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Liquidity and Financial Market Runs

Antonio E. Bernardo and Ivo Welch

May 27, 2003

Abstract

We model a run on a financial market, in which each risk-neutral investor

fears having to liquidate shares after a run, but before prices can recover back

to fundamental values. To avoid having to possibly liquidate shares at the

marginal post-run price—in which case the risk-averse market-making sector

will already hold a lot of share inventory and thus be more reluctant to absorb

additional shares—each investor may prefer selling today at the average in-run

price, thereby causing the run itself. Liquidity runs and crises are not caused

by liquidity shocks per se, but by the fear of future liquidity shocks.
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In contrast to the financial institutions literature (e.g., Diamond and Dybvig [1983]),

runs on financial markets have not been a prime subject of inquiry. Our paper offers

such a model, in which investors fear (but do not necessarily experience) future liq-

uidity shocks. This creates two scenarios. In the good scenario, a risk-neutral public

holds most of the risky shares. Investors hit by a liquidity shock in the future will

sell to the risk-averse market-making sector at a “low-inventory price,” which will be

close to the risk-neutral value of the asset. In the good scenario, the market-making

sector provides the public with low-cost insurance against liquidity shocks.

In the bad scenario, every investor conjectures that other investors intend to sell

today, thus causing a “run.” By joining the pool of selling requests today, an indi-

vidual investor can expect to receive the average price that is necessary to induce

the market-making sector to absorb all tendered shares today. The investor’s alter-

native is to not enter the pool and instead to hold onto the shares. In making this

decision, this investor is better off if he can wait out the storm and realize the even-

tual expected asset value. However, if he were randomly hit by the possible liquidity

shock, this investor would need to sell his shares behind the rest of the public. But,

with the market-making sector already holding the shares of other investors who

had joined the run, this post-run price will be worse than the average in-run price

today. If the average in-run price is greater than the expected payoff achieved by

waiting, this investor will join the herd and also sell into the run. If other investors

act alike, the conjecture that other investors sell today ends up true. In the bad sce-

nario, the market-making sector inefficiently holds too many shares and provides

the public with high-cost insurance against liquidity shocks.
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Our bad scenario relies on two critical assumptions. Our first critical assump-

tion is that execution order is not perfectly sequential. If, instead, execution were

perfectly sequential, investors could not expect to avoid a place in the rear by joining

the selling pool. Thus, the last investors (who would know they are last) would be

better off waiting rather than joining the herd and the bad scenario would unravel.

In reality, financial markets lack perfectly sequential execution in at least three

circumstances. First, there is often no sequential execution after a market closure:

for example, at the stock market opening or after a trading halt, markets are often

conducted in a “batch” mode where all orders are crossed at the same price—and,

indeed, fears of stock market runs seem higher around market closures. Second,

there is anecdotal evidence that sequential execution broke down in the three most

recent stock market crashes (1929, 1987, 1997). Describing the 1987 crash, Green-

wald and Stein [1988, p15f] state that “investors cannot know with any precision

at what prices their orders are executed...trades consummated only minutes apart

were executed at wildly different prices, so that an investor submitting a market

order had virtually no idea where it would be completed.” Not knowing his place

in the queue, a tendering investor would expect to receive some average price. The

chain of perfect sequentiality may not just be broken on the exchange itself, but

also in the communication of brokers with the exchanges and with their investors.

In September 9, 1998, the S.E.C. Staff Legal Bulletin #8 describes the situation during

the crash of 1997:

The Commission received several complaints from customers regarding broker-dealer

operations during the heavy trading volume effected on October 27 and 28. In particu-

lar, customers complained about receiving poor or untimely executions from broker-

dealers...Numerous customers of online broker-dealers were unable to gain timely

access to their accounts on October 28...
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Some broker-dealers experienced disruptions in their trading system operations that

prevented them from routing customer orders to the designated market center for

execution on a timely basis. Although disruptions occurred throughout the day, ca-

pacity problems were particularly high just after the opening of the market and prior

to the close of trading on October 28. An unusually high numbers of orders that

queued up in broker-dealers’ internal order handling systems prior to the opening of

trading on October 28 helped precipitate these problems.

Third, in many over-the-counter financial markets, counterparties need to be found,

and when multiple sellers are searching for counterparties, there is randomness as

to who will find the potential buyers first.

Our second critical assumption is that the market-making sector is risk-averse

and cannot expand infinitely in an instant. Consequently, selling pressure from

individual investors causes prices to fall in the short run. If, instead, the market

making sector could expand infinitely, there would be no price impact if a large part

of the investing public simultaneously wanted to exit. “Coming later” would then

not impose a penalty on liquidity-shocked investors, and, again, the bad scenario

would unravel.

Our assumption precludes the presence of enough standby investors who could

eliminate any time lag between the exit of liquidity shocked investors and the entry

of more market-making capacity. Indeed, our bad scenario ends with the inflow of

such investors—who do earn a positive rate of return commensurate with their will-

ingness to provide liquidity and bear risk. The important question is only whether

the time to reentry is non-trivial.

Consistent with our assumption of short run “price pressure,” there is evidence

that stock price changes were negatively correlated with market-maker buying ac-

tivity at half-hour intervals during the crash of October 1987 (Gammill and Marsh
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[1988]). Even in normal markets, Madhavan and Smidt [1993] and Hasbrouck and

Sofianos [1993] find inventory effects on prices for NYSE specialists after controlling

for the information content of order flow.

There is also anecdotal evidence that the lag can be non-trivial in situations in

which the dynamics of our model can reasonably apply—a “zag” following the “zig”

of a sharp stock market-wide drop. Schwert [1998] reports all large daily S&P500 in-

creases and decreases from 1885–1997. The aforementioned stock market crashes

of 1929, 1987, and 1997 feature prominently. The single largest daily S&P500 point

increase (+44.86) occurred on 10/28/1997, one day after the single largest daily

S&P500 point decrease (–64.65). His daily returns even understate the rapid crash-

and-recovery dynamics. Figure 1 shows the intraday behavior of the S&P500. Half

of this 1997 crash occurred during the last hour of trading on 10/27, and half of

the recovery occurred during the first hour of trading on 10/28.

The biggest daily percentage loss (–20%) occurred on 10/19/1987—and was soon

followed by the seventh-best gain (+9%) on 10/21. Again, Figure 1 shows that

the daily statistics do not fully convey the rapid crash-and-recovery dynamics. At

9:30am on 10/20, the S&P stood at 228. At 11:01am, it had dropped to 181.5. At

12:04, it had returned to 212. Similarly, on 10/21, the market closed at 257. On

10/22, at 8:30am, the market opened at 202, and immediately fell to 195. But by

8:38am, it had recovered to 229, and by 9:47am, it had further increased to 243.

There is no intra-day data for 1929. However, Schwert [1998] reports that the

second-worst and third-worst percentage drops in one day, –12% and –10%, occurred

on 10/28 and 10/29/1929—and were promptly followed by the second-best per-

centage rise, +13% on 10/30.
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It is not easy to get rich in crash situations. It is costly to create buffer stock

or stand-by liquidity and the uncertainty in execution makes exploiting the bottom

difficult. A large arbitrageur might have to lurk for years with ample financial slack

to profit from the rare crash (Greenwald and Stein [1988, p.19]).1 Thus, the market-

making sector may be smaller than often assumed. In sum, we believe liquidity runs

and crashes to be sufficiently rare phenomena that moderating market forces may

not be sufficiently profitable to take effect instantly.

Our model produces a short-run accelerator effect, whereby small changes in

the likelihood of a liquidity shock can have big effects on the allocation of risk and

the equilibrium prices. It is important to point out that in our model prices and

market-making inventories are driven by the fear of future liquidity shocks, not by

the liquidity shocks themselves. Liquidity shocks might loom in the future but cause

a run today. If underlying exogenous parameters change, high volatility and runs

(low prices, high market-making inventory) can appear and disappear many times

before the liquidity shocks themselves. An empiricist might not even necessarily

recognize the relevance of actual liquidity constraints.

We also examine a model of liquidity shocks determined endogenously via mar-

gin constraints. In this model, fears of a margin call in the future can be self-fulfilling

because they prompt investors to sell shares today in advance of the crowd. In sum,

we believe that our model’s intuition that investors fear “coming in last” is solid,

and resonates with many who witnessed recent market crashes.

5



I. The Basic Model Setup

Date -

Investors Trade.
Focus of our Paper.

t = 0

Possible Liquidity Shock.
Shocked Investors Forced to Trade.

t = 1

Unshocked investors return.
Asset value is revealed.

t = 2

Our model has three dates (t = 0,1,2) and two assets paying off at date 2: a risk-

free bond in infinitely elastic supply with a gross payoff of $1 and a risky “stock”

in finite supply with gross random payoff of Z̃ . We normalize the date 0 and date 1

price of the bond to be $1, and solve for the price of the stock. The stock trades at

date 0 and date 1. There are two types of traders in our model.

Market-makers constitute an entire sector, not just the specialist, but all traders

willing to absorb shares upon demand and without fear of liquidity shocks. The

market-making sector is assumed to be risk averse in aggregate. Consequently, the

price at which this sector is willing to hold shares is decreasing in its inventory

(Garman [1976], Ho and Stoll [1981]). It holds zero inventory of shares at date 0.

Individual investors are atomistic, identical, risk-neutral, and endowed with

shares which sum to the total supply of shares (normalized to one). They can suffer

a liquidity shock at date 1. In Section II, each investor may be forced to liquidate

her shares with an exogenous probability s. In Section III, margin constraints endo-

genize the date 1 liquidation probability s to depend on the date 0 stock price.

To recap, there are two important differences. First, individual investors are

risk-neutral and the market-making sector is risk-averse. This captures the fact

that the investing public has more risk absorption capacity than the market-making

sector, and that, in a Pareto efficient outcome, shares should be held by the investing

public. Second, only individual investors face a potential liquidity shock at date 1.
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To purchase shares during a run, an investor must be classified as a member of

the market-making sector. In Section IV.A, we allow a limited number of individual

investors who learn that they are not subject to any future forced liquidation to

join and thereby deepen the market-making sector. In one sense, the question as

to why the market-making sector does not expand infinitely in an instant is similar

to why banks in Diamond and Dybvig [1983] do not quickly find additional backers

to avoid inefficient liquidation.

Our investors submit market orders and are unsure of the exact price at which

the order will be executed.2 The price is determined by assuming that the risk-

averse market-makers earn zero expected utility at each trading date. Again, to

prevent an infinitely deep market making sector and for simplicity, we assume the

market-makers ignore future trading opportunities when setting prices (i.e., behave

myopically).3 There are two interpretations for this price determination—and both

lead to the same price functions and thus identical solutions in our model. In the

first interpretation, individual investors submit sell orders at each trading date that

are batched and bought by a single market-maker at a single average zero-expected-

utility price. The zero expected utility condition is plausible, e.g., if the market is

contestable (Baumol, Panzar and Willig [1982]). In this case, a single market maker

may find it profit-maximizing to set prices competitively to preclude entry. For

ease of exposition, our paper proceeds under this interpretation. In the second

interpretation, individual investors submit sell orders at each trading date which

are filled sequentially but randomly by N competitive market makers with identical

risk aversion. Being myopic, each market-maker fills 1/N of every order at a price

that makes him indifferent between buying and not buying the last share of each

order. Again, later orders are filled at lower prices. If the order size is arbitrarily

small, the competitive market makers achieve zero expected utility (i.e., do not earn
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infra-marginal rents) and the “average” price received by the individual investors is

identical to that in our first interpretation.4 In our basic model, we assume no entry

into the market-making sector between date 0 and date 1. In reality, we would

expect that large deviations from the fundamental value of the stock caused by

limited market-making depth would attract a new supply of liquidity. Arguably, it is

precisely such a process that brings a financial market run to an end. We extend our

basic model to allow for limited entry into the market-making sector in Section IV.A.

The important necessary feature of our model is that the market-making sector is

exposed to fundamental stock price risk in the time between the short-run price

pressure created by widespread investor selling and the entry of new liquidity.

II. Equilibrium With Exogenous Liquidity Shocks

A. Equilibrium Definition

Consider an individual investor who conjectures that a total of α shares will be sold

by individual investors to the market-making sector at date 0 and let p0(α ) denote

the date 0 price set by the market makers when α sell orders arrive at date 0. If this

investor also sells her shares at date 0, she will expect to receive the price p0(α ).

However, if this investor chooses not to sell her shares at date 0 then at date 1, she

will either (i) be forced to liquidate her shares, with probability s, or (ii) not be forced

to liquidate her shares, with probability 1−s, in which case she will optimally wait to

receive the expected value of the stock, µ, at date 2. If she suffers a liquidity shock,

and fraction q1(α) investors will also sell at date 1, her price will be p1( q1(α);α),
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set by the market-makers when they already hold α shares of inventory and q1(α )

new sell orders arrive at date 1. Therefore she optimally sells at date 0 iff

(1) p0(α ) ≥ s·p1( q1(α);α)+ (1− s)·µ .

A risk-averse market-making sector implies that p′( · ) < 0, so the price will be lower

when more investors are dumping their shares. The price at date 0 is higher than

the price at date 1 (applicable if the investor suffers a liquidity shock), but lower

than the expected value µ (applicable if she can hold on). Each individual investor’s

decision to sell depends critically on how many other investors are selling at date 0.

Define F(α ) to be the expected net benefit of selling shares at date 0 (compared

to not selling) when the investor conjectures that α shares are sold at date 0.

(2) F(α ) =
if tender today︷ ︸︸ ︷
p0(α ) −

if forced to liquidate tomorrow︷ ︸︸ ︷
s·p1( q1(α);α) −

if liquidation
not necessary︷ ︸︸ ︷
(1− s)·µ .

Then (i) waiting (α? = 0) is a pure strategy Nash equilibrium iff F(0 ) ≤ 0; (ii) selling

(α? = 1) is a pure strategy Nash equilibrium iff F(1 ) ≥ 0; and (iii) α? ∈ (0,1) is a

mixed strategy Nash equilibrium iff F(α? ) = 0.

As it turns out, α? = 0 is never a Nash equilibrium if s > 0. If the market-

making sector holds zero inventory, it would be willing to accept the first share at

the risk-neutral valuation today. Thus, the first seller would avoid the liquidation

risk tomorrow without any price penalty today.
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B. A CARA-Normal Example

In order to to solve algebraically for equilibrium prices, we now assume that (i) the

stock payoff Z̃ is normally distributed with mean µ and variance σ 2, and (ii) the

market-making sector has negative exponential utility u(w) = −e−γ·w , where γ is

the coefficient of absolute risk aversion.

If the market maker has initial wealth W0 and ignores future trading opportu-

nities, i.e., behaves myopically, his random wealth at date 2 is W̃2 = W0 + α·(Z̃ −

p0). The share price p0(α ) makes the market-maker indifferent between buying α

shares at date 0 and maintaining zero inventory of shares:

(3)

E[−e−γ·W̃2 ] = E[ e−γ·W0 ] ,

=⇒ E[W0 +α·(Z̃ − p0) ]− γ·Var[W0 +α·(Z̃ − p0) ]/2 = W0 ,

=⇒ p0(α ) = µ − γ·σ2·α/2 .

We begin by assuming that liquidity shocks are perfectly correlated, in which case

all investors want to sell the remaining (1− α) shares in period 2 with probability

s. The market maker already holds α shares, and the price p1( (1 − α);α) makes

the market-maker indifferent between buying (1 − α) new shares at date 1 and

maintaining an inventory of α shares:

(4)

E[ W̃2 + (1−α)·(Z̃ − p1) ] − γ·Var[W̃2 + (1−α)·(Z̃ − p1)]/2

= E[ W̃2 ]− γ·Var[ W̃2 ]/2 ,

=⇒ p1( (1−α);α) = µ − [2·α+ (1−α)] ·γ·σ2/2 .
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Theorem 1 If liquidity shocks are perfectly correlated, the unique symmetric Nash

equilibrium is

(5) α? =


(

s
1−s

)
for s ≤ 1/2.

1 for s > 1/2
.

Proof of Theorem 1: Substitute the pricing functions (3) and (4) into equation (2). Note

that F(0 ) > 0 for all s > 0 and Fα? , the derivative of F with respect toα?, is negative. Thus,

there are two possibilities. If F(1 ) ≥ 0 then there is a unique pure strategy equilibrium

α? = 1 and if F(1 ) < 0 there is a unique mixed strategy, α?, where F(α? ) = 0. For

s > 1/2, F(1 ) > 0 thus α? = 1. For s ≤ 1/2 solving for α? yields the result. q.e.d.

The equilibrium market-maker inventory increases in the liquidity shock prob-

ability s. Even though the efficient outcome would be for market makers to hold

zero inventory at date 0, the desire of investors to preempt other investors forces

the risk-averse market-making sector to inefficiently hold shares. This inefficient

allocation of risk is reflected in a lower equilibrium price for the stock.

The market-maker inventory is convex in the liquidation probability, which im-

plies an “accelerator” effect: fear of other investors liquidating has an immediate

influence on each investor’s own decision to liquidate. For very small values of s,

i.e., very little chance of future liquidity shocks, an investor sees other investors

waiting and thus does not mind waiting herself. The market-making sector needs

to hold almost no shares today (α? close to zero) and the outcome is close to the

Pareto-optimum. With increasing s, the fraction of tendering investors rises ever

more quickly. Similarly, the resulting volatility of stock returns R̃0,1 ≡ (p1−p0)/p0

is increasing and convex in s.5 Thus, small changes in s can significantly change

both market-maker inventory and market volatility. Finally, in the extreme, if there

is “only” a 50-50 chance of investors facing a future liquidity shock, and even if the
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market-making sector is extremely risk-averse (γ → ∞), risk-neutral investors find

themselves unwilling to hold any stock today.

Although these are not distinct equilibria, there is a flavor of two distinct sce-

narios here: a good scenario, in which the probability of liquidation is low, and the

market-making sector is not holding much inventory; and a bad (or run) scenario,

in which the probability of individual liquidation is average, and the risk-averse

market-making sector has to absorb all shares in the economy.

The theorem readily generalizes to other correlations of investor liquidity shocks.6

For example, if liquidity shock are uncorrelated, the Law of Large Numbers implies

that s·(1−α) shares will be sold for sure at date 1.7 Replacing (1−α) with s·(1−α)

in equation (4) yields a date 0 equilibrium inventory of α? = s2/(1− s)2.

Interestingly, with CARA utility, the risk-absorption capacity of the market-making

sector (γ) and the riskiness of the stock (σ ) play no role in the equilibrium market-

maker inventory outcome (α?). Expanding the market-making sector in both good

and bad times would not solve the allocation problem created by the fear of facing

a liquidity shock. The reason is that there are two countervailing forces when the

market-making sector is deep: On the one hand, the average in-run price is higher

because the market-making sector is close to risk neutral. On the other hand, the

marginal price obtained after the run is also higher. In other words, higher risk-

capacity for the market-making sector not only allows investors to unload shares

at an attractive price in a run, but it also allows them to enjoy a better price after

a run. With CARA preferences, these two effects exactly offset each other in the

investors’ selling decision, because the market-making price is linear in inventory.8

Although risk aversion and payoff variance affect the slope of the linear demand

curve, they do not affect the relation between average and marginal prices. Thus,
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the tradeoff between tendering today and waiting is independent of these parame-

ters. The prime ingredient in this version of our model is investors’ fear of future

liquidation, s.

C. A CRRA-Binomial Example

Now assume the market maker has CRRA utility with risk-aversion parameter γ

and the stock payoff is either U (with probability π ) or D. Although we cannot

solve this model algebraically, the numerical solutions illustrate richer comparative

statics. We already know from the CARA case that it is not the steepness of the

demand curve itself (i.e., the “depth”) that matters to market-making inventory. But

in the CRRA case, the other parameters (such as wealth, risk-aversion, and riskiness)

matter for the relative share allocations to the extent that they affect the curvature

of the market-making demand function.

Figure 2 graphs the market-making sector’s equilibrium holdings (α?) as a func-

tion of exogenous parameters for the case of independent liquidity shocks across

investors. (The numerical results are qualitatively similar when liquidity shocks are

perfectly correlated across investors.) Typically, we find that the market-making

sector holds more inventory (α?)

• when the market-making sector has greater wealth;

• when the market-making sector has greater risk-absorption capacity (risk-

aversion coefficient γ is lower);

• when the asset is less risky (when U − D is smaller holding the mean payoff

π·U + (1−π)·D constant);

• when the probability of a liquidity shock (s) is higher.
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III. Equilibrium With Margin Constraints

Margin calls, which force investors to sell more shares if the share price declines, are

important during financial market crashes (see, e.g., Chowdhry and Nanda [1998]).

Margin calls can endogenize liquidity constraints and can produce the very high-

frequency “phase transitions” (as well as multiple equilibria) that characterize stock

market crashes.

We now sketch a simple model of margin constraints. As before, the stock payoff

is normally distributed with mean µ and variance σ 2 and the market-maker has

CARA utility with risk aversion parameter γ. Suppose that every individual investor

has an external source of income at date 0 of W̃ , which is uniformly distributed

over the interval [0, B] and independent of any stock price movements, and she has

financed her purchase of the stock with margin. At date 1, if her wealth (including

the stock) has fallen by too much, a margin call will force liquidation. Otherwise,

holding on will be optimal. Suppose that she had purchased shares at price p (given

outside the model), and letm ∈ [0,1] be the proportion of the investment financed

with margin. Thus, if the price falls from p to p0, she would need to come up with

cash of m·(p − p0) in order to hold onto the shares until the final period. Margin

constraints are thus triggered by a decline in price from the purchase price p to p0.

Therefore, her endogenous probability of liquidation is

s(α ) = Prob[W̃ <m·(p − p0)] =
m·(p − p0)

B
= m·(p − µ)

B
+
(
m·κ
B

)
·α

≡ c0 + c1·α ,(6)

where κ ≡ γ·σ 2/2, c0 ≡m·(p − µ)/B, and c1 ≡m·κ/B (> 0). We consider only the

case where the income shocks are perfectly correlated, i.e., all or no investors face
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a liquidity shock at date 1 depending on the realization of W̃ .9

Theorem 2 If (i) B > p > µ > κ where κ ≡ γ·σ 2/2; (ii) B is sufficiently large;

and (iii) income shocks are perfectly correlated, then there is a unique tendering

equilibrium, α∗ ∈ (0,1), in which α∗ increases in m and (p − µ) and decreases in

B.10

Proof of Theorem 2: In the perfectly correlated income shocks case we have p0 =

µ − κ·α if α proportion tender at date 0, and p1 = µ − κ·(1+α) if all remaining investors

are forced to liquidate at date 1. Substituting these two price functions and the liquidation

probability (6) into (2) yields

(7) F(α) ≡ κ·[(c0 + c1·α)·(1+α)−α] .

First, note that F(0) = κ·c0 > 0, so α = 0 is not an equilibrium. Second, note that

F(1) = κ·[2·(c0 + c1)− 1] < 0 by assumptions (i) and (ii), so α = 1 is not an equilibrium.

Finally, Fα = κ·[c0 + c1 + 2·c0·α − 1] < 0 by assumptions (i) and (ii), so there is a unique

α∗ ∈ (0,1) such that F(α∗) = 0.

The comparative statics results follow from the facts that (i) Fc0 = κ·(1 + α) > 0; (ii)

Fc1 = κ·α·(1+α) > 0; (iii) c0 is increasing in m and p and decreasing in B and µ; and (iv)

c1 is increasing in m and decreasing in B. q.e.d.

The intuition for the comparative statics are straightforward:

Margin Constraint (m): the more investors can borrow, the greater will be the ten-

dering proportion at date 0, because it is less likely that investors will be able

to meet margin calls at date 1.

Original Purchase Price (p): the more investors paid relative to the current mean

(p−µ), the greater the tendering proportion at date 0, because it is less likely

investors will be able to meet the margin call at date 1. One way to interpret
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p−µ is the innovation in beliefs from purchase of the stock to now. This states

that if there is a big negative shock to beliefs, then margin calls exacerbate

the price move through early liquidation: this is overreaction to bad news.

However, there is no overreaction to good news, because there is not a margin

call in that case!

Expected Income (B): the higher external expected income is likely to be (to meet

future margin calls), the smaller is the tendering proportion at date 0.

Ultimately, the only important aspect of our model is that a lower price can

further increase the probability of future liquidation needs. The liquidity run phe-

nomenon then interacts with and rationally amplifies feedback trading (Shleifer

[2000]). Our margin assumptions have produced the particular linear mapping

of price declines into liquidation probabilities in (6). Risk management systems,

principal-agent problems, limited horizons, or empirical liquidation estimates could

produce other mappings. If c0 = 0 and c1 = 1, there are three equilibria: a stable

one in which no investor tenders and therefore no investor is afraid of liquidation;

a stable one in which every investor tenders because every investor tenders; and an

instable one in which there is an interior tendering equilibrium. Because these are

simultaneously feasible, sudden equilibrium switches could potentially occur.

IV. Discussion, Extensions, and Welfare

A. Preventing Runs

What mechanisms could prevent the need for the market-making sector to absorb

run inventory from the public?
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The first answer lies in the enforcement of perfect sequentiality. With sequen-

tial execution the last investors (who now know they are the last investors!) would

be better off just waiting it out instead of being the last in-the-run investors. In

response to the 1987 crash, the NYSE massively expanded its communication in-

frastructure, a mechanism to prevent the conversion of the sequential market into

a random-execution market in times of declines. In contrast, a widespread belief

that front-running others is possible can encourage run equilibria, because success-

ful front-running increases the expected payoff to tendering early.11 Naturally, in an

equilibrium with homogeneous agents, noone can expect to front-run anyone else.

However, in the real world, some heterogeneous investors may rationally or irra-

tionally believe in their ability to front-run. Indeed, portfolio insurance attempts to

precommit to withdraw funds in the case of large moves, which will thus worsen the

liquidity effects described in our own paper. Leland and Rubinstein [1988, p.46f]

describe some possible front-running in 1987: “With the sudden fall in the market

during the last half hour of trading on October 16, many insurers found themselves

with an overhang of unfilled sell orders going into Monday. In addition, several

smart institutional traders knew about this overhang and tried to exit the market

early Monday before the insurers could complete their trades.”

The second answer lies in providing liquidity during runs. For example, supoose

there is limited market-making entry at date 1, so that it is deeper at date 1 than at

date 0 (i.e., γt=1 ≤ γt=0). Again assume CARA utility, normally distributed payoffs,

and perfectly correlated shocks. The prices now reflect the different market-making

depth at each date; thus, p0(α ) = µ − γ0·σ 2·α/2 and p1(1 − α;α) = µ − (1 +

α)·γ1·σ 2/2. Substituting p0(α ) and p1(1−α;α) into F(α ) yields:
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Theorem 3 If the market-making sector is deeper at date 1 (i.e., γ1 < γ0) and liq-

uidity shocks are perfectly correlated there is a unique symmetric Nash equilibrium

with

(8) α? =


(

s
γ0/γ1−s

)
if s ≤ γ0/(2·γ1)

1 if s > γ0/(2·γ1)
.

Market-making inventory α? decreases in γ0 and increases in γ1. If the market

making sector is more shallow at date 0 than at date 1, investors would be less

eager to tender to market-makers and more inclined to take their chances. Thus,

a shallow market-making sector in ordinary markets (high γ0) can be as important

as intervention in bad markets (low γ1)! Conversely, if “standby liquidity” for a

financial crisis is low (i.e., the market-making risk aversion γ1 is unusually high),

then the post-run price will be lower, which prompts investors to sell more at date 0.

Unfortunately, the ordinary private market-making sector could sometimes even

behave as if it is more risk-averse during runs. Gammill and Marsh [1988] doc-

ument that exchange market makers, other exchange members, and option mar-

ket makers indeed provided liquidity from October 15 to October 19, 1987, but

then actually sold $606 million on October 20, 1987. (In fact, the market mak-

ers’ advantageous location could have allowed some of them to front-run external

investors.) The biggest providers of liquidity on October 20 were pension funds,

trading-oriented investors, firms repurchasing their own shares, and individual in-

vestors. Furthermore, many large institutions, other potential providers of liquidity,

often run portfolio-insurance schemes which tend to sell more into a crash rather

than against a crash. From October 15 to October 20, 1987, these portfolio insurers

withdrew $853 million, $2,419 million, $5,223 million, and $2,148 million.
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Greenwald and Stein [1988, p.19] suggest one alternative private mechanism, in

which large financial insurers would agree to cover some of the losses of market-

makers if the market drops significantly. Still, we find it unlikely that the private sec-

tor could provide liquidity only in bad scenarios, but not in good scenarios. There-

fore, government intervention which commits to provide market-depth in “bad” but

not in “good” times might usefully mitigate run inefficiencies: if correctly done,

standby liquidity could help prevent many financial runs in the first place.12

B. A Multiperiod View

Our model is multi-period robust, so a liquidity run can occur even if the liquidity

shock is far away. The two important conditions are only that investors must expe-

rience the liquidity shocks simultaneously and that the market-making sector must

face the risk of being stuck with inventory that is subject to fundamental price risk.

For example, suppose investors have two opportunities to sell, date 0 and date 1,

prior to the occurrence of a liquidity shock. An equilibrium is now a pair (α0, α1),

for which—given that α0 proportion sell at date 0—it is optimal for an α1 propor-

tion to sell at date 1, and vice versa. One condition for optimality is that someone

who sells at one date does not have the incentive to deviate and sell at the other

date. But there is only one case for which this is true: α proportion sell at date 0

and noone sells at date 1! In this case, the date 0 price exceeds the date 1 price

so no one has an incentive to deviate and sell at date 1. Moreover, the possibility

of a liquidity shock in the future makes an investor indifferent between selling at

date 0 and waiting if she conjectures that α? (as in our earlier model) proportion of

investors will sell at date 0.
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The probability of a future liquidity shock may constantly fluctuate, even though

the liquidity shock itself can be off on the horizon. Consequently, an empiricist

could observe dramatic price movements and market-making inventory changes

without observing any actual liquidity shocks. And, for the rare empiricist able to

measure the fear of liquidity shocks (s), depending on its value, seemingly small

changes can cause large sudden changes in the desire of investors to unload shares

onto the market-making sector.13

Thus, time-varying probability assessments of future liquidity shocks could lead

to active trading and time-varying market-making inventory adjustments, even in

the absence of any current liquidity shocks. This model can potentially explain

relatively high trading volume and price fluctuations in the presence of only mild

news.

C. The Social Cost of Investor Fear

In our model, there is no asymmetric information or trading costs–and yet the mar-

ket outcome can be significantly worse than the Pareto-optimal allocation. In the

CARA-normal case, we can compute the social cost of investor fear. Our bench-

mark is not a price of µ, but a requirement that risk-neutral investors must not sell

at date 0 (similar to the analysis in Diamond and Dybvig [1983]). In this Pareto-

optimal outcome, the risk-neutral investors hold all the shares at date 0 and sell

to the market-making sector at date 1 only if they are actually hit by a liquidity

shock. Assume liquidity shocks are perfectly correlated,14 so every investor would

sell shares with probability s at a price p1 = µ−γ·σ
2/2 (assuming that the market-

maker sector executes these sell orders at a price that yields no utility gain for
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them) and would retain shares with probability 1− s (with expected value µ). Thus,

investors’ utility would be

(9) µ − γ·s·σ
2

2
.

In contrast, in a financial run, risk-neutral investor sell with probability α? at date 0

at the average price p0 = µ − (γ·α?·σ 2)/2, liquidate with probability (1 − α?)·s

at date 1 at the average price p1 = µ − (1 + α?)·γ·σ 2]/2, and retain shares with

probability (1− s)·(1−α?) at expected value µ. Thus, investors’ utility is

(10)


µ − γ·σ2

2 · s
(1−s) if s ≤ 1/2

µ − γ·σ2

2 if s > 1/2
.

By assumption, the market making sector has zero expected utility gain, so a total

welfare comparison only requires a comparison of the investors’ utility. The equi-

librium welfare (expected selling price) is below the Pareto-optimal level of welfare

by the amount

(11)


γ·σ2

2 · s2

(1−s) if s ≤ 1/2

γ·σ2

2 ·(1− s) if s > 1/2
.

The welfare loss is increasing in the market-maker’s risk-aversion and the payoff

variance σ 2, because inefficient risk-sharing is exacerbated. The welfare loss is

greatest when s = 1/2 because the market-making sector must absorb all shares,

not just those of the liquidity-shocked individuals. Because α? increases at a faster

rate as s approaches 1/2, the welfare loss increases in s for s ∈ [0,0.5). However,

because (i) α? = 1 for all s ≥ 1/2 and (ii) as s increases the market makers would

hold an increasing proportion of shares in the Pareto-optimal benchmark outcome,
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the welfare loss decreases in s for s ∈ (0.5,1].

D. Contagion

Contagion of liquidity fear across investors falls naturally out of the model. In the

bad scenario, there are spillovers in the decisions of investors to sell their shares.

For example, Schnabel and Shin [2002] argued that the forced sale of commodities by

the de Neufville banking house culminated in the financial crisis of 1763. Limited

liquidity in the commodity markets caused a decline in commodity prices which

in turn put a strain on other investors who were then also forced to sell to meet

liquidity needs. Similar arguments have been made in regard to the collapse of the

Long Term Capital Management Hedge Fund in 1998 which also led to the demise of

other hedge funds with similar investment strategies (Brunnermeier and Pedersen

[2002]).

Contagion across markets and institutions, as modelled, e.g., in Allen and Gale

[2000], also fall naturally out of our model. For example, if investors hold positions

in many markets, liquidity needs in one market can lead to early liquidation of

assets in other markets. This suggests that the nature of cross-liquidity constraints

could be more important than previously thought. If financial markets investors

were unaffected in a liquidity crisis, they could bolster failing financial institutions,

and vice versa. It is the universality of liquidity fears across the economy that is

important.
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V. Related Literature

We adapted the Diamond and Dybvig [1983] model into a financial markets setting in

which prices can fluctuate, there is no sequential service constraint, no productive

inefficiency if investors liquidate, and investors do not suffer complete losses if

they fail to join the run.15 Indeed, working out the endogenous pricing and market-

making sectors’ inventory is a major focus of our paper. Our models share the fear

of liquidity shocks, the assumption of payoff externalities, and the conclusion that

a “lender of last resort” can earn money and/or prevent the run.

This strengthens the argument in De Long, Shleifer, Summers and Waldmann

[1990] and Shleifer and Vishny [1997], where potential arbitrageurs may not find

it in their interests to trade against noise traders. Their arbitrageurs fear future

adverse noise trader risk (liquidity shocks), because they may have to liquidate if

mispricing further increases. In our model, potential arbitrageurs may even find it in

their interest to trade with noise traders. The risk of experiencing future liquidity

shocks themselves can actually induce potential arbitrageurs to sell (rather than

purchase) when and because other possibly irrational investors are also selling.

Closely related to this idea, Brunnermeier and Pedersen [2002] present a model in

which traders strategically sell ahead of other large traders who need to reduce their

positions to meet margin requirements. This leads to price overshooting and, as in

our model, the market becomes illiquid just when liquidity is most needed.

There is also related theoretical literature on stock market crashes. Grossman

and Miller [1988] present a two-period model in which the limited risk-bearing ca-

pacity of market makers causes prices to fall excessively in response to an order

imbalance in the first trading period but then return to fundamental values in the

second trading period when individual traders can come in and supply liquidity.
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Greenwald and Stein [1991] extend the Grossman and Miller [1988] analysis so that

traders can only submit market orders in the second trading period. The introduces

transactional risk (uncertainty about the price at which their trades will execute)

which reduces the willingness of traders to absorb the market makers inventory in

the second trading period. Knowing this, market makers demand an even larger

risk premium than in the Grossman-Miller analysis to absorb any temporary order

imbalances in the first trading period.

Another large and related literature examines the impact of portfolio insurance

(e.g., Grossman [1988], Brennan and Schwartz [1989], Genotte and Leland [1990],

Jacklin, Kleidon and Pfleiderer [1992], Donaldson and Uhlig [1993], Grossman and

Zhou [1994], Basak [1995]). Portfolio insurers are usually modelled as agents who

display positive feedback trading (of an accelerating kind) for exogenous (often

assumed) reasons. This literature’s primary goal is to show that portfolio insurers

can exacerbate crashes.

Other papers have also presented ingenious mechanisms that can elicit large

price changes. In Madrigal and Scheinkman [1997], an informed strategic market-

maker attempting to control both the order flow she receives and the information

revealed to the market by the prices she sets may choose an equilibrium price sched-

ule that is discontinuous in order flow thus prompting large changes in price for

arbitrarily small changes in market conditions. In Romer [1993], uncertainty about

the quality of others’ information is revealed by trading, and large price movements,

such as the October 1987 crash, may be caused not by news about fundamentals

but rather by the trading process itself. In Sandroni [1998], market crashes can be a

self-fulfilling prophecy when agents have different discount rates and different be-

liefs about the likelihood of rare events (even if these beliefs converge in the limit).
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Barlevi and Veronesi [2001] present a model in which uninformed traders with ra-

tional expectations have locally upward sloping demand curves which can generate

an equilibrium price function discontinuous in fundamentals.

Finally, we are not the first to employ margin constraints to generate (multiple)

equilibria. In Chowdhry and Nanda [1998], perhaps the paper most similar to our

own endogenous liquidity constraint section, some investors engage in margin bor-

rowing to obtain their desired investment portfolio. Because shares can be used as

collateral there is a link between the price of the stock and the capacity to invest in

it which introduces the possibility of multiple equilibria.16

VI. Conclusion

Our paper has extended the Diamond and Dybvig [1983] model of bank runs to

the “other half” of the financial system. Fearing possible liquidation in the future,

investors prefer to sell their shares today to avoid coming in last. Their fear causes

a financial market run in which prices can fall precipitously, even when the changes

in the likelihood of liquidation are small. In such settings, financial markets do

not provide low-cost insurance against liquidity shocks. Our model’s natural policy

implications are for markets to expand communication and capacity in order to

maintain trade sequentiality whenever possible, to avoid market closures during

a financial run, to disallow front-running in crashes by market makers and other

close-to-the-market investors (who are designated to provide liquidity in ordinary

situations), and to assure investors that the Fed will continue to play the same role as

a liquidity-provider-of-last-resort that it played impromptu during the 1987 crash.

The University of California, Los Angeles
Yale University
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Notes

1. Gammill and Marsh [1988] describe the broader market-making sector during

the 1987 crash in great detail. Dennis and Strickland [2002] find that institutions
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are more likely than retail investors to sell into a dropping market. Indeed, port-

folio insurers even precommit to such strategies. Amihud, Mendelson and Wood

[1990] document the liquidity decline during the 1987 crash, and describe that “Or-

ders could not be executed, and information on market conditions and on order

execution was delayed. Consequently, much of the burden of responding to the

unexpected order flow fell on the exchange specialists, market makers, and other

traders with immediate access to the trading floor.” For example, Goldstein and

Kavajecz [2003] document that ordinary liquidity providers tend to withdraw dur-

ing extreme market movements.

2. Limit orders could potentially deepen the market-making sector but are not

considered in our model. Greenwald and Stein [1988, footnote 16] also note that

“limit orders do not represent an especially attractive alternative under the condi-

tions of October 19th and 20th. An investor’s threshold price should depend on

his most current information, which includes the current market price. Under very

volatile conditions, this can mean resubmitting limit orders on an almost continu-

ous basis, which would have been extremely difficult to accomplish.”

3. Diamond and Verrecchia [1991] offer a price setting mechanism that differs

from ours in two respects: market makers earn surplus on infra-marginal trades and

they set prices by solving a dynamic optimization problem. The latter implies that

market makers forecast future buys and sells when setting today’s price. Whether

or not market-makers earn surplus is not important for the qualitative results of

our model. Solving the market-makers’ price function in a dynamic optimization

problem is not tractable in our setup. Nevertheless, our results would still obtain,

because the price at t = 1 in the event of a liquidity shock would still be lower than

the price at t = 0.

4. This is an accounting identity, independent of the market-maker’s utility (and

price) function. Let p(θ) represent the price that makes the market-maker indif-

ferent to the marginal order θ. If orders are arbitrarily small, executed sequen-

tially (at price p(θ)) and randomly, the individual investor receives the average

price p(α) = 1
α ·

∫ α
0 p(θ )dθ when α proportion of investors submit sell orders.
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If the α orders are batched and purchased by the market-maker at price p(α )

which makes the market-maker indifferent between holding α shares and not hold-

ing these shares, then the market-maker’s utility will be identical (in every future

state) to the sequential execution case if he chooses p(α) = 1
α ·
∫ α
0 p(θ )dθ.

5. For s ≤ 1/2, stock return volatility isσ( R̃0,1 ) = (γ·σ 2·s)/[2·(1− s)·µ − γ·σ 2·s].
Volatility increases in s, γ, and σ 2 and decreases in µ.

6. For arbitrary correlations ρ among investor liquidity shocks, replace (1 − α)
with (1 − α)·s(ρ) in (4). s(ρ) is decreasing in ρ (ρ = 0 ⇒ s(ρ) = s, ρ = 1 ⇒
s(ρ) = 1). Then, p1( (1 − α);α) = µ − [2·α+ (1−α)·s(ρ)] ·γ·σ 2/2, and α? =
[s·s(ρ)]/{1+ [s(ρ)− 2]·s}.

7. Here, it is an undesirable model artifact that the Law of Large Numbers elimi-

nates aggregate uncertainty. It would not be difficult to add other sources of uncer-

tainty to eliminate the consequent arbitrage. Dow and Gorton [1994], Allen, Morris

and Shin [2002], Shleifer and Vishny [1997], Liu and Longstaff [2000] deal with sim-

ilar concerns.

8. Of course, when the market-making sector is deep, prices are close to risk-

neutral even if no risk-neutral investor is willing to hold shares and thus the welfare

loss is small.

9. The independent liquidity shocks case solution involves cubic equations. It

is difficult to find the parameter restrictions ensuring a unique equilibrium so that

we can do the comparative statics. However, there is no reason why the intuition of

the equilibrium discussed in this section would not carry over to the independent

liquidity shock scenario.

10. The restrictions (i) B > p > µ > κ and (ii) B sufficiently large, are made

for the following reasons. The assumption µ > κ ensures that p0 > 0 so we get

a meaningful margin requirement. The assumption p > µ ensures that we are

considering cases where the price of the stock has fallen since purchase, so that we

can consider the effect of margin calls. Finally, the assumption B sufficiently large
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ensures an interior solution for α∗. If B is not large enough the probability of not

meeting the margin call at date 1 is very high and the only equilibrium we get at

date 0 is everyone tendering (which has no interesting comparative statics).

11. Brunnermeier and Pedersen [2002] demonstrate that a strategic trader opti-

mally front-runs and sells when he knows another trader must sell then buys back

when the share price bottoms out. Within the context of the informational cascades

literature (Bikhchandani, Hirshleifer and Welch [1992], Welch [1992]), Chen [1995b]

has modelled such informational interactions in a banking run context.

12. Indeed, this is the equivalent of the national petroleum reserves, which are

rarely released, but whose presence may in itself prevent runs.

13. Although our model has emphasized purely rational behavior, where the fear

of liquidity shocks is rationally assessed or derived from margin constraints, our

equilibrium could also be embedded in a world of “non-rational behavioral eco-

nomics,” if the fear of a liquidity shock (the need to terminate an investment early

during a market run) were itself non-rational.

14. When liquidity shocks are independent, the expressions and intuition are sim-

ilar.

15. Allen and Gale [2003] and similar financial contagion models, though quite

different, also adopt the Diamond and Dybvig [1983] framework, as does the the

liquidity crisis and international runs on currency reserves literature, e.g., Caballero

and Krishnamurthy [2001]. Instead of their assumptions, our model had to assume

a division of the economy into a sector willing to absorb shares in crashes and a

breakdown of perfectly sequential execution.

16. For a more recent example, Yuan [2000] demonstrates that margin constraints

can be beneficial because they may apply to informed investors and thus reduce the

adverse selection problem with uninformed investors.
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Figure 2.
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Comparative Statics under Market-Making CRRA Utility

Comparative statics when investors face independent liquidity shocks. Our base
parameters are a down-stock-value of D = 10 and an up-stock-value U = 20 with
equal probability π = 0.5, a risk aversion coefficient of γ = 3, and market-making
wealth of W = 1.5 (i.e., roughly 1/10 of the value of the financial market).

33


	The Basic Model Setup 
	Equilibrium With Exogenous Liquidity Shocks 
	Equilibrium Definition
	A CARA-Normal Example
	A CRRA-Binomial Example

	Equilibrium With Margin Constraints 
	Discussion, Extensions, and Welfare 
	Preventing Runs
	A Multiperiod View
	The Social Cost of Investor Fear
	Contagion

	Related Literature 
	Conclusion 
	bercov.pdf
	May 27,2003


