what restrictions are needed bayberdors and a consistent
estimator. Itis the case, however, that the bootstrap works well regarding coverage
accuracy when the US model is taken to be the truth. Given this, it seems likely
that the US model falls within the required conditions for validity.

Section 2 discusses the initial estimation and introduces the US model. Section
3 then discusses the use of the bootstrap to evaluate coefficient estimates, and it
uses the US model to estimate coverage accuracy. Section 4 discusses the use
of the bootstrap to analyze models’ properties, and Section 5 considers various
extensions, including the extension to models with rational expectations. The

bootstrap procedure is applied in Section 6 to the US model.

2 Initial Estimation and Example

Let « denote the vector of all the unknown coefficients in the model=

(o, ..., ), and letu denote the vector of errors for all the available periods,



u=(uy,...,uy), whereu, is defined in Section 1. Itis assumed that a consistent
estimate o# is available, denoteg@l. This could be, for example, the 2SLS or 3SLS
estimate ofx. Given this estimate and the actual dataan be estimated. Lét
denote the estimate ofafter the residuals have been centered at ze&tatistics of
interest can be computed. These can include t-statistics of the coefficient estimates
and possible,? statistics for various hypotheses. For the result in Section 6 the
Andrews-Ploberger test statistic is examined, which tests for structural change.

will be used to denote the vector of estimated statistics of interest.

The example that is used for the empirical work is the US model in Fair
(1994). There are 29 stochastic equations, about 100 identities, and 164 coef-
ficients to estimate, counting autoregressive coefficients for the errors. The model
is dynamic, nonlinear, and simultaneous. The version used here is on the web-
site: http://fairmodel.econ.yale.edu.The estimation period is 1954:1-2002:3,
195 quarterly observations, and the estimation method is 2SLS. This version does

not have rational expectations.

2Freedman (1981) has shown that the bootstrap can fail for an equation with no constant term
if the residuals are not centered at zero. For all the results reported in this paper centering has
been done. From model (1);,, an element oft, is f; (ys, yi—1, ..., Yi—p, X1, &;) except for the
adjustment that centers the residuals at zero.

3See Andrews and Ploberger (1994).

4One of the demand for money equations in the model is estimated under the assumption of a
fourth order autorgressive error, and the sum of the autoregressive coefficients is close to one. For
the work in this paper this equation was dropped, leaving 29 stochastic equations rather than 30.
This equation is not important in the model because the short term interest rate is determined by
an estimated interest rate rule of the Fed.



3 Distribution of the Coefficient Estimates

3.1 TheBootstrap Procedure

The bootstrap procedure for evaluating estimators for the model in (1) is:

1. Foragiven trialj, drawu;’ from & with replacementfor = 1, ..., T. Use
these errors and to solve the model (1) dynamically for= 1,..., 7.5
Treat the solution values as actual values and estimadige the consistent
estimator (2SLS, 3SLS, or whatever). ket denote this estimate. Compute
also the test statistics of interest, andriietdenote the vector of these values.

2. Repeatsteplfor=1,...,J.

Step 2 gives/ values of each element 6f/ andt*/. Using these values, confi-
dence intervals for the coefficient estimates can be computed (see below). Also,
for the originally estimated value of any test statistic, one can see where it lies on
the distribution of the/ values.

Note that each trial generates a new data set. Each data set is generated using
the same coefficient vectak), but in general the data set has different errors for a
period from those that existed historically. Note also that since the drawing is with
replacement, the same error vector may be drawn more than once in a given trial,
while others may not be drawn at all. All data sets are conditional on the actual
values of the endogenous variables prior to period 1 and on the actual values of the

exogenous variables for all periods.

SThis is just a standard dynamic simulation, where instead of using zero values for the error
terms the drawn values are used.



3.2 Estimating Coverage Accuracy

Three confidence intervals are empirically examined Rdret 8 denote a partic-
ular coefficient inw. Let 8 denote the base estimate (2SLS, 3SLS, or whatever)
of 8, and let5 denote its estimated asymptotic standard error.Aétdenote the
estimate of8 on thejth trial, and lets*/ denote the estimated asymptotic standard
error of 8*/. Letr*/ equal the t-statistic8*/ — B)/6*/. Assume that the values
of +*/ have been ranked, and igtdenote the value below whighpercent of the
values of*/ lie. Finally, let|*/| denote the absolute valuersf. Assume that the
J values of|+*/| have been ranked, and let|, denote the value below which
percent of the values df*/| lie. The first confidence interval is simpf/+ 1.965,
which is the 95 percent confidence interval from the asymptotic normal distribu-
tion. The second isf — t%,6, B — 1%5,:6), which is the equal-tailed percentile-t
interval. The third is§ + |t*] 9500, Which is the symmetric percentile-t interval.
The following Monte Carlo procedure is used to examine the accuracy of the
three intervals. This procedure assume that the data generating process is the model
(1) with true coefficientg.

a. Foragivenrepetitioh, draWu;‘*k fromi withreplacementfor=1,...,T.
Use these errors aridto solve the model (1) dynamically for=1, ..., T.
Treat the solution values as actual values and estimadig the consistent
estimator (2SLS, 3SLS, or whatever). ket denote this estimate. Use this
estimate and the solution values from the dynamic simulation to compute
the residualsy, and center them at zero. L&t denote the estimate af
after the residuals have been centered at Zero.

6See Li and Maddala (1996), pp. 118-121, for a review of the number of ways confidence
intervals can be computed using the bootstrap. See also Hall (1988).

"From model (1)i}7*, an element of ™, is f; (yi**, yi*4, ..., y*% x;. &) except for the
adjustment that centers the residuals at zero, Wbﬁjﬁ is the solution value of,_; from the
dynamic simulationf =0, 1, ..., p).




b. Perform steps 1 and 2 in Section 3.1, wheté replaces anda*** replaces
a. Compute from thesd trials the three confidence intervals discussed
above, wherg@*** replace$8 ands*** replaces. Record for each interval
whether or nog is outside of the interval.

Cc. Repeatstepsaandbfoe=1,..., K.

After completion of theK repetitions, one can compute for each coefficient and
each interval the percent of the repetitions fhatas outside the interval. For, say,

a 95 percent confidence interval, the difference between the computed percent and
5 percent is the error in coverage probability.

This procedure was used on the US model to examine coverage accuracy. For
this work bothJ andK were taken to be 350, for a total of 122,500 times the model
was estimated (by 2SLS). There were 847 solution failures out of the 122,500 trials,
and these failures were skipped. The job took about 40 hours on a 1.7 Ghz PC,
about one second per estimation. The results are summarized in Table 1. Rejection
rates are presented for 12 of the coefficients in the model. The average for the 12
coefficients is presented as well as the average for all 164 coefficients in the model.
The standard deviation for the 164 coefficients is also presented.

The average rejection rate over the 164 coefficients is .085 for the asymptotic
interval, which compares to .063 and .056 for the two bootstrap intervals. The
asymptotic distribution thus rejects too often, and the bootstrap distributions are
fairly accurate. Although not shown in Table 1, the results are similar if 90 percent
confidence intervals are used. In this case the asymptotic rejection rate averaged
across the 164 coefficients is .145 (standard deviation of .055). The corresponding
values for the two bootstrap intervals are .113 (standard deviation of .030) and .107

(standard deviation of .029). As noted in Section 1, given the good bootstrap
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Table 1
Estimated Coverage Accuracy for the US M odel

Percent of Rejections using
95 Percent Confidence Intervals

a b o

CSequation

ldv .140 .066 .066

income 100 .049 .057
CN equation

ldv 123 .066 .066

income 126 .063 .043
CD equation

Idv 143 .051 .066

income 131 .086 .071
PF equation

ldv .074 .057 .049

PIM .069 .040 .040

UR .043 .037 .040
RS equation

ldv .074 .080 .066

inflation .089 .077 .069

UR .051 .057 .051
Average (12) .097 .061 .057
Average (164) .085 .063 .056
SD (164) .045 .022 .020
Notes:

a: Asymptotic confidence interval.

b: Bootstrap equal-tailed percentile-t interval.

c: Bootstrap symmetric percentile-t interval.

Average (12) = Average for the 12 coefficients.

Average (164) = Average for all 164 coefficients.

SD (164) = Standard deviation for all 164 coefficients

Idv: lagged dependent variable, CS: consumption of services,
CN: consumption of nondurables, CD: consumption of durables,
PF: private nonfarm deflator, RS: three-month Treasury bill rate,
PIM: import price deflator, UR: unemployment rate.

results it seems likely that the US model falls within the required conditions for

validity of the bootstrap.
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4 Analysisof Models' Properties

The bootstrap procedure is extended in this section to evaluating properties of
models like (1). The errors are drawn from the residuals, which is contrary to
what has been done in the previous literature except for Fair (1998). Also, as in
Section 3.1, the coefficients are estimated on each trial. In the previous literature
the coefficient estimates either have been taken to be fixed or have been drawn
from estimated distributions.

When examining the properties of models, one is usually interested in a period
smaller than the estimation period. Assume that the period of interegitisugh

S, wheres > 1 andS < T. The bootstrap procedure for analyzing properties is:

1. For a given trialj, drawu,” from & with replacement for = 1,..., T.
Use these errors aridto solve the model (1) dynamically for=1, ..., T.
Treat the solution values as actual values and estimndig the consistent
estimator (2SLS, 3SLS, or whatever). 138t denote this estimate. Discard
the solution values; they are not used again.

2. Drawu;” from i with replacement for = s, ..., §.8 Use these errors and
&*/ to solve the model (1) dynamically for= s, . . ., S. Record the solution
value of each endogenous variable for each period. This simulation uses the
actual (historical) values of the variables prior to perigdiot the values
used in computing*/ .

3. Multiplier experiments can be performed. First solve the model for period
throughsS usinga*/ and the drawn errors. Record the solution values of the
endogenous variables. Then change one or more exogenous variables and
solve again. The difference between the second solution value and the first
for a given endogenous variable and period is the model’s estimated effect
of the change. Record these differences.

8)f desired, these errors can be the same errors drawn in step 1 fotttfeaighsS period. With
a large enough number of trials, whether one does this or instead draws new errors makes a trivial
difference. Itis assumed here that new errors are drawn.
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4. Repeatsteps1,2,and3fpe=1,...,J.

5. Step 4 gived values of each endogenous variable for each period. It also
givesJ values of each difference for each period if a multiplier experiment
has been performed.

Adistribution of J predicted values of each endogenous variable for each period
is now available to examine. One can compute, for example, various measures of
dispersion, which are estimates of the accuracy of the model. Probabilities of
specific events happening can also be computed. If, say, one is interested in the
event of two or more consecutive periods of negative growth in real output in the
s throughsS period, one can compute the number of times this happened inh the
trials. If a multiplier experiment has been performed, a distributiohdifferences
for each endogenous variable for each period is also available to examine. This
allows the uncertainty of policy effects in the model to be examfhed.

If the coefficient estimates are taken to be fixed, then step 1 above is skipped.
The same coefficient vecto&) is used for all the solutions. Although in much
of the stochastic simulation literature coefficient estimates have been taken to be
fixed, this is not in the spirit of the bootstrap literature. From a bootstrapping
perspective, the obvious procedure to follow after the errors have been drawn is to
first estimate the model and then examine its properties, which is what the above

procedure does.

9The use of stochastic simulation to estimate event probabilities was first discussed in Fair
(1993b), where the coefficient estimates were taken to be fixed and errors were drawn from estimated
distributions. Estimating the uncertainty of multiplier or policy effects in nonlinear models was
first discussed in Fair (1980b), where both errors and coefficients were drawn from estimated
distributions.
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5 Extensions

Bias Correction

Since 2SLS and 3SLS estimates are biased, it may be useful to use the bootstrap
procedure to correct for bias. This is especially true for estimates of lagged de-
pendent variable coefficients. It has been known since the work of Orcutt (1948)
and Hurwicz (1950) that least squares estimates of these coefficients are biased
downwards even when there are no right hand side endogenous variables.

In the present context a bias-correction procedure using the bootstrap is as

follows.

1. From step 2 in Section 3.1 there afevalues of each coefficient available.
Compute the mean value for each coefficient, and l@énote the vector of
the mean values. Let = @ — @&, the estimated bias. Compute the coefficient
vectora — y and use the coefficients in this vector to adjust the constant term
in each equation so that the mean of the error terms is zerox Henhote
a — y except for the constant terms, which are as adjustesithen taken to
be the unbiased estimate ®f Let & denote the vector of estimated biases:
0=a&—a.

2. Usinga and the actual data, compute the errors. Denote the error vector as
u. (u is centered at zero because of the constant term adjustment in step 1.)

3. The steps in Section 4 can now be performed wilaereplacesx andu
replaces. The only difference is that after the coefficient vector is estimated
by 2SLS, 3SLS, or whatever, it hAssubtracted from it to correct for bias.
In other words, subtraét from &*/ on each trial?

1%0ne could for each trial do a bootstrap to estimate the bias—a bootstrap within a bootstrap.
The base coefficients would Id&/ and the base data would be the generated data ory trighis
is expensive, and an approximation is simply to @sen each trial. This is the procedure used
by Kilian (1998) in estimating confidence intervals for impulse responses in VAR models. Kilian
(1998) also does, when necessary, a stationary correction to the bias correction to avoid pushing
stationary impulse response estimates into the nonstationary region. This type of adjustmentis not
pursued here.
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The example in Section 6 examines the sensitivity of some of the results to the bias

correction.

Optimal Control

At the point where multiplier experiments are discussed above, optimal control
experiments can also be performed. Assume that the period of intesrdistasigh
S and that the objective is to maximize the expected valu& pivhereW is

S
W= th(yz, Xt) (2)

t=s

Let z, be the vector of control variables, whereis a subset ok;, and letz be

the vector of all the control values: = (zy, ..., zs). Under the assumption of
certainty equivalence, the control problem is solved at the beginning of period
by setting the errors for periadand beyond equal to zero. If this is done, then
for each value ot one can compute a value & by first solving the model

for ys, ..., ys and then using these values along with the valuesfor. ., xg

to computeW in (2). Stated this way, the optimal control problem is choosing
variables (the elements @) to maximize anunconstrained nonlinear function.

By substitution, the constrained maximization problem is transformed into the

problem of maximizing an unconstrained function of the control variables:
W =2o() 3)

where® stands for the mapping— y;, ..., ys, x;, ..., xs —> W. Given this
setup, the problem can be turned over to a nonlinear maximization algorithm like

Davidon-Fletcher-Powell (DFP). For each iteration of the algorithm, the derivatives
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of @ with respect to the elements gfwhich are needed by the algorithm, can be
computed numerically. An algorithm like DFP is generally quite good at finding
the optimum for a typical control problef.

At each trialj one can solve this problem. Lezfj be the computed optimal
value ofz, on trial j. This is the value that would be implemented for persod
by the control authority? At the end one has a distribution of thfevalues of
z?j , Which can be examined. Note théftf varies across trials only because the
coefficient estimates vary. The errors that are drawn for tifiat periodss through
S don’t matter because of the use of certainty equivalence. The distribution of the
zfj values thus indicates how sensitive the control values are to the uncertainty in

the coefficient estimates.

Rational Expectations
Consider model (1) with rational expectations:

ﬁ(yl’ yl‘—l, ceey yt—p7 Et—l}’z’ Et—lyt+17 ) Et—lyt+/’l7 Xt al) = Ujs,
i=1....n), @=1....7),

(4)

where E;_1 is the conditional expectations operator based on the model and on
information through period — 1.

The bootstrap procedure requires initial consistent estimates of thealso
requires, of course, the ability to solve the model given a set of coefficient estimates.

Various modifications of the 2SLS estimator are available for estimating equations

11see Fair (1974) for various applications of this procedure.

12The control problem also calculates the optimal values for petiodsl throughs, but in
practice these would never have to be implemented because a new problem could be solved at the
beginning of period + 1 after periods was realized. This is the “open-loop feedback” approach.
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with rational expectations, and so one of these could be tisa@tiere are also a
number of methods for solving rational expectations models like (4). One method
that generally works well is the “extended path” (EP) method in Fair and Taylor
(1983, 1990). The solution methods assume that agents form their expectations
at the beginning of period by setting the errors for periadand beyond to zero
and then solving the model. Estimation and solution methods are thus available
for allowing the above bootstrap procedure to be used for models with rational
expectations.

When estimating or solving (4) for, say, periods 1 throiligbata beyond period
T are needed, and so the period analyzed must end before the actual end of the
historical data. It should also be noted that if a single equation estimation method
is used, the expectations used by the estimation method are not the expectations
that one gets when the overall model is solved after the coefficients have been
estimated. In other words, the expectations used by the estimation method are not
model consistent. This means that one has to be careful in computing the errors
(n) after the coefficients are estimatéddomputed). For example, the errors for
period 1 are computed by first solving the model to get the expectations. This
is done by using the historical data prior to period 1 and setting the errors for
period 1 and beyond to zero. Once the expectations are computed, the errors for
period 1 are computed using these expectation values and the actual values of
the endogenous variables for period 1. The process is then repeated for period 2,
where the expectations are computed using the historical data prior to period 2 and

setting the errors for period 2 and beyond to zero. The process continues through

133ee Fair (1993a) for a review of these estimators.
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periodT. Oncei is computed, the bootstrap procedure can proceed as in Sections

3 and 4.

6 An Example

In this section the overall bootstrap procedure is applied to the US model, where
the estimation period is 1954:1-2002:3 and the estimation method is 2SLS.

The calculations were run in one large batch job. The main steps were:

1. Estimatethe 29 equations by 2SLS for 1954:1-2002:3. Compute standard er-
rors of the coefficient estimates, and perform the Andrews-Ploberger (1994)
(AP) test on selected equations. Using the 2SLS estimates and zero values
for the errors, solve the model dynamically for 2000:4-2002:3 and perform a
multiplier experiment for this period. Using the actual data and the 2SLS es-
timates, compute the 29-dimensional error vectors for 1954:1-2002:3 (195
vectors).

2. Do the following 2000 times: 1) draw with replacement 195 error vectors
from the residual vectors for 1954:1-2002:3, 2) using the drawn errors and
the 2SLS estimates from step 1, solve the model dynamically for 1954:1—
2002:3 to get new data, 3) using the new data, estimate the model by 2SLS,
compute t-statistics for the coefficient estimates, and perform the AP tests,
4) reset the data prior to 2000:4 to the actual data, 5) draw with replacement
8 error vectors from the residual vectors for 2000:4—2002:3, 6) using the
new 2SLS estimates and the drawn errors, solve the model dynamically for
2000:4-2002:3 and perform the multiplier experiment for this period.

3. Step 2 gives for each equation 2000 values of each coefficient estimate, t-
statistic, and AP statistic. Italso gives 2000 predicted values of each endoge-
nous variable for each quarter within 2000:4-2002:3 and 2000 differences
for each endogenous variable and each quarter from the multiplier experi-
ment. These values can be analyzed as desired. Some examples are given
below. Steps 4-6 that follow are the bias-correction calculations.

4. From the 2000 values for each coefficient, compute the mean and then sub-
tract the mean from twice the 2SLS coefficient estimate from step 1. Use

17



these values to adjust the constant term in each equation so that the mean of
the error terms is zero. Using these coefficients (including the adjusted con-
stant terms), record the differences between the 2SLS coefficient estimates
from step 1 and these coefficients. Call the vector of these values the “bias-
correction vector.” Using the new coefficients and zero values for the errors,
solve the model dynamically for 2000:4—-2002:3 and perform the multiplier
experiment for this period. Using the actual data and the new coefficients,
compute the 29-dimensional error vectors for 1954:1-2002:3 (195 vectors).

5. Do the following 2000 times: 1) draw with replacement 195 error vectors
from the residual vectors from step 4 for 1954:1-2002:3, 2) using the drawn
errors and the coefficients from step 4, solve the model dynamically for
1954:1-2002:3 to get new data, 3) using the new data, estimate the model
by 2SLS and adjust the estimates for bias using the bias-correction vector
from step 4, 4) reset the data prior to 2000:4 to the actual data, 5) draw
with replacement 8 error vectors from the residual vectors from step 4 for
2000:4-2002:3, 6) using the new coefficient estimates and the drawn errors,
solve the model dynamically for 2000:4—2002:3 and perform the multiplier
experiment for this period.

6. Step 5 gives 2000 predicted values of each endogenous variable for each
quarter within 2000:4-2004:1 and 2000 differences for each endogenous
variable and each quarter from the multiplier experiment.

The same sequence of random numbers was used for the regular calculations
(steps 1-3) as was used for the bias-correction calculations (steps 4-6). This lessens
stochastic simulation error in comparisons between the two sets of results. If the
model failed to solve for a given trial (either for the 1954:1-2002:3 period or the
2000:4-2002:3 period), the trial was skipped. No failures occurred for the regular
calculations, but there were 5 failures out of the 2000 trials for the bias-correction
calculations. Each trial takes about one second on a 1.7 Ghz PC using the Fair-

Parke (1995) program.
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Table 2 presents some results from step 2 for the coefficient estimates. Results
for 12 coefficients from 5 equations are presented. The 5 equations are three
consumption equations, a price equation, and an interest rate rule. The coefficients
are for the lagged dependent variable in each equation, income in each consumption
equation, the price of imports and the unemployment rate in the price equation,
and inflation and the unemployment rate in the interest rate rule. These are some
of the main coefficients in the model.

The first three columns show the 2SLS estimate, the mean from the 2000
trials, and the ratio of the two. As expected, the mean is smaller than the 2SLS
estimate for all the lagged dependent variable coefficients: the 2SLS estimates of
these coefficients are biased downwards. The smallest ratio is 0.966, a bias of 3.4
percent.

Column 4 gives the asymptotic confidence intervals; column 5 gives the confi-
dence intervals using the equal-tailed percentile-t interval; and column 6 gives the
symmetric percentile-t interval using the absolute values of the t-statistics. These
columns show that the asymptotic intervals tend to be narrower than the bootstrap
intervals. In 19 of the 24 cases the left value for the asymptotic interval is larger
than the left value for the bootstrap interval, and in 19 of the 24 cases the right
value for the asymptotic interval is smaller than the right value for the bootstrap
interval. The asymptotic intervals will thus tend to reject more often than the boot-
strap intervals. It was seen in Section 3.2 that the asymptotic interval rejects too

often.
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Table?2
Confidence Intervalsfor Selected Coefficients

1) @ 3 4) 5) (6)
B B 2)/(1) a b c
CSequation
Idv 0.7873 0.7609 0.966 0.7215 0.7449 0.7031
0.8531 0.8827 0.8716
income 0.1058 0.1163 1.099 0.0613 0.0458

CN equation

Idv 0.7823 0.7565 0.967 0.7219 0.7442
0.8427 0.8718 0.8621

income 0.0973 0.1134 1.165 0.0575 0.0393

CD equation

Idv 0.3294 0.3720 1.129 0.2226 0.1755
0.4362 0.3979 0.4675

income 0.1077 0.1218 1.131 0.0701 0.0532

0.0516
0.1504 0.1415 0.1601

0.7026

0.0461
0.1372 0.1241 0.1486

0.1913

0.0591
0.1453 0.1291 0.1564

0.8426

0.0438

-0.2266

0.8812

0.0538

-0.1713

PF equation

Idv 0.8806 0.8715 0.990 0.8487 0.8580
0.9125 0.9246 0.9186

PIM 0.0480 0.0477 0.994 0.0440 0.0442
0.0520 0.0525 0.0522

UR -0.1780 -0.1787 1.004 -0.2238 -0.2239
-0.1322 -0.1280 -0.1293

RS equation

Idv 0.9092 0.9026 0.993 0.8834 0.8870
0.9349 0.9398 0.9371

inflation  0.0803 0.0848 1.057 0.0549 0.0520
0.1056 0.1023 0.1067

UR -0.1128 -0.1123 0.995 -0.1699 -0.1716
-0.0558 -0.0545 -0.0543

Notes:

a ﬂ — 1.966 b: f} — 1750 c: ,8 — |t*| 9500

B+ 1.966 B — 5050 B + 11| 9500

B = 2SLS estimated = estimated asymptotic standard erroiof
B = mean of the values g#*/ , wheref*/ is the estimate of
on thejth trial.
¢ = value below which- percent of the values of/ lie,
wherer*/ = (B*/ — B)/6*/,
whereé*/ is the estimated asymptotic standard erroptf.
|#*|, = value below which percent of the values ¢f*/| lie.
See Table 1 for variable notation.
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Table3
Results for the AP Tests

Bootstrap Asymptotic

# of
Eq. coefs. AP 1% 5% 10% 1% 5% 10%

CSs 9 21.18| 17.47 13.84 12.153 11.16 8.96 7.77
CN 9 14.67| 1450 12.16 10.64 11.16 8.96 7.77
CD 9 12.76| 16.48 12.76 11.23 11.16 8.96 7.77
IH 7 7.17| 13.25 10.62 9.33 950 7.31 6.28
PF 6 12.77| 10.72 8.07 6.85 8.70 6.51 558
Notes:

IH: Housing investment; see Table 1 for other notation.

Sample period: 1954:1-2002:3.

Period for possible break: 1970:1-1979:4.

Value of . = 2.29.

Asymptotic values from Andrews and Ploberger (1994), Table 1.

Table 3 presents results for the AP test for five equations: the three consumption
equations, a housing investment equation, and the price eqdtidhe overall
sample period is 1954:1-2002:3, and the period for a possible break was taken to
be 1970:1-1979:4. (An advantage of the AP test is that the possible break point
can be specified to be within a period rather than a particular quarter.) Table 3
gives for each equation the computed AP value, the bootstrap confidence values,
and the asymptotic confidence values. The asymptotic confidence values are taken
from Table 1 in Andrews and Ploberger (1994). The valug ofthe AP notation
for the present results is 2.29. The bootstrap confidence values for an equation
are computed using the 2000 values of the AP statistic. The 5 percent value, for
example, is the value above which 100 of the AP values lie.

There is a clear pattern in Table 3, which is that the asymptotic confidence

values are too low. They lead to rejection of the null hypothesis of stability too

14The test was not performed for the interest rate rule because the equation is already estimated
under the assumption of a change in Fed behavior in the 1979:4-1982:3 period.
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often. Relying on the asymptotic values for the AP test thus appears to be too
harsh.

Table 4 presents results for the simulations for 2000:4-2002:3. Results for
four variables are presented: the log of real GDP, the log of the GDP deflator, the
unemployment rate, and the three-month Treasury bill rate. Four sets of results
are presented: with and without coefficient uncertainty and with and without bias
correction!® Consider the first set of results (upper left corner) in Table 4. The
first column gives the deterministic prediction (based on setting the error terms
to zero and solving once), and the second gives the median value of the 2000
predictions. These two values are close to each other, which means there is little
bias in the deterministic prediction. The third column gives the difference between
the median predicted value and the predicted value below which 15.87 percent of
the values lie, and the fourth column gives the difference between the predicted
value above which 15.87 percent of the values lie and the median value. For a
normal distribution these two differences are the same and equal one standard
error. Computing these differences is one possible way of measuring forecast
uncertainty in the model. The same differences are presented for the other three
sets of results in Table 4.

Three conclusions can be drawn from the results in Table 4. First, the left and
right differences are fairly close to each other. Second, the differences with no

coefficient uncertainty are only slightly smaller than those with coefficient

15The results without coefficient uncertainty were obtained in a separate batch job. This batch
job differed from the one outlined at the beginning of this section in that in part 6) of step 2 the
2SLS estimates from step 1 are used, not the new 2SLS estimates. Also, in part 6) of step 5 the
coefficients from step 4 are used, not the new coefficient estimates. For this job there were no
solution failures for the regular calculations and 3 failures for the bias-correction calculations.
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Table4
Simulation Results for 2000:4-2002:3

Var, h Y Ys left right Ys left right

No
Coefficient Uncertainty  Coefficient Uncertainty
No Bias Correction
7.746 7.745 0.562 0.5?7.746 0.506 0.486

=

gdrp
4 7.748 7.746 1.423 1.4347.748 1.248 1.240
8 7.778 7.774 1719  1.71R7.777 1.445 1522

gdpd 1 4681 4.681 0.275 0.3224.681 0.277 0.291
4 4700 4.700 0.591 0.6214.700 0.513 0.589
8 4.718 4.717 0.886 0.9314.717 0.734 0.786
UR 1 4146 4.152 0.365 0.3444.167 0.363 0.369
4 4445 4.488 0.745 0.75[4.491 0.687 0.651
8 4.642 4.748 0.863 0.9564.683 0.819 0.821

RS 1 5970 5.974 0.545 0.5385.987 0.584 0.485
4 5,155 5.068 1.196 1.2005.102 1.112 1.162
8 5.002 4.829 1.428 1.4554.969 1.327 1.359

Bias Correction
gdpr 1 7.746 7.746 0.539 0.5717.746 0.516 0.515
4 7.750 7.750 1.542 1.51p7.750 1.283 1.366
8 7.781 7.782 2.020 2.1067.781 1.658 1.709

gdpd 1 4.681 4.681 0.270 0.3244.681 0.281 0.303
4 4699 4.699 0.609 0.6304.699 0.513 0.585
8 4.718 4.717 0.972 0.9864.717 0.742 0.804

1 4173 4.224 0.384 0.3584.195 0.347 0.346
4 4482 4.600 0.858 0.8154.540 0.717 0.667
8 4602 4774 1122 1.1004.664 0.910 0.885

UR

RS 1 5942 5905 0.538 0.5515.948 0.538 0.503
4 5162 5.060 1.228 1.2985.114 1.125 1.181
8 5.086 4.997 1.628 1.56[75.077 1.425 1.395

Notes:

h = number of quarters ahead.

Y= predicted value from deterministic simulation.

Y, = value below which- percent of the values df/ lie, whereY/ is the
predicted value on thgth trial.

left=Y 55 — Y 1587 right =Y 8413 — Y5, units are percentage points.

gdpr: log of real GDP; gdpd: log of GDP deflator; see Table 1 for others.
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uncertainty, and so most of the predictive uncertainty is due to the additive errors.
Third, the bias-correction results are fairly similar to the non bias-correction ones,

which suggests that bias is not a major problem in the model. In most cases the
uncertainty estimates are larger for the bias-correction results.

Table 5 presents results for the multiplier experiment. The experiment was
an increase in real government purchases of goods of one percent of real GDP
for 2000:4-2002:3. The format of Table 5 is similar to that of Table 4, where
the values are multipliet8 rather than predicted values. The first column gives
the multiplier computed from deterministic simulations, and the second gives the
median value of the 2000 multipliers. As in Table 3, these two values are close to
each other. The third column gives the difference between the median multiplier
and the multiplier below which 15.87 percent of the values lie, and the fourth
column gives the difference between the multiplier above which 15.87 percent of
the values lie and the median multiplier. These two columns are measures of the
uncertainty of the government spending effect in the model.

Three conclusions can be drawn from the results in Table 5. First, the left and
right differences are fairly close to each other. Second, the differences are fairly
small relative to the size of the multipliers, and so the estimated policy uncertainty
is fairly small for a government spending change. Third, the bias-correction results
are similar to the non bias-correction ones, which again suggests that bias is not a

major problem in the model.

16The word ‘multiplier’ is used here to refer to the difference between the predicted value of a
variable after the policy change and the predicted value of the variable before the change. This
difference is not strictly speaking a multiplier because it is not divided by the government spending
change.
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Table5
Multiplier Resultsfor 2000:4-2002:3

var. h d ds left right d ds left right

No Bias Correction Bias Correction
gdpr 1 1.010 1.035 .069 .0810.984 0.979 .065 .078
4 1571 1613 .075 .0881.530 1530 .067 .078
8 1361 1.394 .080 .0881.325 1.325 .079 .083

gdpd 1 .036 .034 .008 .009 .039 .039 .008 .008
4 .282 279 .045 .048 .284 279 .044 .046
8 .569 578 .078 .081 .558 514 067 .075
UR 1 -280 -279 .037 .037 -.281 -.278 .039 .035
4 -747 -753 .072 .063 -.742 -742 .074 .061
8 -560 -587 .072 .076 -536 -546 .074 .079
RS 1 .258 .261 .046 .054 .255 251 .044 .052
4 .753 759 .108 .109 .750 747 106 .105
8 .678 664 113 117 .647 .650 .116 .124
Notes:

h = number of quarters ahead.

Y@ = predicted value from deterministic simulation, no policy change.
yb = predicted value from deterministic simulation, policy change.
d=yb—ya

Y% = predicted value on thgth trial, no policy change.

Y%/ = predicted value on thgth trial, policy change.

d/ =ybi — yaj

d, = value below which- percent of the values af’ lie.

left = d 5 — d 1587, right =d g413 — d 5, Units are percentage points.
See Tables 1 and 4 for variable notation.

7 Conclusion

This paper has outlined a bootstrapping approach to the estimation and analysis of
dynamic, nonlinear, simultaneous equations models. It draws on the bootstrapping
literature initiated by Efron (1979) and the stochastic simulation literature initiated

by Adelman and Adelman (1959). The procedure in Section 4 has not been used
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before for these models. The procedure is distribution free, and it allows a wide
range of questions to be considered, including estimation, prediction, and policy
analysis.

The results in Section 6 are for illustration only, but they are suggestive of the
usefulness of the bootstrapping procedure for models like (1). Computations like
those in Table 3 can be done for many different statistics. Computations like those
in Table 4 can be used to compare different models, where various measures of
dispersion can be considered. These measures account for both uncertainty from
the additive error terms and coefficient estimates, which puts models on an equal
footing if they have similar sets of exogenous variables. Computations like those
in Table 5 can be done for a wide variety of policy experiments. Finally, the results
in Table 1 show that the bootstrap works well for the US model regarding coverage

accuracy.
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